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Abstract: A sensorless control system of a permanent magnet synchronous motor based on an
extended Kalman filter (EKF) algorithm faces problems with inaccurate or mismatched process noise
statistics. This problem affects the performance of the filter, resulting in an inaccurate estimation of
motor speed. To address the above problem, this paper proposes a parameter-adaptive Kalman filter
algorithm that does not depend on precise noise system covariance. This method can significantly
reduce the negative impact of the noise statistical mismatch on motor speed estimation. In addition,
the method uses adaptive covariance prediction and removes the original covariance checks in the
EKF, thus reducing the calculation burden. The simulation results show that, compared with the
traditional EKF algorithm, the algorithm proposed in this article can effectively reduce the steady-state
jitter and improve the filtering adaptability and calculation accuracy.

Keywords: extended Kalman filter; parameter adaptive extended Kalman filter; parameter adaptive
extended Kalman filter; sensorless control

1. Introduction

In recent years, the development and availability of permanent magnet materials
have made permanent magnet synchronous motors (PMSMs) develop rapidly. Moreover,
PMSMs have the advantages of small volume, high efficiency, high power density, and
wide speed range [1–3]. Thanks to the application of advanced methods such as vector
control and space vector pulse width modulation, PMSMs can realize higher performance
speed and position control in the digital control system. In this way, the application of
high-performance shifting motors can become widespread. At present, PMSMs are widely
used in new energy vehicles, CNC machine tools, and robots, and has a good development
prospect [4,5].

To make the whole PMSM control system operate stably, the motor needs to get the
position and speed of the rotor in real-time [6]. To detect the rotor position information, the
universal solution is to install mechanical position sensors, such as photoelectric encoders,
rotary transformers, etc. However, the mechanical sensor has several disadvantages [7,8].
Firstly, the mechanical position sensor increases system cost and circuit size, limiting
the promotion application of products. Secondly, mechanical sensors are susceptible to
noise, and the operating temperature range is limited, reducing the system’s operational
reliability [9]. Thus, installing mechanical position sensors is not an optimal way to obtain
the position and speed of the rotor in real time.

Due to the limitations of the mechanical sensors, a number of studies use various
non-sensor techniques to estimate speed and location. They can be divided into active
methods and passive methods: the first is to inject high-frequency signals using rotor
anisotropy [10,11], and the second is based on observer [12]. For example, the authors
in [13] developed the model reference adaptation method that used adaptive parameter
identification theory for sensorless control of PMSMs. The method consists of an adjustable
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model, reference model, and adaptive law, according to the error of the current state variable
adaptive adjustment adjustable model parameter. This method can keep the output of
the reference model consistent with the adjustable model. Authors in [14,15] developed
a sliding model observer method. This method performed closed-loop correction and
adjustment on the observed current to be consistent with the actual current. The control
function then output the back EMF through a low-pass filter and obtained the position
angle error through arctangent. Authors in [16,17] developed the EKF-based approach,
which performed an online estimation of the system state to implement online control.
Among the above methods, the model reference adaptive method is susceptible to stator
resistance variation during the operation process [18]. The sliding mode observer has a
discontinuous switch function, which will produce large jitter and noise. The EKF can
suppress noise while overcoming other algorithm defects and is easy to implement in
discrete time domains. Therefore, the EKF algorithm is widely used to estimate the speed
and position of PMSMs [19]. Authors in [9,20] proposed a speed estimation method using
the EKF algorithm, and achieved the closed-loop speed control system of PMSMs, which
proved that the EKF algorithm is feasible for PMSM closed-loop control.

The EKF algorithm considers the impact of system and measurement noise, providing
a random method for status and parameter estimation. However, the EKF algorithm
requires complete dynamic model parameters and statistical model parameters to achieve
optimal performance, which is the accurate known system process noise covariance. In
practical applications, the process noise covariance uncertainty and inaccuracy will lead to
the deviation of the filter and seriously affect the filter’s performance. Therefore, research on
the filtering problem of inaccurate or mismatched system noise covariance is essential [21].
Authors in [22] gave the definition and selection method of EKF parameters, and proposed
a parameter adaptive law for speed estimation of PMSM by using the hyperbolic tangent
function. Authors in [23] proposed a new noise model identification method for the
sensorless control system, which optimized the acquisition of covariance matrix in EKF
based on the ant colony algorithm. The above-mentioned methods both depend on the
accurate selection of process noise parameters, which needs many experiments to obtain
an excellent value and increases more workload in application [24,25].

To address the above problems, this paper proposes a new linear time-invariant
parameter adaptive Kalman Filter (PAEKF) for the PMSM control system. The main
innovation of this method is that the priori error covariance is adjusted on-line by feedback
mining of a posteriori variance instead of using traditional method to estimate the process
noise covariance. This new adaptive Kalman filter has multiple advantages. Firstly, the
filtering performance of PAEKF does not depend on the accurate process noise covariance.
Compared with the EKF, the proposed method reduces the work of obtaining the optimal
noise parameters. Secondly, the amount of calculation required by PAEKF is equivalent
to the EKF. Finally, the stability and accuracy of PAEKF in velocity estimation are better
than the EKF. The remainder of this paper is organized as follows. In Section 2, the PAEKF
algorithm is proposed, and the mathematical model of PMSM under EKF and PAEKF
algorithm is given. In Section 3, the PAEKF algorithm proposed in this article is compared
with EKF and existing adaptive methods, respectively. The proposed method is applied to
practice to verify effectiveness. Finally, in Section 4, the research contents are summarized
and the future work plan is given.

2. Theoretical Analysis of the EKF

This chapter will give the mathematical model of PMSM. The mathematical model is
linearized and discretized to apply to EKF and PAEKF.
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2.1. The EKF Model of the PMSM

The mathematical model of PMSM in the αβ coordinate system is as follows (1). The
model is a prerequisite for the application of EKF:[

uα

uβ

]
=

[
Rs 0
0 Rs

][
iα
iβ

]
+ Ls

d
dt

[
iα

iβ

]
+ ψ f

d
dt

[
cos θ
sin θ

]
(1)

where
[

uα uβ

]T and
[

iα iβ

]T are stator voltage and the stator current, respectively,
Rs is the stator resistance, Ls is the PMSM winding inductance, ψ f is the rotor permanent
magnet flux.

Based on (1), the speed is assumed to be constant in a short sampling time. In the α-β
coordinate system, the PMSM equation can be expressed as:

diα
dt = − Rs

Ls
iα +

ψ f ωe
Ls

sin θ + uα
Ls

diβ

dt = − Rs
Ls

iβ −
ψ f ωe

Ls
cos θ +

uβ

Ls
dωe
dt = 0

dθ
dt = ωe

(2)

where x =
[

iα iβ ωe θ
]T is a state variable, u =

[
uα uβ

]T is a control matrix,

y =
[

iα iβ

]T is an output variable. So Equation (2) can be expressed as the nonlinear
state equation of PMSM:

.
x(t) = f [x(t)] + B · u(t) + ω(t)
.
y(t) = h[x(t)] + ν(t)

(3)

where B is the input matrix, w(t) is the state noise, ν(t) is the measurement noise. Based
on the comparison of Formula (2) and Equation (3), the coefficient equation in (4) can
be obtained:

f [x(t)] =


− Rs

Ls
iα +

ψ f ωe
Ls

sin θ

− Rs
Ls

iβ −
ψ f ωe

Ls
cos θ

0
ωe

,

B =


1
Ls

0
0 1

Ls
0 0
0 0

,

h[x(t)] =
[

iα

iβ

]
(4)

Since PMSM is a continuous nonlinear system, the continuous nonlinear system of
the EKF model should be linearized and discretized. The nonlinear Equation (3) can be
expressed in the linearization by using the Taylor-level number:

.
x = F[x]x + B · u + ω,
.
y = H[x]x + ν

(5)

The Jacobian matrices F(x) and H(x) can be expressed as:

F(x) =
∂ f
∂x

∣∣∣∣
x=x(t)

=


− Rs

Ls
0

ψ f
Ls

sin θ
ψ f
Ls

ωe cos θ

0 − Rs
Ls
−ψ f

Ls
cos θ

ψ f
Ls

ωe sin θ

0 0 0 0
0 0 1 0

 (6)
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H(x) =
∂h
∂x

=

[
1 0 0 0
0 1 0 0

]
(7)

The sampling time is assumed to be T, the linear state equation of PMSM can be
expressed in the discrete equation:

xk = Φxk−1 + BTuk−1 + ωk−1,
yk = Hxk + νk

(8)

where Φ is the state transition matrix of the system, and Φ = eFT ≈ I + FT.
The EKF equations of PMSM consist of prediction Equation (9) and correction

Equation (10), which can be obtained based on the Kalman filter equations:

x̂k|k−1 = x̂k−1 + [ f (x̂k−1) + Buk−1]T,
Pk|k−1 = ΦPk−1ΦT + Q.

(9)

Kk = Pk|k−1HT [HPk|k−1HT + R]−1,
x̂k = x̂k|k−1 + Kk(y− Hx̂k|k−1),
Pk = (I − Kk H)Pk|k−1

(10)

where x̂k|k−1 is a priori estimate at the time k, Pk|k−1 is a priori estimation covariance matrix,
Q is the state noise covariance matrix, Kk is the Kalman gain matrix, R is the measurement
noise covariance matrix, x̂k is the optimal estimate at time k, Pk is the optimal estimated
covariance matrix.

According to the EKF model of PMSM, the EKF observer can divide into two steps.
The first is the prediction link corresponding to Equation (9). According to the optimal
estimation value of the state variable obtained at time k − 1, the system state variable
at the current time is estimated a priori. The prior estimation value x̂k|k−1 of the system
state variable can be obtained. Then, the covariance matrix Pk|k−1 of a priori estimation is
calculated to obtain the Kalman gain matrix. The second is to update the state variable,
which corresponds to Equation (10). The observation error and the minimum variance
principle are used to modify the prior estimate of the prediction process. Then the optimal
estimate value x̂k and the optimal estimate variance matrix Pk of the state variable are
obtained. However, the speed estimation of the control system based on the PMSM
mathematical model requires accurate EKF parameters.

2.2. The PAEKF Model of the PMSM

When the EKF cannot obtain the accurate process noise Q in advance, calculating the
prior estimation of covariance in the EKF cannot be used. Using inaccurate or false process
noise Q will deviate the priori covariance and Kalman gain matrix. The optimal estimation
of Kalman cannot be obtained, which results in instability of the filter. Finally, the accuracy
of a priori state estimation is affected. In order to eliminate the dependence of EKF on a
priori and exact Q and keep the simplicity of EKF, this paper proposes a new PAEKF to
improve the covariance calculation steps of EKF innovatively.

In the model of the PMSM, PAEKF retains the state prediction step, the gain calcu-
lation step, and the state update step. The new calculation method replaces the previous
covariance calculation step, which can be expressed as [26]:

Pk|k−1 = Pk−1|k−2 + ∆Pk−1,
∆Pk−1 = (∆xk−1∆T

k−1 − Kk−1HPk−1|k−2)/(k− 1)
(11)

where Pk|k−1 calculated by the new adaptive Kalman filter method, which represents
the estimation of a priori error covariance at time k, ∆Pk−1 represents the adjustment
amount of Pk|k−1 at the previous time, which can be calculated from a piece of posterior
information, ∆xk represents the sequence of a posterior residual vector, which is obtained
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by the difference between the posterior state vector and the a priori state vector of the
Kalman filter, and its representation is

∆xk = x̂k − x̂k|k−1, k = 1, 2, . . . , k− 1 (12)

(11) can be obtained by calculating maximum likelihood estimation [26]. Given that
Gaussian noise innovation sequence with a mean value of 0 is set up as ek = yk − Hx̂k|k−1.
And its covariance is E(ekeT

k ) = Ck = HPk|k−1HT + R. εk = {e1, e2, . . . ek−1} is the set of his-
torical innovation sequence before time k. It is assumed that at any time j (j = 1, 2, . . . , k − 1),
the priori error covariance of the optimal Kalman filter is invariant. By calculating the
maximum likelihood function:

L(P̂k|k−1) = ln P(εk|P̂k|k−1) = ln
k−1

∏
j=1

P(ej|P̂k|k−1) =
k−1

∑
j=1

ln P(ej

∣∣∣P̂k|k−1) , (13)

a priori-error covariance calculation method that does not require noise parameter Q
participation is obtained.

Finally, the new adaptive Kalman filter model of permanent magnet synchronous
motor can be expressed as

x̂k|k−1 = x̂k−1 + [ f (x̂k−1) + Buk−1]T, (14)

∆Pk−1 = (∆xk−1∆T
k−1 − Kk−1HPk−1|k−2)/(k− 1),

Pk|k−1 = Pk−1|k−2 + ∆Pk−1,
(15)

Kk = Pk|k−1HT [HPk|k−1HT + R]
−1

(16)

x̂k = x̂k|k−1 + Kk(y− Hx̂k|k−1) (17)

The new PAEKF model of PMSM is shown in Figure 1. The key of the proposed
adaptive Kalman filter is the covariance, which is obtained by using the new adaptive
scheme Equation (15). Firstly, the feedback item ∆Pk−1 can be calculated by the posteriori
residual vector sequence ∆xk−1. Then, the priori error covariance ∆Pk−1|k−2 can be corrected
by the feedback term ∆Pk−1 at the previous time. Finally, the priori error covariance Pk|k−1
at the new time is obtained.

Figure 1. Calculation block diagram of new PAEKF.

2.3. Practical Implementation Considerations

It is impractical to utilize Kalman theory to find the optimal estimation when the Q
value is unknown or inaccurate. An appropriate approximation should be close to the
optimal infinitely to solve this problem.

When the assumption Pk|k−1 is a constant, the additive white Gaussian noise ek is
used to estimate the priori error covariance [26]. In actual implementation, to increase this
approximate quality, the EKF is used to help filter to realize the rough convergence. Then
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the new method is implemented. The expression of rough convergence means that it is
impossible to estimate the optimal filter with a rough Q value. Therefore, the relatively
stable or roughly stable state can be a suboptimal scheme.

3. Simulation Results and Discussions
3.1. Simulation of PMSM Control System Based on EKF and PAEKF

In this section, the simulation model of PMSM is established in MATLAB/Simulink
software. The PMSM speed control and estimation block are shown in Figure 2. The
performance of the PMSM control system is verified based on PAEKF. With the same
measurement covariance matrix, the different noise covariance matrix Q is taken for the
PAEKF algorithm and EKF algorithm, respectively. The results show that PAEKF does not
need to rely on accurate noise covariance.

Figure 2. The PMSM speed control and estimation block.

Table 1 shows the relevant parameters of the motor. Table 2 shows different noise
covariance matrices Q. It assumes that the measurement noise matrix is diagonal matrix
R = diag(0.2,0.2). The PMSM control system is simulated with different noise covariance ma-
trix Q to obtain the speed estimation of PAEKF and EKF. The stability of the estimated speed
convergence and the error between the estimated speed and the actual speed is analyzed.

Table 1. PMSM parameters.

Parameter Values

Voltage Vdc(V) 24
Rated speed (r/min) 3000
Inductance L (mH) 1.4

Resistance R (Ω) 0.6
viscous damping F (N·m·s) 1 × 10−4

Pole pairs p 1
Rotor moment of inertia J (kg·m2) 1.1 × 10−5

Table 2. Noise covariance Q value.

Numbers Values

1© Q = diag(0.1,0.1,0.1,0.1)
2© Q = diag(0.1,0.1,0.5,0.1)
3© Q = diag(0.1,0.1,5.0,0.1)
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Table 2. Cont.

Numbers Values

4© Q = diag(0.1,0.1,50,0.1)
5© Q = diag(0.1,0.1,500,0.1)
6© Q = diag(0.1,0.1,0.5,1.0)
7© Q = diag(0.1,0.1,5.0,1.0)
8© Q = diag(0.1,0.1,50,1.0)
9© Q = diag(0.1,0.1,500,1.0)

Figure 3 shows the estimated speed obtained by the PAEKF algorithm and the EKF
algorithm with a noise covariance Q of 1©– 5©. Figure 4 shows the difference between the
estimated speed and the actual speed shown in Figure 3. As shown in Figure 3a, when
the Q value is 1©– 5©, the estimation speed based on the PAEKF algorithm can converge.
Figure 4a shows that the difference between the estimated speed and the actual speed is
stable within plus or minus 0.5. When the Q value of the EKF algorithm is 1©, the estimated
rotational speed can converge in Figure 3b. However, Figure 4b shows that the convergence
speed is quite different from the actual speed. Moreover, Figure 4b shows that with the
increase in Q value, the estimated speed of the EKF algorithm fluctuates wildly during
convergence, and the stability and accuracy are not as good as the PAEKF in Figure 4a.

Figure 3. (a) When the Q value is 1©– 5©, the speed is estimated by the PAEKF. (b) When the Q value
is 1©– 5©, the speed is estimated by the EKF.

Figure 4. (a) When the Q value is 1©– 5©, the difference between actual speed and estimated speed
based on PAEKF. (b) When the Q value is 1©– 5©, the difference between actual speed and estimated
speed based on EKF.



Appl. Sci. 2022, 12, 4944 8 of 12

From Figure 5, under the condition of the noise covariance Q is 6©– 9©, the estimation
speed based on the PAEKF algorithm can converge, and the EKF algorithm cannot converge.
The results show that the noise covariance parameter affects the stability of EKF. Figure 6
shows the difference between the actual speed and the speed estimated based on the above
two algorithms. It can be observed from the figure that the difference between the speed
estimated based on PAEKF and the actual speed is stable within plus or minus 0.5.

Figure 5. (a) When the Q value is 6©– 9©, the speed is estimated by the PAEKF; (b) when the Q value
is 6©– 9©, the speed is estimated by the EKF.

Figure 6. (a) When the Q value is 6©– 9©, the difference between actual speed and estimated speed
based on PAEKF. (b) When the Q value is 6©– 9©, the difference between actual speed and estimated
speed based on EKF.

The above simulation results show that when the process noise variance Q cannot be
accurately obtained, the EKF cannot reach the optimal filtering state. For example, when
the estimation result converges, there is a large fluctuation, or the estimated result is quite
different from the actual value and even the filter does not converge. But the velocity
estimation based on PAEKF still converges under imprecise Q. Moreover, the stability
and accuracy of PAEKF in estimating the convergence rate are also better than EKF. The
simulation results verify the performance of PAEKF in the PMSM control system.

3.2. Simulation of PMSM Control System Based on PAEKF and Existing Parameter
Adaptive Methods

In reference [22], the author constructed a parameter adaptive function. The adaptive
adjustment of noise parameters is realized by adjusting the values of two parameters α
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and β in the function, to improve the dynamic and steady-state performance of the PMSM
closed-loop control system. Figure 7 shows the simulation results of the PMSM control
system based on the adaptive law proposed in reference [22].

Figure 7. (a) Speed estimation based on the method in [22]. (b) The difference between the actual
speed and the speed estimated is based on the method in [22].

The simulation results from Figure 7 show that as the β value increases, the greater
the floating of the PMSM estimation speed. In addition, although the adaptive method pro-
posed in the literature [22] completes the adaptation of noise parameters, it also introduces
additional parameters α and β. Furthermore, the selection of these parameters is also a
significant work. However, the speed estimation of PMSM based on PAEKF stays within
plus–minus 0.5. Therefore, the method in [22] is not as stable and accurate as the method
based on PAEKF.

3.3. Experiment of PMSM Control System Based on PAEKF

This section gives the experimental results of the PMSM control system based on
PAEKF. As shown in Figure 8, the experiment uses STM32F446 chip and DRV8301 three-
phase gate driver as the core hardware platform to drive the 57BL55S06 series motor. The
parameters of the motor are as shown in Table 3. The motor in Figure 8a is in a state of
stopping, and the motor in Figure 8b is rotating. In Figure 9, Curves A and B represent
the experimental results of the PMSM control system based on EKF and PAEKF when
Q = diag(0.1,0.1,50,0.1), respectively. It can be seen from Figure 9 that when the accurate
process noise covariance Q cannot be obtained, the PMSM control system based on PAEKF
and EKF can achieve the convergence of estimation speed, but the convergence time of
EKF algorithm is slower than that of PAEKF algorithm. In addition, the estimation speed of
EKF algorithm fluctuates greatly when it converges, which is inferior to PAEKF algorithm
in stability and accuracy.

Table 3. The 57BL55S06 series PMSM parameters.

Parameter Values

Voltage Vdc (V) 24
Rated speed (r/min) 3000
Inductance L (mH) 1.4

Resistance R (Ω) 0.59
viscous damping F (N·m·s) 6.12 × 10−6

Pole pairs p 2
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Figure 8. PMSM experiment platform. (a) the motor is in a state of stop. (b) the motor is in a state
of rotation.

Figure 9. Experimental results of PMSM control system based on EKF and PAEKF.

As shown in Figure 10, curves A and B are experimental results and simulation results,
respectively. Curve C is the set speed reference value. The experimental results show that
the PMSM control system based on PAEKF can well estimate the real-time speed of the
motor, effectively reduce the steady-state jitter, and improve the filtering adaptability and
calculation accuracy. Moreover, it can be proved that the theoretical derivation of PMSM
vector control based on PAEKF is efficient.

Figure 10. (a) Experimental results of PMSM control system based on PAEKF; (b) experimental
results of PMSM control system based on EKF.
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4. Conclusions

To address the inaccuracy statistics process noise problem in the process of PMSM
speed estimation of EKF, this paper proposes a new linear time-invariant PAEKF algorithm.
The algorithm uses the posteriori sequence to predict the prior error covariance adaptively,
and solves the problem of the strict restriction of the Kalman filter to the noise covariance
matrix. Compared with the trial-and-error method, the method proposed in this paper saves
the work of obtaining the optimal noise parameters and speeds up the development process
in practice. Finally, this paper compares the proposed algorithm with the traditional EKF
and the existing adaptive EKF. The simulation results show that the proposed algorithm
can estimate a more accurate real-time speed of the motor, effectively reduce steady-state
jitter, and improve the adaptability and the calculation accuracy of the filter.

The motor parameters (stator inductance, stator resistance, rotor flux) will change with
its operation. In order to make the calculation of PAEKF more accurate and the research
more complete, our future work is to think about how to complete the self-renewal of
motor parameters from the inside, further improve the accuracy of sensorless algorithm,
and apply it to the field of automotive electric assisted steering.
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