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ABSTRACT With the widespread application of GNSS systems in various fields, the problem of spoofing

detection has drawn much attention from the satellite navigation community. The GNSS spoofing inter-

ference generally uses fake or replayed satellite signals to make the targeted receivers receive false GNSS

signals and reduce the accuracy of calculated position and time information. In order to ensure and improve

the security of GNSS services, in recent years, academia and industry have studied the spoofing detection

technology from multiple aspects, and many theoretical results have been obtained. This paper starts the

analysis from the acquisition phase of a receiver and analyzes the characteristics of the small-delay spoofing

signal. Aiming at solving the problem that it is difficult to detect small-delay (0–2 chips) spoofed signals

during the acquisition phase, the CNN (Convolutional Neural Network) based method is used to detect the

small-delay spoofed signals effectively. According to the experimental simulation results, when the code

phase difference between the spoofing signal and the authentic satellite signal is larger than 0.5 code chip,

the CNN-based method achieves high detection accuracy. In addition, the algorithm can quickly detect

the data without using any additional equipment. Therefore, low complexity is achieved. This makes the

algorithm has a good engineering application prospect.

INDEX TERMS Acquisition phase, convolutional neural network (CNN), GNSS spoofing detection, small

delay.

I. INTRODUCTION

With the development of the Global Navigation Satellite

System (GNSS), the satellite navigation technology has been

widely used in the military and civil fields, including mil-

itary, aviation, communications, business, and many other

fields [1], [2]. Nowadays, the rapid development and popu-

larization of mobile communication, automobile, and other

industries have made the GNSS be more deeply integrated

into people’s daily lives. People enjoy the great convenience

brought by the GNSS. The importance of GNSS to the mil-

itary field is self-evident, and it is an important support for

electronic warfare, information warfare, and long-range war-

fare. Besides, it is one of the most basic and important techni-

cal means for the precision strike of missiles and other types

of weapons. The GNSS can not only provide positioning
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and navigation but also many services, such as accurate time

synchronization [1], [3]. In summary, the GNSS has strong

application value in many fields, from financial transaction

records to military and aerospace applications [4]–[6].

However, with the rapid development of technology, the

vulnerability of GNSS signals to interference and spoofing

has been gradually exposed. On the one hand, since the

signals of navigation satellites are transmitted over a long dis-

tance, these signals are extremely weak when they reach the

ground, and they are easily affected by interference signals

in their frequency bands [7], [8]. On the other hand, because

civil signals are publicly used in the international scope,

they are not confidential since they are easy to decipher,

thus making receivers extremely vulnerable to interference

attacks [9].

The GNSS interference technologies generally include

suppressing interference, spoofing interference, and oth-

ers [10], [11]. The suppressing interference is less difficult
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to implement. The principle is to suppress the reception of

the front-end satellite signals by sending a high-power inter-

ference signal in the coverage area of a jammer to make it

non-working. However, the power required for implement the

suppressing interference is too large to be found, and it is easy

to find, so its interference source also has the risk of being

attacked [12].

The GNSS spoofing can be divided into generative spoof-

ing interference and transponder spoofing interference in

terms of the generation mode of spoofing signals. The

transponder spoofing interference is realized by recording the

authentic satellite signals and transmitting them to the target

receiver through aGNSS signal simulator or transponder with

a certain delay, thus making the attacked target calculate the

wrong position and time information. The realization of the

generative spoofing interference is more complex; namely,

attackers extract location, time, satellite ephemeris, and other

related information from the authentic satellite signals and

align false GPS signal carriers with the authentic GPS signals.

Then, a GPS spoofing signal, including specific position and

misleading time, is generated by a program and transmitted

to the target GPS receiver via antenna, thus making the GPS

receiver calculate the wrong position and time information.

In contrast to the suppressive interference, the spoof inter-

ference does not require strong signal transmission power,

and can even perform spoofing (such as generative spoofing

interference) without relying on the GNSS systems, which is

more threatening to the receiver [13]; also, since it can make

the user terminal output wrong position and time information

without being found, it is most concealing and destructive.

Recent international GNSS spoofing attack incidents have

proven the threat of spoofing interference attacks. In 2011,

Iranian engineers used the GPS spoofing interference tech-

nology to capture the RQ-170 unmanned surveillance air-

craft produced by the US military [14]. In 2012 and 2013,

the Humphreys team successfully tricked the unmanned

helicopter system and positioning navigation device of the

‘‘White Rose’’ yacht [15], [16]. In 2017, GPS spoofing inter-

ference attacks in the Black Sea caused the GPS position-

ing system of dozens of ships were out of work. In 2018,

the Russian air defense system in Syria foundmultiple drones

approaching Russian military facilities. The Russian military

successfully controlled six UAVs approaching Russian mil-

itary facilities using the ‘‘vehicle yard’’ active interference

system. These spoofing incidents have further increased our

awareness of the potential harm of spoofing attacks.

The high-developing software radio technology has made

spoofing interference easier to implement, more flexible and

diversified, and less costly. Thus, anti-spoofing is no longer

a concern of only military users because civilians can also be

highly affected by decreased safety and reliability of GNSS

applications caused by spoofing [17]. Therefore, it is crucial

to study the GNSS spoofing interference detection technol-

ogy to ensure the satellite navigation system can provide

end-users with normal and safe navigation, positioning, and

timing services.

The research of the anti-spoofing interference has been

increasing both in the industry and the academia, and the

detection technology of spoofing interference has become a

research hotspot in the field of satellite navigation. During

recent research on GNSS spoofing interference detection,

academia has proposed many detection methods from differ-

ent levels of the receiver.

In [18], it was proposed to use the correlation feature

between two receivers to detect spoofing signals. How-

ever, this method requires using two receivers. In addi-

tion, in the spoofing environment, it is impossible to know

the information from which of the receivers is reliable,

so the detection performance cannot be guaranteed. Signal

power detection technology is also an effective detection

method. In this method, the receiver continuously monitors

the power-related parameters, which may be abnormal when

spoofing attacks are present. The power-related parameters

include C/N0 (carrier-to-ratio) [19], Signal Quality Mon-

itoring (SQM) [20], absolute power [21], and distribution

verification of correlator output [22]. These technologies

require the receiver to have high precision in measuring

the received signal’s parameters and complex hardware.

In addition, the absolute power detection is easily affected by

antenna type, antenna attitude, and multipath, and it requires

additional energy detection devices on the receiver side to

achieve it. It should be pointed out when the spoofed signal

is transmitted together with the noise, the C/N0 detection

method easily leads to misjudgment.

In [23], [24], a GPS spoofing detection scheme based on

the direction of arrival was proposed. This scheme judges the

arrival angle of signals by resolving the changes of signals of

different antennas, to distinguish whether the current target is

subjected to GPS spoofing. However, when the target receiver

can receive only one or two GPS signals or the GPS spoofing

system is deployed in the direction of the satellite-to-target

connection, the GPS spoofing cannot be effectively detected

by analyzing the direction of arrival of the received signals.

Thus, this detection method requires receivers to use multiple

antennas, which significantly increases the hardware cost.

In [25], [26], a method for automatic gain control (AGC)

detection was introduced. Namely, by delaying and ampli-

fying the spoofing, the mixed noise signal is also amplified,

so the AGC gain is quickly reduced. Therefore, the main idea

of the AGC detection method is to detect spoofing signal by

monitoring this abnormal change. However, the AGCmodule

is expensive, which leads to a decrease in the algorithm value.

A detection method based on the signal arrival time was

proposed in [27]. In this method, by detecting the time dif-

ference between the times when the signal arrives at the

receiver, it is determined whether there is a spoofing sig-

nal. The application of this method is limited mainly to

forwarding spoofing, which has little effect on generative

spoofing signals and can even eliminate authentic signals and

retain spoofing signals. In [28], the Doppler frequency shift-

based detection method was proposed. The principle of this

method is that when a receiver moves randomly, the Doppler
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frequency difference between the authentic satellite signals is

non-linear in the time domain, while that between spoofing

signals is linear. However, this method is only suitable for

detecting the spoofing signals transmitted by a single antenna.

In [29], an anti-spoofing algorithm based on a single

receiver pseudo-range difference was proposed. This algo-

rithm can be used to detect simple and intermediate spoofing

attacks and meaconing attacks. Further, an adaptive spoof-

ing suppression algorithm based on a multi-antenna array

was proposed in [30]. This algorithm can adaptively gener-

ate zeros using the cross-correlation gain of multi-antenna

arrays and suppressmultiple spoofing signals simultaneously.

In [31], [32], a low-cost inertial measurement unit (IMU)

spoofing detectionmethodwas proposed. Thismethod judges

whether there is a spoofing attack by comparing the consis-

tency of equivalent acceleration and angular velocity. In [33],

an innovative INS-assisted spoof monitoring method was

presented. The principle of this method is to detect spoofing

signals by detecting abnormal measurements of the angular

state of aircraft. However, devices such as IMU and INS

are expensive and thus are not widely used in civil applica-

tions. A spoofing interference detection method based on the

S-curve-bias (SCB), which gradually adjusts the dynamic

characteristics of the signal, was proposed in [34]. The

experimental results have shown that SCB has the poten-

tial of detecting spoofing interference. In [35], a detection

method based on double-antenna power measurements was

proposed. This method can be used in the unsynchronized

case.

The multi-peak detection method [36] is applied during the

acquisition phase. The principle is to determine the spoofing

signals by detecting whether there are two or more corre-

lation peaks in a two-dimensional matrix of the Doppler

frequency and code phase. This method is generally applica-

ble to situations where the code phase of the spoofing and

authentic satellite signals has a large offset, but when the

code phase shift of spoofing signals is small (for instance,

less than one chip), the number of peaks cannot be detected

effectively.

This paper starts from the multi-peak detection direc-

tion, and studies the spoofing detection in the case that the

code phase of the spoofed signal differs from that of the

authentic satellite signal by 0–2 chips. Based on the idea

of deep learning, a convolutional neural network (CNN) is

used to detect spoofing signals during the acquisition phase.

The experimental simulation results, at the code phase dif-

ference between the spoofed and authentic satellite signals

of 0.5 chips or more, show that the spoofing signals can be

effectively identified.

The rest of the paper is organized as follows. In Section II,

the signal model is presented and analyzed. In Section III,

a CNN-based GNSS spoofing interference detection algo-

rithm is introduced. The simulation results and performance

of the proposed algorithm in detecting spoofing signals

are presented in Section IV. The conclusions are given in

Section V.

II. SIGNAL MODEL AND ANALYSIS

A. SIGNAL MODEL

A general internal structure of a universal GNSS receiver is

shown in Fig. 1. In most GNSS receivers, the received RF

signal is converted into an intermediate frequency (IF) signal,

which is then processed.

FIGURE 1. The internal structure of universal GNSS receiver.

In the presence of spoofing interference, the received IF

signal of a single antenna receiver can be expressed as:

SR(t) = ST (t) + SS (t) + n0(t) (1)

In (1), SR(t) denotes the received IF signal, t denotes time

in seconds, ST (t) and SS (t) denote the authentic satellite

signal and spoofing signal, respectively; n0(t) denotes the

additive white Gaussian noise (AWGN) with zero mean and

variance σ
2.

The authentic satellite signal can be expressed as:

ST (t) =

M
∑

i=1

√

PTi Ci

(

t − τ
T
i

)

DTi

(

t − τ
T
i

)

× cos
[

2π
(

fIF + f TD,i

)

t + ϕ
T
i

)]

(2)

where M represents the number of authentic satellite signals

in the received signal, PTi denotes the received power of the

i-th signal; Ci(t) denotes the spreading code of the i-th satel-

lite, DTi (t) denotes the data bit of the i-th navigation mes-

sage; fIF represents the IF signal, f TD,i denotes the Doppler

frequency of the i-th authentic satellite signal; τ
T
i represents

the code phase of the i-th signal; and lastly, ϕ
T
i denotes the

initial carrier phase of the authentic satellite signal.

The spoofing signal has the same signal structure as

the authentic satellite signal, so the spoofing signal can be

expressed as:

SS(t) =

N
∑

i=1

√

PSi Ci

(

t − τ
T
i

)

DSi

(

t − τ
S
i

)

× cos
[

2π
(

fIF + f SD,i

)

t + ϕ
S
i

)]

(3)

where N denotes the number of satellites included in the

spoofing, Psi denotes the received signal’s power of the ith

satellite, and Dsi (t) denotes the ith signal’s data bit stream; τ si
denotes the ith signal’s code phase, f sD,i denotes the Doppler

frequency shift of the ith authentic satellite signal, and ϕ
s
i

represents the initial carrier phase.

Based on (1) and (3), in a spoofing interference environ-

ment, the signal received by a receiver represents a mixture

of spoofing and authentic signals. In general, spoofing will
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include most or all the satellites in the authentic satellite.

Therefore, in the receiver acquisition and channel tracking,

the processed signal actually represents the superposition of

authentic and spoofing signals.

B. MODEL ANALYSIS

The transponder spoofing interference principle is to forward

the authentic satellite navigation signal to the target receiver

with a certain delay and amplification to cause a positioning

error. Generally, a large-delay spoofing signal denotes an

interfering signal with a delay of more than two chips. This

characteristic is used in the multi-peak detection algorithms

to detect spoofing signals. When the forwarding delay of a

spoofing signal is large, the detection of the forwarding-type

spoofing interference is realized by detecting the number of

relevant peaks that exceed the capture threshold during the

signal acquisition process.

In the capture phase, the multi-peak detection algorithm

determines the number of peaks that exceed the preset cor-

relation peak threshold to detect the spoofing. Generally,

if there is only an authentic satellite signal in the received

satellite signal, there will be only one correlation peak that

exceeds the preset correlation peak threshold, as shown

in Figs. 2 and 3. In contrast, when a spoofing signal exists, two

or more correlation peaks will exceed the preset threshold,

as shown in Fig. 4.

FIGURE 2. The authentic satellite signal in the acquisition phase.

Accordingly, in the acquisition stage, by detecting the

peaks larger than the correlation peak threshold, the presence

of a spoofing interference signal can be detected. However,

this holds for situations where the phase values of the spoof-

ing interference signal and authentic satellite signal are quite

different, i.e., when an offset is two or more chips, as shown

in Fig. 5.

When the phase difference between the spoofing and

authentic satellite signal is less than two chips, the per-

formance of the traditional multi-peak detection method in

identifying the spoofing signal is reduced, especially when

the spoofing signal delay is less than one chip. As presented

in Fig. 6, when the phase of the spoofing signal differs from

that of the authentic satellite signal by one chip, there is only

FIGURE 3. The amplitude peak of the authentic signal peak.

FIGURE 4. Spoofing and authentic signals in the acquisition phase.

FIGURE 5. Spoofing signal code phase with a three-chip delay.

one peak, so it is more difficult to distinguish whether there

is a spoofing signal.

To improve the performance of the multi-modal detection

method in the acquisition stage, the CNN-based method is

used to detect small-delay spoofing signals.

III. SMALL-DELAY SPOOFING DETECTION METHOD

BASED ON CNN

The CNNs have made great success in the fields of image

recognition, video recognition, and speech recognition.
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FIGURE 6. Spoofing signal with a one-chip delay.

However, the application of deep learning in the field of

navigation signal processing has been relatively rare. In this

paper, a CNN-based method that represents a combination of

deep learning and satellite communication technology is used

to detect the GNSS spoofing signal.

A. ALGORITHM

The GNSS receiver estimates the Doppler shift and

pseudo-code phase of satellite navigation signals by search-

ing for correlation peaks in the two-dimensionalmatrix. In the

capture phase, it is more effective to determine whether there

is a spoofing signal based on the number of found correlation

peaks. However, when the forwarding delay of a spoofed

signal is less than two chips, the correlation peaks of the

authentic navigation signal and spoofing signal overlap, and

generally, only one correlation peak appears, which makes

the spoofing detection difficult. Hence, the spoofing signal

detection base on the number of correlation peaks is not

reliable in all cases. To overcome this problem, a CNN-

based method is developed to extract the characteristics of

the small-delay spoofing signal from the image field. The

flowchart of the proposed algorithm is shown in Fig. 7.

B. DATA PROCESSING

A GNSS receiver that uses the FFT algorithm to capture the

IF signal estimates the Doppler shift and code phase of the

satellite navigation signal by searching the correlation peaks

in the two-dimensional matrix. In this work, the Doppler

frequency shift search range is set to [−5 kHz, 5 kHz], and the

spoofing signal delay relative to the authentic satellite signal

is from zero to two chips. The steps of obtaining the dataset

are as follows:

• Step 1: Search a two-dimensional matrix A to find peak

Apeak that is greater than the capture threshold V.

• Step 2: In the two-dimensional matrix A, intercept the

data in the range of [−2 kHz, 2 kHz] on the Doppler

frequency shift axis and the chip range of [−2, 2] on

the code phase axis around the location of the highest

FIGURE 7. The flowchart of the CNN-based spoofing detection algorithm.

FIGURE 8. Example of interception matrix.

peakApeak to obtain the detectionmatrixAm×n, as shown

in Fig. 8. Among them,m = 4/1fD+1, n = 4/1TCA+

1, where 1fD and 1TCA represent the Doppler fre-

quency shift search step and code phase search step,

respectively.

• Step 3: Set all data in matrix Am×n that are below

the threshold V to zero to obtain a new matrix Qm×n,

as shown in Fig. 9.

• Step 4: Normalize the non-zero data of the newly-

obtained matrix Qm×n to obtain the target matrix Bm×n
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FIGURE 9. Schematic diagram of the three-dimensional peak values after matrix truncation. (a) Three-dimensional peak value of the
authentic signal; (b) Three-dimensional peak value of the authentic signal containing a 0.5-chips-delay spoofing signal;
(c) Three-dimensional peak value of the authentic signal containing a 1.5-chips-delay spoofing signal.

FIGURE 10. Schematic diagram of the three-dimensional peak values after matrix truncation. (a) The gray image converted from
the authentic signal interception matrix; (b) The gray image converted from the interception matrix when there is a 0.5-chips-delay
spoofing signal; (c) The gray image converted from the interception matrix when there is a 1.5-chips-delay spoofing signal.

FIGURE 11. Schematic diagram of the CNN network structure.

and transform it into a gray-scale image, as shown

in Fig. 10.

• Step 5: Use the obtained data for CNN training and

classification.

C. CNN DETECTION ALGORITHM SETTING

The advantages of convolutional neural networks havewidely

been studied in the field of deep learning. Their main advan-

tages become even more obvious when the network input is

a multi-dimensional image so that the image can be directly

used as a network input, thus avoiding complex feature

extraction and data reconstruction processes necessary in

the traditional recognition algorithms. Therefore, the CNN

method can be used to classify data with small differences,

which cannot be achieved by using traditional multi-peak

detection algorithms.

CNNs are mainly trained using gradient descent and back

propagation algorithms. The general CNN network structure

includes the input layer, convolutional layer, excitation layer,

pooling layer, and fully-connected layer, as shown in Fig. 11.
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In [37], [38], the operation principles and formulas of CNNs

were introduced in detail, so they are not provided in this

article in detail. The function of each CNN layer is explained

in the following.

1) INPUT LAYER

The input layer is the same as that in the traditional neural net-

work/machine learning. The neural network model requires

input data preprocessing for further operations. Common

input-layer preprocessing includes averaging, normalization,

and PCA/SVD dimensionality reduction. The data has been

processed before, and it is normalized here.

2) CONVOLUTIONAL LAYER

The convolutional layer does not recognize the entire picture

data simultaneously, but it is the first local perception of each

feature in the picture. For a black and white image with only

one layer, the convolution process can be expressed as:

xi =

∑

X ∗ Ki + bi (4)

where xi represents the ith feature map of the convolution

layer, Ki represents the ith convolution kernel, and bi rep-

resents the ith offset parameter. The convolutional layer can

effectively extract the features of normal and spoofing signals

in the image.

3) INCENTIVE LAYER

The excitation layer performs a non-linear mapping on the

output result of the convolution layer using the excitation

function after the convolution summation. Commonly used

excitation functions include Sigmoid function, Tanh func-

tion, ReLU, Leaky ReLU, ELU, and Maxout. In this paper,

the ReLU excitation function is used mainly due to its

fast iteration speed, simple gradient solution formula, and

absence of gradient disappearance and gradient explosion.

Since the picture size considered in this work is small, and

the data features are simple, the effect of using the ReLU

excitation function is better. The ReLU function is expressed

as follows:

f (xi) = max(0, xi) . (5)

4) POOLING LAYER

Pooling is also called subsampling or downsampling, and it

is mainly used for feature dimensionality reduction, reduction

of the number of data and parameters, overfitting reduction,

and model’s fault tolerance improvement. Polling mainly

includes Maximum Pooling and Average Pooling. In this

paper, Maximum Pooling is used.

5) FULLY-CONNECTED LAYER

After convolution, excitation, and pooling layers, the fully-

connected layer is used, which learns high-quality features of

an image. In this work, a dropout operation is added before

the fully-connected layer to randomly delete some neurons in

the neural network to prevent the overfitting. Then, the data

of the fully-connected layer are input to the classifier to obtain

the classification result. Also, the sigmoid function is used as

an activation function, and it is defined as:

f (x) =
1

1 + e−x
. (6)

It should be noted that the convolution number, excitation,

and pooling parameters are different for different Doppler

frequency shift search step and code phase search step in the

two-dimensional search, which will be explained in the next

section.

Aswell-know, the k-nearest neighbor (kNN) is a basic clas-

sification and regression method, and it has been commonly

used in the image classification field. The main principle of

the kNN is to determine the image to be recognized and to

find k closest images among all training images based on

a certain distance metric, and then, based on the k nearest

neighbors’ information, determine the most corresponding

category as an output result. In this work, the kNN algorithm

is used to detect spoofing signals to compare it with the

detection effect of the CNN-based method.

IV. SIMULATION SETUP AND RESULTS

A. SIMULATION SETUP

In the simulations, the sampling frequency of the GNSS IF

signal was set to 16.367667 MHz, the IF frequency was set

to 4.123968 MHz, and the navigation message data were ran-

domly generated. The signal-to-noise ratio of the simulated

satellite navigation signal was between -15 dB and -10 dB.

The simulated spoofing signal differed from the authentic sig-

nalmainly in theDoppler frequency shift, pseudo-code phase,

and power. Because it is difficult to keep the spoofed signal

accurately synchronized with the authentic satellite signal,

in the experiment, the Doppler shift difference changed ran-

domly within the range of ±1 kHz, and the code phase

difference varied from 0 to 2 chips. The spoofing signal power

was greater than the authentic signal power 1 dB–2 dB. The

simulation data in the experiment included 200,000 datasets,

which were divided into two categories:

• H0: 100,000 datasets, including only the authentic satel-

lite signal;

• H1: 100,000 datasets, including both the authentic signal

and the spoofing signal.

TheH1 data were further categorized based on the code phase

difference1T of the spoofing signal and the authentic signal.

The value of 1T changed from zero to two chips with a step

size of 0.1 chips. There were 20 categories in total, and each

category consisted of 10,000 datasets. Also, 7000 datasets of

various data types corresponding to H1 were combined with

7000 datasets of H0 data, so a total of 140,000 datasets were

used for CNN training, and the remaining 60,000 datasets

were used as test data.

In the simulation experiment, the Doppler frequency shift

search step was 500 Hz and 250 Hz, respectively, and the

code phase search step was 0.5 chip and 0.25 chip, respec-

tively. In the situation, the relevant parameters can be changed
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TABLE 1. Simulation settings.

according to the acquisition mode of a receiver, and in this

work, only the simulation comparative analysis of our settings

was conducted.

To evaluate the detection effect, different pseudo-code

search steps were used so that the size of the target matrix

Bm×n also changed. The simulation parameters are presented

in Table 1.

B. SIMULATION RESULTS

The accuracy of the spoofing signal detected by the kNN

classifier at different Doppler frequency shift search steps and

pseudo-code phase search step conditions, when the spoofing

signal deviated from the normal satellite signal by different

chip amounts, is presented in Fig. 12. As displayed in Fig. 12,

as the delay of the spoofing signal increased, the detection

accuracy rate also increased. When the delay of the spoofing

signal exceeded the value of one chip, the detection prob-

ability could reach 100% under different conditions. Thus,

the greater the delay of the spoofing signal was, the easier it

was to identify it. In addition, with the decrease in theDoppler

frequency shift search step and pseudo-code phase search

step, the detection probability increased, which conformed

with the principle of the receiver’s accuracy of signal acqui-

sition; namely, the smaller the search step is, the stronger

the signal acquisition capability will be. When the spoofing

signal delay was small (e.g., below 0.4 chips), the detection

probability of the signal was relatively low, but the overall

detection probability was higher than 90%.

FIGURE 12. The false alarm probability of the kNN algorithm under
different conditions.

FIGURE 13. The false alarm probability of the kNN algorithm under
different conditions.

The false alarm probability of the kNN algorithm under

different conditions is shown in Fig. 13, where as the delay

of the spoofing signal increased, the false alarm probability of

the kNN algorithm gradually decreased. When the spoofing

signal delay was larger than one chip, the false alarm prob-

ability was close to zero. When the spoofing signal delay

was larger than 0.5 chips, the false alarm probability was

below 0.002. When the spoofing signal delay was smaller

than 0.5 chips, the false alarm probability was relatively poor.

In Fig. 13, the false alarm probability is basically below

0.006, but the green line has a higher false alarm probability.

Also, the larger the chip offset of the spoofing signal is,

the lower the false alarm probability is, and the easier it is

to detect spoofing interference.

The accuracy of the spoofing signal detected by the CNN

classifier under different Doppler frequency shift search steps

and code phase search step conditions, when the spoofing

signal deviated from the normal satellite signal by a dif-

ferent number of chips, is presented in Fig. 14. As shown

in Fig. 11, as the chip offset gradually increased, the detection

probability gradually increased. When the spoofed signal

was shifted from the normal satellite signal by less than

0.4 chips, the detection probability was relatively low. When

the time delay of the spoofing signal was larger than 0.4 chips,

the accuracy of CNN’s recognition of the spoofed signal was

higher than 96%, and as the Doppler frequency shift and

the code phase search step decreased, the detection prob-

ability gradually increased; the detection probability even
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FIGURE 14. The detection rate of the CNN algorithm under different
conditions.

reached 100% when the time delay of the spoofing signal

was 0.5 chips. This result shows that when the code phase

difference between the spoofing signal and the authentic

signal is small, the CNN achieves poor performance in the

spoofing signal recognition. This is mainly because when the

chip offset is too small, the peak values of the spoofing and

authentic signals almost overlap, so it is difficult to identify

them. On the other hand, when the delay of the spoofing

signal is small, the chip offset is directly missed due to the

large step size of the code phase search. The combination of

these two results in low detection probability.

The false alarm probability of the CNN algorithm under

different conditions is presented in Fig. 15. As shown

in Fig. 15, when the delay of the spoofing signal increased,

the false alarm probability of the CNN algorithm decreased.

When the spoofing signal delay was above 0.5 chips, the false

alarm probability was close to zero. The false alarm proba-

bility was relatively poor when the spoofing signal delay was

less than 0.5 chips, which indicated that the smaller the chip

delay of the spoofing signal was, the greater the probability of

false alarm was, and the larger the chip delay of the spoofing

signal was, the smaller the false alarm probability and the

higher the detection probability were, thus the spoofing signal

FIGURE 15. The false alarm probability of the CNN algorithm under
different conditions.

was easier to detect. This result is consistent with the results

in Fig. 14.

In addition, the results presented in Figs. 12 and 14 show

that the detection probability of the kNN was slightly higher

than that of the CNN, but the detection probabilities of the

two algorithms were very close, and their performances were

relatively similar. In order to evaluate the performance of

the proposed CNN-based detection methods further, the two

detectionmethodswere compared from another point of view.

The detection probabilities of the two methods at the same

Doppler frequencies of the spoofing and authentic signals are

given in Table 2. As presented in Table 2, at different search

step values, the CNN and kNN methods had the detection

probabilities of more than 96%, which demonstrated high

effectiveness of both methods in the spoofing signal identi-

fication.

TABLE 2. Detection probability of the k NN and CNN at the same doppler
frequency.

The time-consuming statistics of the CNN and kNNmeth-

ods for a single dataset detection under different conditions

are presented in Table 3. In Table 3, it can be seen that at

the constant Doppler frequency shift search step, when the

code phase search step decreased, the detection time of the

CNN and kNN also increased. In addition, at the constant

dimension, even when the delay time of the spoofing signal

changed, the detection times of the two algorithms were

similar. However, under the same conditions, the time taken

by the CNN to detect a single set of data was much shorter

than that of the kNN. This was mainly because the CNN

could directly recognize the new data by the trained model

without the need for additional training steps. In contrast,

the kNN needed to calculate the distance between unknown

samples and all known samples for each data classification.

Besides, the larger the data dimension and the larger the data

amount were, the lower the data processing efficiency of

the kNN, and the higher its computational complexity were.

Moreover, as the computing power of the chip increases, the

detection time will continue to decrease. Thus, when the kNN

TABLE 3. Detection probability of the k NN and CNN at the same doppler
frequency.
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method is used to detect and deceive signals, a compromise

must be considered in terms of detection accuracy, detec-

tion time, and computational complexity. Compared with the

kNN, the application of CNN algorithm is more feasible in

engineering practice.

V. DISCUSSION

Since the spoofing signal is transmitted by the deceptive

equipment after a series of processing, it is different from the

authentic satellite signal in the path and delay, so it is difficult

to achieve accurate synchronization with the authentic satel-

lite signal, which makes it impossible for the spoofing signal

to have a 0 chip delay. In addition, if there is such a special

delay of 0 chip, the identification with CNN algorithm will

not get good results, which requires the additional detection

method of signal power to achieve.

In order to achieve the effect of deception, the power of

the spoofing signal must be higher than that of the authentic

satellite signal, so whether there is deception interference can

be judged by the value of the peak value A2. If A2 is less than

the threshold ρ1, the signal has not been searched; if A2 is

greater than the threshold ρ1 and greater than the threshold

ρ2 meanwhile, the signal in search cell is the authentic signal;

if A2 is greater than the threshold ρ2, it is determined that the

signal in search cell is a spoofing signal. Among them, ρ1

is the capture threshold and ρ2 is the maximum acquisition

credible threshold.With the help of CNNdetection algorithm,

the detection of 0-chip delay spoofing signal can be realized.

In the future, our research will be implemented in a

real software receiver system in the following ways: Firstly,

in normal environment and environment with deception,

a large number of two-dimensional search matrix data includ-

ing authentic signals and spoofing signals are collected

respectively in the receiver. Secondly, the target data set is

obtained by processing the obtained data, which is trained

to obtain the training model. Finally, the trained model is

embedded into the receiver software system to detect decep-

tion signals. According to this method, our subsequent work

will be implemented in a real software receiver system to

verify its detection performance.

VI. CONCLUSION

This paper studies the detection of a small-delay spoofing sig-

nal in the acquisition phase based on deep learning. Through

the analysis of the signal model and principles of the GNSS

system in the acquisition stage and the two-dimensional

search matrix processing in the acquisition stage, the spoof-

ing signal recognition in the GNSS system is respectively

realized by the kNN and CNN methods. The experimental

results show that both methods achieve better detection effect

when the code phase shift between the spoofing and authentic

signals is equal to or larger than 0.5 chips. The validity of

the proposed CNN-based detection method is verified by

the experiment and simulation. In the case of a small-delay

spoofing signal, the accuracy of the kNN is slightly higher

than that of the CNN, but on thewhole, the detection results of

the two algorithms are relatively similar. However, the kNN

has higher complexity, so the CNNmethod can be considered

as more suitable for engineering applications.

The experimental results show that when the spoofing sig-

nal delay is small, the detection probabilities of the kNN and

CNN are low, while the probabilities of false alarm are high.

This is mainly because the correlation peak of a small-delay

spoofing signal is relatively close to the correlation peak of

the authentic signal, and the correlation peak of the real signal

is even superimposed on all of them. When either CNN or

kNNmethod is used for spoofing signal detection, the charac-

teristic of the peak number in the image is not obvious, so an

effective spoofing signal identification is impossible.

It should be noted that the proposed CNN-based spoofing

signal detection method is in the phase of theoretical analysis

and research, and the actual testing and verification in the

software receiver system will be part of our future work.
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