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Abstract
Metallic glasses (MGs) have been long investigated in material science to understand the origin of their remarkable 
properties. With the help of computational simulations, researchers have delved into structure-property relationships, 
leading to a large number of reports. To quantify the available literature, we employed systematic review and bibliometric 
analysis on studies related to MGs and classical molecular dynamics simulations from 2000 to 2021. It was found that 
the total number of articles has increased remarkably, with China and the USA producing more than half of the reports. 
However, high-impact articles were mainly conducted in the latter. Collaboration networks revealed that top contribu-
tor authors are strongly connected with other researchers, which emphasizes the relevance of scientific cooperation. 
In regard to the evolution of research topics, according to article keywords, plastic behavior has been a recurrent sub-
ject since the early 2000s. Nevertheless, the traditional approach of studying monolithic MGs at the short-range order 
evolved to complex composites with characterizations at the medium-range order, including topics such as nanoglasses, 
amorphous/crystalline nanolaminates, rejuvenation, among others. As a whole, these findings provide researchers with 
an overview of past and current trends of research areas, as well as some of the leading authors, productivity statistics, 
and collaboration networks.
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1 Introduction

Computational simulations in materials science has 
attracted wide attention during the last decades. The pos-
sibility to explore materials properties at different length 
scales, without incurring in high-cost experiments, has 
opened new horizons in the research community. Simu-
lation methods, ranging from ab-initio to finite element 
modeling, have provided researchers with powerful tech-
niques to inspect, design, and predict materials proper-
ties in the order of nanometers to milimeters [1, 2]. Clas-
sical molecular dynamics simulations, called molecular 

dynamics (MD) hereafter, is a simulation method based 
on Newtonian mechanics. Atomic interactions are mod-
eled by means of interatomic potentials, usually param-
eterized to reproduce potential energy landscapes from 
experimental data or quantum calculations. Systems 
involving millions of atoms can be simulated at relatively 
low computational cost with high length-scale resolution, 
compared to quantum and continuum methods. Never-
theless, a disadvantage is that only small time-scales can 
be simulated and results strongly depend on the intera-
tomic potential [3].
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A wide variety of materials have been studied by 
means of MD in the literature. Some examples include 
biomaterials, ceramics, metals, polymers, and metallic 
glasses (MGs). MGs, often called amorphous metals, are 
novel materials successfully synthesized in 1960 [4, 5] 
that consist mainly of metallic elements with disordered 
atomic structure. Such combination leads to remarkable 
properties, including high strength, resistance to wear, 
and corrosion [6]. MD simulations have been performed 
to shed light on the atomistic mechanisms responsible 
for some of these properties. For example, studies on 
the glass forming ability include evolution of micro-
structure configurations of liquid metal systems under 
rapid cooling [7], atomic size effects on critical cooling 
rate for glass formation [8], and correlation between 
atomic structures and transport properties [9]. Another 
interesting topic is the mechanical behavior of MGs due 
to their lack of ductility and quasi-brittle behavior. How-
ever, previous reports indicated that large tensile ductil-
ity, with uniform elongation and extensive necking, can 
be observed in samples with dimensions in the order 
of 100 nm [10]. In order to elucidate the deformation 
behavior, researchers have investigated shear localiza-
tion, shear transformation zones (STZs) nucleation, and 
shear band (SB) formation [11, 12]. Due to the lack of 
long-range order in amorphous materials, explanations 
to most of these phenomena rely on the short-range 
order (SRO) and medium-range order  (MRO) atomic 
structure, usually characterized by means of Voronoi 
polyhedra and bond connectivity [13, 14].

There is a vast amount of literature available nowa-
days and it can be cumbersome to keep track of past 
and current investigations. Literature review is a tra-
ditional methodology for highlighting the most rel-
evant discoveries, methodologies, and advances in a 
given research field. Several reviews on MGs can be 
found in the literature. For example, Cheng and Ma 
[15] explored 50 years of work devoted to unveil the 
structure-property relationship. Li et al. [16] summa-
rized glass-producing techniques and discussed glass 
forming ability based on empirical rules and theory. 
Mechanical properties have also been surveyed. 
Egami  et al. [17] compared simulations and experi-
mental results of elastic, anelastic, and plastic behavior 
from an atomistic approach. All these reviews provide 
foundations, knowledge, and identification of open 
questions. Unfortunately, metrics related to the num-
ber of studies, authors, cites, among others, are usually 
out of the scope of such reports. Systematic literature 
review (SLR) is a method for identifying, evaluating, 

and synthesizing the work produced by researchers 
[18], whereas bibliometric analysis is a statistical evalu-
ation of research documents [19]. Number of articles, 
collaboration networks, data inspection, and research 
methodologies are just a few examples of information 
gathered using SLR and bibliometric analysis in fields 
such as material selection processes [20], polymers 
manufacturing [21], biomaterials for implants [22], and 
smart glasses applications [23]. Here, through SLR and 
bibliometric analysis, we provide answers to the fol-
lowing questions on MGs studied by means of MD sim-
ulations: When did this research field grow? Where is 
the research performed? Who are the leading authors? 
What are the main topics under investigation? Due to 
the vast number of experimental and computational 
studies on MGs, the current work is limited to classical 
MD simulations as a first approach to conduct a SLR 
on this matter. This work is organized as follows. Sec-
tion 2 presents the research framework together with 
the packages and tools employed during the analyzes. 
Section 3 shows the results, such as the evolution of 
this research field, the main journals, research trends, 
collaboration networks, among others. Section  4 
discusses the results, their scope, and future works. 
Finally, Sect. 5 draws the conclusions.

2  Methods

2.1  Search strategy

This study was conducted and reported according to the 
Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses Statement  (PRISMA) [24] guidelines to 
ensure a structured and transparent review process as 
adopted elsewhere [25, 26]. The PRISMA flow diagram 
employed in this work is shown in Fig. 1.

Data acquisition was collected from a single data base 
as proposed by Merediz–Solà and Bariviera [27] to avoid 
systematic duplication. The Web of Science (WoS) was cho-
sen for this purpose due to its prominence as a research 
tool [28]. The electronic search was conducted for English 
peer-reviewed studies published from January 1st, 2000 
to October 26th, 2021. A boolean search strategy was 
adopted to relate two research areas: MGs and classical MD 
simulations. Since several synonyms have been coined for 
both areas, such as amorphous alloys, amorphous metals, 
atomistic simulations, among others, the following search 
strategy was employed:

Topic = (metallic glass∗ OR amorphous metal∗)AND (molecular dynamic∗OR atomistic simulation∗).
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A total of 1757 articles were obtained from the electronic 
search. It is worth to note that classical MD is usually 
referred as “molecular dynamics”. Nevertheless, this con-
cept is much broader and it involves other techniques such 
as ab initio MD, molecular statics, among others. Exclusion 
of documents related to these techniques must be per-
formed from direct inspection of the results.

2.2  Data extraction

Several information parameters were extracted from the 
selected articles: (i) title, (ii) authors, (iii) journal, (iv) pub-
lication year, (v) corresponding author’s affiliation, (vi) 
research area, (vii) subject categories, (viii) keywords, (ix) 
WoS keyword plus, and (x) Digital Object Identifier (DOI). 
When not present, the DOI was manually retrieved from 
other online databases. Otherwise, the article was dis-
carded. From DOI examination, a further 23 articles were 
discarded. A total of 1734 articles were retained after this 
procedure.

2.3  Inclusion and exclusion criteria

The 1734 articles were screened based on a priori defined 
inclusion and exclusion criteria. Inclusion criteria for the 
systematic review were: (i) original article in the English 
language; and (ii) focus on metallic glasses and classical 
molecular dynamics simulations. Review articles, quali-
tative studies, letters, editorials, opinions, and confer-
ence abstracts were excluded. Early access articles were 
not considered due to the absence of publication year. 

Furthermore, articles focused on materials and simulation 
techniques different from MGs and classical MD simula-
tions were also discarded.

Titles and abstracts were screened by one author (NA) 
for eligibility and a second author (FJV) checked perti-
nence of the results. If information in the title and abstract 
was insufficient to determine eligibility, full-text articles 
were inspected. Any disagreements or ambiguities were 
resolved through discussion. Finally, two additional arti-
cles were added through reference review, giving a total 
of 1242 documents for bibliometric analysis.

2.4  Bibliometric analysis

Data analyzes were carried out to obtain performance 
indicators such as trends, number of articles, citations, 
top publishing journals, and country productivity. Topics 
coverage was inspected following article keywords. When 
not present, WoS KeyWords Plus were employed instead. 
Three periods of times were considered to assess the evo-
lution of research topics: (i) 2000–2009, (ii) 2010–2019, and 
(iii) 2020–2021. Keywords related to MD simulations, MGs 
and their synonyms, such as atomistic simulation, amor-
phous metal, among others, were not considered to this 
aim. Collaboration networks among authors were con-
structed following network theory, where authors were 
represented by nodes and collaboration between two 
authors by edges. All analyzes were conducted using the 
R and Python programming languages, incluiding the Bib-
liometrix R package [29], Metaknowledge and, NetworkX 
Python packages [30, 31].

Fig. 1  PRISMA flow diagram 
for the document selection 
process
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3  Results

3.1  Overview of search results

Several studies on MGs and MD simulations have been 
conducted during the last decades. Figure 2a shows the 
number of articles published each year. As observed, just 
a few works were reported in the literature from 2000 to 
2005, probably due to the limited computational power 
of that time together with the small research commu-
nity devoted to MGs. Shortly after, the number of articles 
increased remarkably. Two explanations can be given to 
this phenomenon. The first one is the continuous enhance-
ment of computational capability and speed [32] which 
have made accessible, for more researchers, to perform 
accurate and large scale molecular dynamics simulations. 
The second explanation can be found in the advances of 
MD simulations. In 2007 and 2009, Mendelev et al. [33, 34] 
published an interatomic potential to model CuZr MGs 
with high reliable structural characterizations at differ-
ent atomic compositions. A few years later, Cheng et al. 
reported another potential to describe CuZrAl alloys [35]. 
Both contributions encouraged researchers to conduct a 
vast number of MD simulations on MGs. To quantify this 
matter, the number of articles referencing the Mende-
lev et al. [34] and Cheng et al. [35] works were retrieved, 
resulting in the curves shown in Fig. 2b. In both cases, the 
number of articles increased notoriously, reflecting the 
relevance of these models in the study of MGs. Unfortu-
nately, the work of Mendelev et al. [33] is not available 
in the WoS database, making impossible to conduct an 

accurate analysis of references to this document. It is inter-
esting to note that the total growth of articles in Fig. 2a, 
represented by the cumulative number of articles, closely 
resembles a quadratic function as shown by the green 
curve. Nevertheless, the number of publications dropped 
in 2020 and 2021. Similar drops also occurred in previous 
years (see for instance 2004, 2009, 2012, 2016), which sug-
gests that this might be a temporary behavior until new 
research methodologies are developed. Another possibil-
ity is the COVID-19 impact as reported by Gao et al. [36]. 
Their study, based on surveys of principal investigators, 
revealed a decrease in initiating new research projects, 
suggesting that researchers are working on established 
topics. However, the real impact of COVID-19 pandemic is 
yet to be unveiled.

3.2  Journals and research categories

Publications on MGs can be found in different high quality 
journals. Some of them are strongly committed to publish 
works related to this field, while others possess a wider 
scope. To shed light on this matter, Fig. 3a shows the top 
ten journals with most works related to MGs and MD sim-
ulations. The highest number of reports corresponds to 
the Journal of Non-Crystalline Solids (n = 103 ), followed 
closely by Acta Materialia (n = 95 ), Computational Mate-
rials Science (n = 86 ), and Physical Review B (n = 83 ). The 
first two of them are also focused on experimental studies 
and quite often their articles compare experimental results 
with computational simulations to better understand 
the observed phenomena. In contrast, Computational 

Fig. 2  Number of articles 
published each year, accu-
mulated number of articles, 
and analytical model for the 
growth of articles
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Materials Science is focused on computational methodolo-
gies and simulations, whereas a large number of articles 
in Physical Review B are based on condensed matter to 
gain insights into the underlying atomistic mechanisms 
in MGs. Figure 3b, c shows the evolution of the number of 
publications per year for each journal. The upward trend 
of Journal of Non-Crystalline Solids, Acta Materialia, Com-
putational Materials Science, and Journal of Alloys and 
Compounds reflects the increasing interest in MGs among 
researchers. On the other hand, the number of studies in 
Physical Review B decayed from 2016 onwards, which can 
be explained from the launch of Physical Review Materials 
in 2017. This journal was conceived to cover several topics 
in materials science, such as synthesis, structure, modeling, 

among others [37]. Other well-reputed journals that pub-
lish on MGs and MD in a lesser degree include Journal of 
Applied Physics, Intermetallics, Applied Physics Letters, 
Scripta Materialia, and Journal of Chemical Physics.

Research areas and subject categories are classifica-
tions that WoS assigns to all journals. The former delivers 
a general description of the topics covered by each jour-
nal, while the latter provides more details on the subjects. 
Both classifications were explored in our database obtain-
ing the results shown in Fig. 4. In regard to research areas, 
most journals are classified as materials science (n = 806 ), 
followed by physics (n = 522 ) and then by metallurgy & 
metallurgical engineering (n = 328 ). Such results are not 
surprising since MD simulations are frequently used to 

Fig. 3  a Top ten journals with 
higher numbers of publica-
tions. b, c Evolution of the 
number of publications for 
each journal

Fig. 4  Research areas and 
subject categories of the top 
ten journals in publications on 
MGs and classical MD simula-
tions
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describe structural and mechanical properties of large-
scale systems. Interestingly, subject categories reveal that 
physics is divided into two classifications: applied and con-
densed matter. The properties commented above usually 
fall into applied physics [38, 39]. However, other studies 
are focused on establishing theories and shedding light 
on fundamental mechanisms at the atomic scale which 
can be categorized as condensed matter. Some examples 
of these works can be found in Physical Review B [40, 41].

3.3  Top publishing countries

Investigations on MGs are carried out in many countries 
around the world. To elucidate their degree of contribution, 
the total number of articles per country was calculated by con-
sidering the corresponding author affiliation, resulting in the 
top ten list shown in Fig. 5a. A total of 545 articles correspond 
to China, representing almost half of the total as observed from 
Fig. 5b. The second country with most contributions is the USA 
with 244 articles, which represents a fifth of the total count. 
Germany, Japan, and India are the following nations with more 
than 30 articles. Productivity decays abruptly for other coun-
tries and 27 of them reported less than 20 articles (not shown 
in detail here), representing just 12.9% of the total number of 
works as observed in Fig. 5b. Possible factors for such disparity 
can be found in economic wealth, which has been identified 
to promote increased productivity as observed in high-income 
countries due to consolidation of research centers and institu-
tions, strengthening of human capital, among others [42, 43]. 
Moreover, funding resources encourage mobility favoring 
international collaboration, scientific impact, and productiv-
ity [44]. Similar trends have also been reported in bibliometric 
analysis of nanotechnology [45]. The case of China has been 
discussed in the literature in detail. During the last years, China 
has invested in research and development more than the 
European Union. Its scientific institutions are now recognized 
worldwide and has more than 1.5 million researchers. Such 
factors have promoted the fast scientific growth of this nation 
and nowadays it has the largest productivity in research articles 
among all countries [46].

3.4  Authors and collaborating networks

MD simulations on MGs is an increasing research field that 
has attracted the attention of many authors. Remarkable 
studies can be found in the literature. Table 1 shows the ten 
most cited articles during the last two decades. One of the 
earliest research fields were related to structural disorder of 
amorphous solids. As reflected from the works of Truskett et 

Fig. 5  a Top ten countries in contributions on studies of MGs using 
MD simulations. b Percentage distribution per country. The “Others” 
wedge is composed by 27 countries with less than 20 articles

Table 1  Articles with most 
cites from 2000 to 2021

References Year Journal Times cited Country

Sheng et al. [48] 2006 Nature 1405 USA
Shimizu, et al. [49] 2007 Mater. Trans. 599 USA, Japan
Wang et al. [50] 2007 Proc. Natl. Acad. Sci. USA 337 USA
Cheng et al. [52] 2008 Acta Mater. 321 USA
Cao et al. [51] 2009 Acta Mater. 291 USA
Mendelev [34] 2009 Philos. Mag. Lett. 273 USA, Russia
Zhong et al. [54] 2014 Nature 252 USA, China
Cheng et al. [53] 2009 Acta Mater. 245 USA
Truskett [47] 2000 Phys. Rev. E 239 USA
Mendelev [33] 2007 J. Appl. Phys. 234 USA
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al. [47] and Sheng et al. [48], atomic packing of simple hard-
sphere systems and binary alloys was thoroughly inspected 
to quantify both the SRO and the MRO. A common topic also 
covered is the mechanical behavior of MGs. Brittle-to-ductile 
transition has been explored by determining the critical stress 
for SB nucleation [49], enhancement of ductility in crystalline-
amorphous nanolaminates [50], and identification of the local 
environment of shear localization [51–53]. Development of 
accurate interatomic potentials are essential to conduct proper 
MD simulations, as reflected from the works of Mendelev et 
al. [33, 34]. To this aim, the authors developed models for CuZr 
alloys. Publication and availability of such potentials provided 
researchers with state-of-the-art techniques to explore CuZr 
MGs, which led to novel studies as will be discussed in the fol-
lowing sections. Formation of monoatomic MGs is also a topic 
of interest as demonstrated by the work of Zhong et al. [54]. It 
was long believed that monoatomic MGs were experimentally 
unfeasible to synthesize due to the high cooling rate required 
for vitrification. In a remarkable effort, the authors showed 
that liquid tantalum and vanadium were successfully vitrified 
by employing cooling rates in the order of 1014 K/s and the 
dynamic process was unveiled by means of MD simulations. 
All of these studies were mainly conducted in the USA, which 
indicates that despite its second place in the number of pub-
lications (see Fig. 5a), the USA contributes with higher impact 
articles in the field.

Some authors have been involved to a greater extent than 
others when studying MGs. A list of the top ten authors with 
most articles is presented in Fig. 6. Their efforts have been 
directed to explore different properties of MGs. For example, 
glass forming ability together with interatomic potential imple-
mentation have been explored by Liu and Li [55, 56]. Mechan-
ical properties have been studied by Şopu, D. and Eckert, J., 
reporting nanoglasses and nanocomposites with enhanced 
ductility [57, 58]. Shear banding theory, including critical size 
for nucleation, propagation, localization, and atomic scale 

characterization have been developed by Li [11, 59] and Li [60, 
61]. Finally, several works on atomic packing, structural hetero-
geneity, and MRO have been reported by Li et al. [62–64]. All 
of these authors have also contributed in other topics on MGs 
using MD simulations. However, it is out of the scope of the 
present work to give an exhaustive list, and thus, only some of 
their contributions are mentioned here.

Previous studies have reported that higher impact research 
can be achieved by means of larger collaboration networks 
[65, 66]. Co-authors network was constructed from the litera-
ture survey performed in this work. Due to the large number 
of articles, only collaborations from 2017 to 2021 were consid-
ered. Analysis of this period of time represents the current co-
authorship in the field. A large number of collaborations were 
obtained from the records and many of them were composed 
by a few authors. In order to simplify the discussion and to give 
a general overview, collaborations with less than two articles 
were excluded. In the collaboration network, the number of 
co-authors for each author was obtained from the number of 
edges connected to each node, resulting in the top ten authors 
with most collaborators shown in Fig. 7a. Wang, W. H. stands 
out as the author with most co-authors ( n = 12 ) during the 
last five years, followed closely by Xie, Q., Tian, Z., and Song, 
H. Y. ( n = 11 ). Some of them, such as Wang, W. H., Eckert, J., 
and Wang, C. Z., are also top ten contributing authors as com-
mented previously from Fig. 6, which highlights the relevance 
of scientific cooperation. More details of collaboration can be 
obtained from direct inspection of the networks. Since the full 
network is composed of many (disconnected) subnetworks, 
only the two largest components are shown here. Figure 7b 
presents the largest subnetwork with a total of 20 authors, 
where a large node size and red color correspond to authors 
with a high number of co-authors. Here, Wang, W.H. serves as 
a hub that connects other researchers, explaining his large 
number of publications. Some works reported by this group 
are in the field of relaxation dynamics [67] and glass-forming 
ability [68]. In the second largest component, shown in Fig. 7c, 
Wang, L. is identified as a hub. Interestingly, this subnetwork 
also finds two other relevant hubs in Eckert, J. and Sopu, D., 
indicating strong collaboration among these authors. Some 
of their works include creep behavior [69] and structural het-
erogeneity [70]. Therefore, leading authors are strongly sup-
ported by other scientists, which is vital to conduct high impact 
research.

3.5  Research trends

Research topics on MGs by means of MD simulations have 
varied across the years. Early studies were frequently based 
on the atomic packing of amorphous metals, while the 
recent literature comprise a wide variety of approaches. 
Articles keywords were explored to summarize the main 
topics addressed in the last two decades. Figure  8a, b Fig. 6  Top ten authors on MGs and classical MD simulations
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present the treemaps with the 15 most frequent keywords 
corresponding to articles running from 2000 to 2009 and 
from 2010 to 2019, respectively. The number in each box 
corresponds to the number of counts. Since the retrieved 
keywords were not abbreviated, their full form are shown 
in the treemaps. In the following, brief descriptions of 
the surveyed literature are given according to the topics 
shown in Fig. 8. No in-depth details are provided since 
the current work is focused on quantitative analysis. The 
reader is referred to specialized literature reviews for more 
in-depth discussions [15–17, 71].

Large interest in mechanical behavior has been pre-
sent from 2000 to 2019, as represented by keywords such 
as “Plasticity”, “Mechanical properties”, “Flow”, “Ductility”, 
and “Fracture”. Back to the 2000s, a common practice was 
to adopt simple Lennard–Jones based models to simu-
late monolithic MGs, probably due to the lack of realistic 
potentials to describe amorphous solids. Some examples 
include monatomic Lennard–Jones glasses [72], polydis-
perse, two-dimensional, noncrystalline models [73], and 
80%–20% binary mixtures of Lennard–Jones particles [74]. 
Despite this drawback, researchers performed successful 
simulations of crack tip deformation [73], tension-com-
pression tests to explore asymmetries in yield stress [75], 
stress–strain dependence on physical aging, shear rate and 
temperature [74], shear localization and SB characteriza-
tion [11], and critical conditions for SB maturation [60]. 
In 2007 and 2009, Mendelev et al. [33, 34] and Cheng et 
al. [35] constructed interatomic potentials based on the 
embedded atom method (EAM) to model CuZr and CuZ-
rAl MGs, which explains the “Zirconium alloys” and “Cop-
per alloys” keywords displayed in Fig. 8a. All these reports 

paved the way for more complex studies during the fol-
lowing decade. Some examples include shock wave load-
ing [76, 77], crystalline-amorphous nanocomposites [78], 
shape memory alloy reinforced composites [57, 79], and 
structural heterogeneities for tuning the plastic behav-
ior [80]. An estimation of the number of times that each 
alloy has been explored in the literature can be obtained 
from direct inspection of the abstracts. It was found that 
CuZr MGs were the most studied (n = 165 ), followed by 
CuZrAl MGs (n = 28 ), NiZr MGs (n = 20 ), and monoatomic 
MG (n = 3 ). However, the number of times for each case is 
probably underestimated, since quite often the abstract 
does not explicitly indicate the alloy under consideration. 
A more in-depth analysis of the documents can amend 
these values, as well as help to identify other alloys under 
study.

Another topic of interest is the vitrification process to 
obtain amorphous solids as depicted by the “Glass forming 
ability”, “Crystallization”, “Supercooled liquids”, “Diffusion”, 
and “Relaxation” keywords. Depending on stoichiometry, 
metal alloys exhibit different degrees of glass forming 
ability. Unfortunately, its prediction is still a task to be 
fulfilled. During both decades, ideal and realistic systems 
were explored, including studies on structural relaxation 
and packing density [81], competing order between liquid 
and crystal phases [82], and self-diffusion coefficient and 
relaxation time [83].

Materials properties are ultimately determined by the 
atomic structure. Hence, most studies have been focused 
on correlating the disordered structure of MGs with their 
macroscopic properties as reflected from the “Short range 
order” and “Free volume” keywords in Fig. 8a. The former 

Fig. 7  a Top ten authors with 
higher number of co-authors 
in the time period from 2017 
to 2021. b, c The two main 
components of the co-authors 
network. Large node size and 
red color correspond to high 
collaboration, while small size 
and purple to low collabora-
tion
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describes the local environment of atoms and has been 
employed to establish the structural backbone of MGs 
[52, 84]. The latter is considered an important concept in 
plasticity, since free volume generation and localization 
leads to SB formation [11, 85]. From 2010 to 2019, more 
attention was paid to the “Medium range order” as shown 
in Fig. 8b. Connectivity of atomic clusters corresponds to 
MRO analysis. By inspecting such structures, researchers 
elucidated the second split observed in the pair distribu-
tion function [86] and determined enhanced resistance 
to deformation due to interpenetrating networks of full 
icosahedra [87].

New research topics have emerged in the literature 
from 2020 to 2021 as shown in Fig. 9, where mechani-
cal behavior studies are still dominant. Keywords such 
as “Rejuvenation”, “Nanoindentation”, “Nanoglass”, and 
“Dislocations” are now present. Rejuvenation refers to 
the procedure devoted to drive MGs to higher energy 
levels. Different methods at the atomic scale have been 
reported, including elastostatic compression [88], low-
energy ion irradiation [89], thermal cycling between 
ambient and cryogenic temperatures [90], and pressure-
promoted treatments [91]. Indentation is a mechanical test 
to measure material hardness, and at the atomic scale it 
has been performed on amorphous/amorphous [92] and 
amorphous/crystalline nanolaminates [93], whose plastic 
deformation leads to dislocation nucleation and enhanced 
ductility. Since simulation of composites involves a large 
number of atoms, reports on this topic have become more 
frequent probably due to the increased computational 
power. Nowadays it is quite common to find novel studies 
of large-scale systems, such as nanocutting of both amor-
phous [94] and amorphous/crystalline composites [95], 
tensile tests of shape memory metallic glass composites 
with brick and mortar designs [96], and shear localization 
in nanoglasses with gradient design [97].

4  Discussion

Research studies on MGs by means of MD simulations have 
been evolving remarkable during the last two decades. In 
the early 2000s, less than ten articles were published each 

Fig. 8  Most common keywords a from 2000 to 2009 and b from 
2010 to 2019

Fig. 9  Most common keywords from 2020 to October 26th, 2021, 
the date of the literature survey
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year. However, computer advances, development of novel 
techniques, growth of the scientific community, among 
others, has led to the publication of more than a hundred 
articles. It is difficult to deliver an accurate quantification 
of the total number of studies, since other document types 
such as proceedings and reviews were not included here, 
and some of them do not have a DOI. Scientific journals 
have also evolved through these years. In the beginning, 
studies on both MGs and MD simulations were published 
almost evenly in different journals, but from 2010 onwards, 
some of them acquired more relevance in this field, such as 
Acta Materialia, Journal of Non-Crystalline Solids, Journal 
of Alloys and Compounds, and Computational Materials 
Science. Many studies available in the aforementioned 
journals are focused on MGs using solely experimental 
approaches. Since such studies were not considered in this 
work, the real contribution of each journal to the field may 
be underestimated. An interesting approach would be to 
compare the total number of experiment-based studies 
with those of simulation-based as a method to estimate 
the types of productivity of authors and countries.

Contribution of each country was calculated by consid-
ering the corresponding author affiliation, resulting in that 
China and the USA are the most prominent contributors. 
This result could change by including also the country of 
each co-author. Furthermore, international cooperation 
can be established from direct inspection of affiliations 
and, with the help of network analysis, prominent research 
institutions can be identified. Similar methodologies on 
this matter have been applied in other research fields, for 
example, in solar energy [98], COVID-19 [99], and even in 
more specific areas such as density functional theory [100]. 
Unfortunately, construction of these networks requires 
more in-depth calculations being out of the scope of the 
current work.

Collaboration networks delivered a qualitative over-
view of the two largest components of co-authorship. 
To shed light on other collaborations, more components 
must be explored. Since the size of the network is explic-
itly related to the number of authors and implicitly related 
to the number of articles, such procedure cannot be 
conducted by direct visual inspection. To overcome this 
issue, networks metrics should be calculated. For example, 
betweenness centrality can unveil the degree of influence 
of each author over the network, and macroscopic metrics, 
such as density and transitivity, can be employed to deter-
mine the connectivity degree of both networks and sub-
networks. Although our analysis was restricted to the num-
ber of co-authors, other networks can also be explored. As 
pointed out in other works [101, 102], keywords, author 
co-citation, journal co-citation, among others, can provide 
insights into relevant research facilities, influential litera-
ture, cooperation, and the latest frontier in the field.

5  Conclusions

Metallic glasses and classical molecular dynamics simula-
tions is a long-standing research area with a vast amount 
of studies that range from glass formation to mechanical 
properties of complex nanolaminates. This systematic 
review provided quantitative analyzes of the literature 
published from 2000 to 2021, giving insights into the 
number of articles, journals, research areas, collaboration 
networks, among others. Our results revealed that this 
research field has gained increased attention over the 
years. The number of articles has growth remarkably and 
several specialized journals are publishing a large num-
ber of works. Most of these investigations are conducted 
in a few countries, indicating that cutting-edge research 
is highly localized. In addition, leading authors present a 
large number of co-authors as reflected from the collabo-
ration networks. Regarding the evolution of research top-
ics, early studies were strongly focused on simple models 
of amorphous studies to study plastic behavior and glass 
forming ability with emphasis in the short-range order. 
However, with the advances of interatomic potentials and 
better understanding of the structural properties, more 
complex studies emerged, with focus on amorphous/
crystalline composites, medium-range order, rejuvena-
tion, among others.

Overall, the number of possible studies that can be 
derived from systematic reviews and bibliometric analyzes 
is vast. Number of articles, leading authors, research top-
ics, and collaboration networks are just a few examples. 
All together can unveil and dissect the current trends in 
materials science, benefiting scholars, young researchers, 
and senior researchers to establish new research projects.
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