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Abstract: Building on our earlier work conceptualizing teaching as the management of 
instructional exchanges, we lay out a theory of the practical rationality of mathematics 
teaching—that is, a theory of the grounds upon which instructional actions specific to 
mathematics can be justified or rebuffed. We do that from a perspective informed by what 
experienced practitioners consider viable but also in ways that suggest operational 
avenues for the study of instructional improvement, in particular for improvements that 
enable students to do more authentic mathematical work.  We show how different kinds of 
experiments can be used to engage in theory building and provide examples of initial 
work in building this theory. 
 
Keywords: Mathematics instruction; Practical Rationality; Theory of teaching; 
Teacher education 
 
 
Introduction 

In this paper we address the work of the mathematics teacher in instruction and 

the rationality behind this work. We first sketch out how the teacher’s work 

could conceivably contribute to the creation of opportunities for students to do 

authentic mathematical work. In that sense we expect that the paper will add to 
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our collective sense of what is conceivable and perhaps desirable to happen in 

classrooms. Most of the paper, however, is concentrated on elaborating on the 

grounds for possibility and justification of teachers’ actions. In particular, what is 

the rationality that might (or might not) support teachers’ management of 

authentic mathematical work by students?  

In accounting for the rationality beneath teachers’ actions and in regard to the 

possibility of enabling authentic mathematical work by students, we take some 

distance from two relatively commonplace ways of responding to a vision 

sketch. In one of these approaches, a vision of conceivable mathematical work in 

classrooms might be followed by an acknowledgment and analysis of the forces 

and structures that make the vision not viable. Such an approach would summon 

us to be like social critics of the current educational system, and to endorse a new 

educational system that would bring all our hopes to fruition. In the other 

approach, the vision sketch is followed by a busy shaping of persuasive rhetoric, 

design of efforts, and organization of resources, all of them aimed at making the 

vision happen against all odds. Such an approach would summon us to be like 

social engineers, relentlessly working to realize the vision, as if the only thing 

that separated the conceivable from the viable was the existence of the will to 

make the vision happen.  

Without meaning to disrespect proponents of either of those approaches, we 

take a third approach, which combines the orientation to improvement of the 

second with the analytic disposition of the first but poses questions that call 
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neither for critique nor for engineering but rather for theory and research. We 

elaborate on the notion that the actions of teachers in classrooms are not mere 

expressions of their free will and personal resources; rather their actions also 

attest to adaptations to conditions and constraints in which they work. And yet 

that realization does not necessarily condemn us to accept the status quo; rather, 

it can suggest ways of working toward improvement in viable, incremental, and 

sustainable ways.  

How can we think about the distinction, and the gap, between what is 

conceivable and what is viable in mathematics teaching? How can we find out 

how much of the vision can be realized within existing conditions and 

constraints? We argue below that what is required is first to understand and then 

to co-opt what we have been calling the practical rationality of mathematics 

teaching (Herbst & Chazan, 2003; Herbst, Nachlieli, & Chazan, 2011). We first 

recount how the story of practical rationality began and the big picture it serves. 

 

How We Started Our Efforts to Explain Teaching 

We started to work together back in 2000, following our common interest in 

understanding the teaching of mathematics at the secondary level and our 

shared sense of the importance of learning the wisdom of the practice (Shulman, 

2004). But while the focus of our interest was convergent, our theoretical 

perspectives and our methods required some work. Chazan had been doing 

what Ball (2000) calls first-person research: He had been using his own practice 
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teaching Algebra I to investigate the dilemmas and dynamics that a teacher 

needs to manage (see Chazan, 2000; Chazan & Ball, 1999; also Lampert, 1985). 

Herbst had been using the more structuralist notions of didactical contract 

(Brousseau, 1997) and didactical transposition (Chevallard, 1985) to provide 

detached observer descriptions and explanations of the work of teaching and its 

effects on the classroom representation of knowledge (see Herbst, 1998; 1999; 

2002a; 2002b). Our conversations at the time had found a good anchor concept in 

Bourdieu’s (1998) notion of disposition: an element of practical reason that could 

be conceived as having two sides, like a coin. Dispositions could be seen by an 

observer as ordinances to which the individual is subject given the position in 

which they are, but dispositions could also be experienced as tendencies 

emanating from the individual and compelling them to act in particular ways 

(see Herbst & Chazan, 2003; cf. how Lampert, 1985, speaks of commitments). Early 

on the conversation was mostly theoretical, as we searched for ways to 

complement our perspectives; but then our conversation took a methodological 

turn.  

At about the same time that we started talking about dispositions, the 

educational research community was dealing with a renewed interest in the use 

of experimental methods in education, which culminated with reports like 

Shavelson and Towne (2002) and the establishment of the What Works 

Clearinghouse by the US Department of Education 

(http://ies.ed.gov/ncee/wwc/).  The notion was in the air that educational 
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research should aspire to the gold standard of using experimental design, 

randomly assigning participants to conditions; and our conversations started to 

include considerations of hypothesis testing in research on mathematics 

teaching. As we considered what experimental research in mathematics 

instruction could look like, it was odd to us that the image that first came to 

mind was that of research on whether the implementation of an instructional 

intervention might affect students’ performance: Does curriculum X produce 

better gains than curriculum A on the scale N? To be clear, nothing is odd about 

thinking of curriculum or pedagogy implementation in terms of experimental 

research. What seemed odd to us was that those types of questions would appear 

as the prototypical examples of how our field might take on the challenge of 

experimental research.  

Experimental research that gauged the achievement gains that could be 

caused by a particular treatment were clearly worthwhile questions, important 

for policy and practice, but they were also applied questions, not necessarily 

illuminating the fundamental phenomena of mathematics instruction. We 

wondered whether embracing an experimental paradigm would necessarily 

mean that research on mathematics instruction would be limited to asking 

questions of an applied nature, questions that took for granted that we knew the 

nature of mathematics instruction well and just had to design and test ways of 

improving it. Given our experience as classroom researchers, we knew that, at 

the time, mathematics education research (for a long time focused on learning 
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and the learner, and later on the individual teacher) still had some ways to go as 

far as understanding the nature of the activity of mathematics teaching. We 

thought there was a great need for basic (as opposed to applied) research on 

mathematics teaching, not just basic research on students or teachers. And so we 

wondered whether basic research on mathematics instruction had some use for 

an experimental paradigm.  

Instructional Situations and their Norms:  

A Focus for Basic Research on Mathematics Teaching 

The fundamental idea, proposed by David K. Cohen among others (see 

Cohen, Raudenbush, and Ball, 2003; also Chevallard, 1985; Hawkins, 1974; 

Henderson, 1963), that instruction consists of the interactions among teacher, 

students, and content in environments was compelling to us and essential for 

defining an emerging field. We pondered what basic research on the nature of 

mathematics instruction could look like if it embraced an experimental 

paradigm: What kind of interventions could reveal aspects of the nature of 

mathematics instruction? And what aspects of mathematics instruction could we 

expect to find out about? These questions seemed important, on the one hand, in 

order to respond to the challenge of using an experimental paradigm. Those 

questions seemed important, on the other hand, in order to establish a 

foundation for basic (rather than applied) research on instructional practice in 

mathematics--research that asked questions distinct from the study of instruction 

writ large (which might assume that the subject does not matter or that it matters 
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the same regardless of the particular discipline from which it comes) as well as 

questions distinct from the study of people (teachers or students) which might 

perpetuate the reduction of mathematics education research to psychology.   

One key idea presented itself as an aspect of mathematics instruction that we 

wanted to find out more about: If the subject matters in instruction, that is, if 

mathematics instruction in geometry is a practice distinct from instruction say in 

Calculus, American History, or Organic Chemistry, we would expect to see 

regularities of some sort across different cases of instruction in a specific domain. 

This was anchored by our mutual interest in justification and proof and our 

question of why, while those practices were current in geometry, they continued 

to be absent in algebra, in spite of calls for it in reports over the decades: How 

could it be that the same teacher with the same class, but perhaps at one year’s 

remove, would talk and act so differently in regard to the source of mathematical 

truth simply due to a shift from geometry to algebra instruction? Additionally, if 

the regularities observed concerned mathematics instruction as an activity, we 

would expect to observe regularities that went beyond the knowledge being 

transacted to include similar ways in which teacher and students managed those 

knowledge transactions. The word “norm” used in the sociological sense as the 

normal or unmarked behavior that is tacitly expected in a setting, suggested itself 

as the name of the object of study. We hypothesized that instruction in specific 

courses of mathematical study (algebra, geometry, etc.) could be described as 

abiding by consistent sets of norms, much as other human practices like eating in 
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a formal dinner or getting a table in a restaurant abide by consistent sets of 

norms (Garfinkel & Sacks, 1970). And we thought that experimental research 

could be used to confirm that those norms exist. 

Instructional Situations, their Norms, and the Notion of Breaching Experiment 

While the observance of norms could be found at various layers of classroom 

activity (as we indicate below, in particular at the layer of the didactical contract 

and the layer of the mathematical task), we concentrated on studying norms at 

the layer that we’ve called the instructional situation (Herbst, 2006). Conceptually, 

an instructional situation is a type of encounter where an exchange can happen 

between (1) specific mathematical work done by students and their teacher in 

moment-to-moment interaction and (2) a claim on students’ knowing of a 

specific item of knowledge at stake. Intuitively one could think of an 

instructional situation as including a mathematical task and the element of the 

curriculum that the completion of the task enables the teacher to lay claim on. 

We model instructional situations by spelling out norms that describe the 

knowledge and the work being exchanged, who is expected to do what, and 

when those different actions are supposed to happen (see Herbst & Miyakawa, 

2008; Herbst, Chen, Weiss, & González, 2009).         

Herbst’s own research studying the work of the teacher managing the 

instructional situation of ‘doing proofs’ in high school geometry provided an 

example of a norm: students are expected to justify a statement in a proof with a 

reason before they move on to make the next statement. In proposing it as a 
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norm, we did not mean to endorse the norm as appropriate, but to describe what 

classroom participants—teacher and students—would consider appropriate. We 

were not willing to posit that those norms would necessarily be explicit for 

teachers or students: We expected that people might act as if they followed 

norms but not necessarily bring them up if and when they were asked to 

describe the activities they do. And we realized also that, unlike physical laws 

those norms of human activity could not be thought of as inevitable; they could 

in fact be broken—one could conceive of and actually find a teacher who had let 

a student make a new statement without having justified the previous one. While 

one would expect that a large number of observations of a similar instructional 

situation would reveal compliance with norms more often than non compliance, 

the notion that mathematics instruction is regulated by norms could not be 

validated solely through the observation of regularities in action. We needed 

empirical ways of attesting that even if a norm had actually been breached, 

people familiar with the practice would have expected it to be fulfilled.  

The notion that basic research on mathematics instruction could consist of 

finding out about the norms of instruction in subject specific situations, along 

with the particular notion of a norm as a tacit, shared expectation for action, led 

us to an idea for how to pick up the challenge of doing experimental research. 

We were inspired by the ethnomethodological notion of breaching experiments 

(Garfinkel & Sacks, 1970; Mehan & Wood, 1975), which the first author was 

already adapting for use in classroom research (Herbst, 2003, 2006). We thought 
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this notion could be adapted to deliberately bring to the surface practitioners’ 

sense of the norms of instruction.  If we could represent to practitioners (for 

example, through a videotaped episode of instruction, but also possibly through 

an animation or through a virtual reality experience) action that purported to be 

of the same kind of what they would ordinarily do, but where a hypothesized 

norm of that action had been breached, we might be able to hear from 

practitioners whether they had expected the norm to hold. In that sense, a 

representation of teaching that included the breach of a norm could be expected 

to reproduce deliberately the phenomenon of interest, namely, that practitioners 

expected that norm to hold. The extent to which those procedures could be called 

experiments refers to Francis Bacon’s notion of experiment in scientific inquiry: 

“there remains simple experience; which, if taken as it comes, is called accident,” 

“if sought for, experiment” (cited in Durant, 1926, p. 146). That is, our earlier 

conception of doing experimental research only abided by the notion of 

experiment as the deliberate reproduction of a phenomenon. But one could also 

see at least as a possibility that the modern conception of experiment, which 

emphasizes reproduction of the phenomenon under controlled conditions by 

way of random assignment of participants to conditions, could be used to 

confirm that a norm holds: Imagine having two representations of teaching that 

differed only in that in one of them (the control condition) a hypothesized norm 

held while in the other  (the treatment condition) the hypothesized norm has 

been breached. Imagine a sample of practitioners who have a comparable degree 
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of socialization in the practice where the norm is supposed to hold. Imagine 

randomly assigning those participants to one or another representation. Imagine 

having a way of gauging their satisfaction with the instruction experienced and 

comparing both groups in regard to that assessment. That gave us a skeleton of 

what basic experimental research on instruction could look like and some 

impetus for initial work on a project that we would later call Thought 

Experiments in Mathematics Teaching (ThEMaT).  

Thought Experiments in Mathematics Teaching 

The notions of instructional situation, norm, and breaching experiments led 

us first to gather video records from a geometry lesson on proofs where the 

teacher allowed a student at the board to omit the justification of a statement and 

to move on with the proof. We started by gathering focus groups of geometry 

teachers that looked at that video record and then examining the discourse of 

those focus groups for comments that might provide evidence that teachers in 

the focus groups had seen the actions of the videotaped teacher as breaching a 

norm (Herbst & Chazan, 2003; Nachlieli & Herbst, 2009; Weiss, Herbst, & Chen, 

2009). At the same time that this work was being done we started exploring the 

use of animations to represent classroom scenarios and we wrote a grant 

proposal for Thought Experiments in Mathematics Teaching to the National 

Science Foundation, asking for support to create animations that helped us study 

what by then we had started calling the practical rationality of mathematics teaching.  
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Thought Experiments in Mathematics Teaching (ThEMaT) was funded in 

2004 and, among other things, it enabled us to create seventeen families of 

animated classroom stories (the stories can be seen in LessonSketch, 

www.lessonsketch.org). The animations use simple cartoon characters and voice 

over to represent scenarios of classroom instruction. The use of animations 

allowed us to control the content of those scenarios, allowing us to design 

scenarios that breach a norm but comply with others. Animations also allowed 

us to produce breaches that had not been observed in actual classrooms (thus 

showing one important advantage over video records). And this media also 

allowed us to create stories that branched, thus depicting alternative scenarios 

that proceeded from a common trunk (thus our reference to families of stories, 

since many of them have several alternative stories; see Chazan & Herbst, 2012; 

Herbst, Chazan, Chen, Chieu, & Weiss, 2011; Herbst, Nachlieli, & Chazan, 2011). 

The generous support of the National Science Foundation has been crucial for us 

to maintain a research program that, in our view, has contributed to the field not 

only an important technique for data collection but also some useful theoretical 

and methodological ideas.   

The goals of the research program are quite ambitious: To develop and test a 

theory of the rationality of instructional practices in mathematics. This theory of 

the rationality of instruction explains what instructional actions are justifiable by 

drawing on two elements (1) the norms that the practice of teaching a particular 

mathematics course imposes on whoever plays the role of teacher, and (2) the 
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obligations that the profession of mathematics teaching requires of anybody 

taking the position of mathematics teacher. Combined with the personal assets 

(including knowledge, skills, and beliefs) that an individual teacher brings with 

them to that position and that role, those norms and obligations can help explain 

teacher action and decision-making.  The project is now on its second funding 

cycle in which we are designing and using an online interface (LessonSketch, 

www.lessonsketch.org) to deliver online multimedia experiences that include 

animations and other cartoon-based representations of teaching. The project 

designs multimedia experiences and questionnaires that confront individuals or 

groups of teachers with representations of teaching; the project will investigate 

how responses to those questionnaires correlate with measures of mathematical 

knowledge for teaching (MKT; Ball, Thames, & Phelps, 2008). Over the years, 

project ThEMaT has allowed us not only to probe and ground our ideas about 

norms and develop instruments but also to deepen the theory and make 

progress, though we have not yet used an experimental paradigm in quite the 

sense described above. Our interventions thus far are experiments in the sense 

that they reproduce predicted phenomena (evidence of the breach of a norm), 

but they have not yet reached the gold standard of controlled conditions by 

random assignment. These conditions may be fulfilled through our current 

efforts with LessonSketch: An authoring tool in the LessonSketch environment 

allows us to create online multimedia experiences that may be randomly 

assigned to participants (see Inglis & Mejía Ramos, 2009, for an example of a 
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similar use of the internet in experimental research in mathematics education).  

While the foregoing describes the story of our work, we use the following 

sections to expand on the ideas and some of the methods.   

Explicating Practical Rationality 

A Classroom Scenario 

Consider what we would call a thought experiment in mathematics 

teaching. The action happens in a high school geometry course in late November. 

The class has spent some time learning to use triangle congruence to prove 

statements and has begun the study of quadrilaterals.  The teacher, Mr. Jones, 

has drawn a figure on the board (see Figure 1) and wants the class to prove a 

statement about the relationship between the sides of the rectangle ABCD. There 

is some hesitation. Somebody asks whether they could prove that AB  is longer 

than BC  while another student asks what they have to go on; the teacher lets 

those comments pass. A student asks whether triangles ADE and BCE are 

congruent. Mr. Jones writes this question on the board and draws two arrows 

from it. One arrow points toward a question he writes, “how would it help to 

know that those triangles are congruent?” The other arrow points toward 

another question he also writes, “what would you need to assume to be able to 

say that those triangles are congruent?” You can hear somebody say that it’s 

obvious that they are congruent while another says that they could then say the 

triangles are isosceles. Another student says, “you’d need to know that AEB is a 

right angle;” Mr. Jones writes this on the board and asks the class what they have 
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to say about that (see Figure 2). Some students claim to not really know what the 

teacher means with that question but others raise their hands. One of these 

students says that she thinks it would be useful if the angle were right because 

then the angles at the top would be congruent with the small angles at E. Some 

kids perk up and one kid says, “and you could then say that AB is twice BC.” 

The teacher asks them to take a few minutes and see if they can prove that the 

ratio between the sides is 2 assuming as little as possible. You see a kid write, 

“Prove: The ratio is 2 ” while others have written “Given:” and are pensive.  

  

  

Figure 1. Mr. Jones diagram Figure 2. Discussing given and prove 

 
 

For a few years now, in the context of the project Thought Experiments in 

Mathematics Teaching, we have been creating cartoon-based representations of 

teaching that illustrate conceivable scenarios of instruction.  One of them is the 

story “A Proof about Rectangles,” a version of which we’ve just described. Now 

we want to use that episode to raise a few questions about mathematics 
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instruction in school classrooms and to elaborate on the ideas that this kind of 

material has helped us explore.  

Some of these questions concern the substance of this conceivable episode: 

What opportunities for students’ mathematical work are made possible by how 

the teacher has been managing the instruction? Other questions are about theory: 

What kind of considerations about classroom instruction could help us describe 

and explain how teacher and students ordinarily transact mathematical ideas, in 

such a way that we could also account for possible avenues for improvement and 

foresee their consequences? Finally, other questions are about research 

methodology: What kind of data can help us ground those theoretical 

considerations? How to obtain it? These questions, though large, serve to 

explicate the program of research that we call the practical rationality of 

mathematics teaching (Herbst & Chazan, 2003; Herbst, Nachlieli, & Chazan, 2011).  

Desirable and Customary Mathematical Work 

What mathematical work are students doing in the episode described above? 

We could describe it as listing plausible statements about a figure and 

considering whether these plausible statements could be connected through 

logical necessity. The source of some of those statements seems to be 

perceptual—for example, the observation that angle AEB is right. Other 

statements seem to result from deduction—notably, the observation that if the 

angle AEB was right then one could conclude that side AB would be twice as 

long as side BC . But regardless of the origin of each of those statements, the 
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teacher is helping students connect all statements through abduction and 

deduction: Asking what assumptions would enable one to infer the plausible 

statement made and asking what inferences could be made if one took that 

plausible statement for granted. The assertion about the relative length of the 

sides of the rectangle eventually derives from the plausible truth of those earlier 

statements. The teacher is thus helping students reduce a question of truth (what 

could be true about an object) to a question of deducibility from possible 

statements about an object. They are using proof as a method to find things out.  

Such use of proof as method in knowledge inquiry is essential to the 

discipline of mathematics (Lakatos, 1976). It is also behind the drive to 

mathematically model other fields of experience: The expectation that in those 

fields it will also be possible to reduce the problem of truth to a quest for 

deducibility, which can then warrant new, still unknown, possible truths is 

important in pure and applied science. Hanna & Jahnke (1996) have argued that, 

by using an empirical theory to predict empirical phenomena, scientists engage 

in modeling the world and deductively producing inferences based on 

assumptions, predictions that are eventually subject to confirmation by 

experimentation.  

Being able to master such a form of inquiry can make a child resourceful in 

ways that can add to methodological resources they get from the study of other 

disciplines. Mathematical work of the kind depicted in the scenario is not only 

authentic mathematical work (Weiss, Herbst, & Chen, 2009) but also embodies 



Herbst & Chazan 

 

skills and processes that might empower students to contribute to knowledge 

production writ large. In that sense we would argue that Mr. Jones’s questions to 

students about what could be deduced from a given statement, or what 

statement could entail what they think is true, are helpful ways of educating his 

students in the use of mathematical reasoning for making predictions about the 

world, in this case about the world of diagrams. A scenario where students could 

work on connecting plausible statements deductively is therefore conceivable 

and it could be represented using animations or comic strips with cartoon 

characters.  

However, it is likely the case that few students encounter such opportunities 

to engage with proof in school mathematics in the way outlined by the foregoing 

scenario. The work they do during their school years rarely includes chances to 

acquire the skill or the appreciation of the methodological, model-making 

function of proof or even experiences doing work that could have had that 

exchange value.  

It is more likely that the problem above would be presented to high school 

geometry students as shown in Figure 3. In particular, while students are 

ordinarily expected to prove propositions in high school geometry, it is 

ordinarily the teacher (or the book) who will state the givens and the conclusion 

of the propositions they prove. While efforts to change these norms have been 

made (e.g., the work with the Geometric Supposers reported in Schwartz, 

Yerushalmy, & Wilson, 1993), it rarely falls on the students to determine the 
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givens for a plausible conclusion, to deduce the conclusion from a set of givens, 

or to find both the givens and the conclusion for a theorem that relates to some 

plausible naïve conjecture. 

 

•Given:  

 ABCD rectangle,  

  E midpoint of DC ,  

  �AEB right angle 

 Prove: 
AB

BC
 2  

 

Figure 3. A more likely proof problem. 

 
 

The Scenario as an Example of Norms and Instructional Situations 

The expectation that, if students are to be held accountable for producing a 

proof, the teacher will have to provide for them the givens and the “prove” 

statement is an example of what we call a norm of the instructional situation 

“doing proofs.” It is a norm in the sense that an observer can describe teachers 

and students acting as if they expected that this would be the case. In 

consequence, if students and teacher were involved in an interaction about a 

problem for which the teacher did not provide the given and the “prove”, then it 

is likely that neither teachers nor students would describe those activities as 

doing proofs—they might describe them as something else (e.g., having a 
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discussion). The norm is that anytime the students are expected to produce a 

proof, teachers are expected to provide the givens and the conclusion to prove. 

Of course by “norm” we don’t mean ‘the correct thing to do’; it is certainly not 

“correct” from our perspective informed by our understanding of mathematical 

practice, though it may be experienced as correct or appropriate by teachers and 

students. We use “norm” and “normative” in two complementary senses: First, 

the sense in which ‘normative’ means ‘frequent’ or ‘usual;’ this could be 

corroborated empirically by observing, over a large number of high school 

geometry classrooms, the recurrence of this feature in proof activity. Second, the 

sense in which the participants in the situation act as if they expected such 

behaviors to be appropriate or correct.  

Such norms are not just arbitrary belief systems, idiosyncratic and completely 

changeable; they are norms of interaction between teacher, students, and specific 

content and are thus ascribed not to individuals but to the specific instructional 

situation where that interaction happens. They have a particular purpose; they 

regulate the division of labor over time between student and teacher vis-à-vis a 

specific kind of instructional exchange. In this case, this norm regulates the 

exchange between the work students do when proving a proposition and the 

claim (that the teacher needs to substantiate in high school Geometry) that 

students know how to do proofs. In that sense, this norm is different in scope 

than the more general norms of the didactical contract, which are present across 

different instructional exchanges (e.g., the expectation that when the teacher asks 
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students a question, she already knows the answer).  In trying to understand the 

practical rationality that underlies that norm and the possibilities to depart from 

it we are therefore asking not a question about instruction in general (e.g., Do 

teachers see it as possible, desirable, or appropriate to have students work on 

tasks where they determine the givens or the goal?) but rather a question about 

what counts as doing a proof in high school geometry: Do teachers see it as 

possible, desirable, or appropriate to hold students accountable for doing a proof 

and to do so in the context of tasks where students are in charge of providing the 

givens or the conclusion of the proof problem? To us it seems that such tasks 

would enable students to experience and learn about the methodological role of 

proof: Its instrumentality in finding new knowledge. But, such tasks are not 

common in classrooms. 

“Doing proofs” in high school geometry illustrates what we mean by an 

instructional situation. These are frames for the encounter among teacher, 

students, and specific content: In these encounters an instructional exchange 

takes place—the exchange between the work that students do, for example, on a 

particular task, and the knowledge claim that such work enables the teacher to 

make by virtue of having done that work. Instructional situations can be 

modeled as systems of norms such as the one described above. Instructional 

situations are content-specific in two regards: They accommodate or make room 

for specific tasks, and they permit the exchange of work on those tasks for 

specific items of knowledge. The instructional situation “doing proofs” does not 
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customarily accommodate students’ work in which students produce the givens 

or the ‘prove’ for a proof problem; rather, if they are ever involved in such work, 

their involvement does not count as knowledge of proof. Based on our 

understanding of the methodological role of proof in mathematics (Lakatos, 

1976) we argue that such work (figuring out the givens or the conclusion) does 

not always precede but it is often part of the work of proving in mathematics. 

 Is it Feasible to Change Instructional Situations? 

A motivation for our work has been to understand better whether the kind of 

mathematical work described above—the use of proof as a tool to know with—

could feasibly be deployed in classrooms. One way of addressing that question 

focuses on the design of resources that can support that work. And some of our 

instructional experiments (e.g., Herbst, 2003, 2006) have included developing 

resources, including special lessons and units co-developed with teachers. In 

those, problems were designed to create contexts where proving could help 

students come up with an answer to the problem. Our focus on the feasibility of 

that work led us not only to investigate whether proof could play a role as a tool 

to know with (see Herbst, 2005) but also to investigate what kinds of disruptions 

of the work of teaching those tasks would cause (Herbst, 2003) and what sorts of 

negotiations a teacher needed to make to restore a sense of normalcy (Herbst, 

2006).  

Another way of addressing the feasibility question goes beyond investigating 

what is possible when teachers use different tasks to engage students in proving 
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and taps into the source of arguments that teachers could draw upon to justify or 

rebuff such tasks. Behind that version of the feasibility question is the 

fundamental hypothesis that classrooms are complex systems where actions are 

not merely a projection of the will or capacity of the actors or the richness of their 

resources. Rather, actions of individual actors contribute to the deployment of a 

joint activity system whose performance also feeds back, and thus gives shape, to 

the actions that the participants can take in that system. And at least tacitly and 

as a group, teachers of a given course know the demands of that system to the 

point that we should be well advised to canvass that knowledge if we intend to 

understand whether a particular improvement will be feasible or not. The 

question then is not simply how to design materials that enable desirable 

mathematical work or how to create in teachers the desire to promote that work. 

We also need to ask about the structure and function of the activity system where 

that work might be deployed and how this system might accommodate or resist 

attempts to deploy that work. In particular this requires thinking of mathematics 

instruction in school classrooms as a system of relationships that are deployed 

under various conditions and constraints. A conceptualization of this system 

could enable us to think in a more sophisticated and potentially accurate way 

about what teacher and students do and thus be able to foresee if given 

improvement efforts have a prospect of success.  

An analogy with how mathematics educators have evolved in their thinking 

about students’ errors can illuminate this conceptualization of instruction as a 
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system. There used to be a time when student errors were seen as indications of 

misfit, mishaps, or forgetfulness. Things changed when research on students’ 

mathematical work started to be treated within a cognitive paradigm. For 

example, an international study led by Lauren Resnick, Pearla Nesher, and 

François Leonard (see Resnick, Nesher, Leonard, Magone, Omanson, & Peled, 

1989) on students’ sorting of decimal fractions showed that students’ errors had a 

conceptual basis: Their errors could be explained by the existence of conceptual, 

tacit controls such as the “fraction rule” or the “natural number rule.” These 

were mathematical quasi-truths, or epistemological obstacles (Brousseau, 1997), 

true within a limited domain but false when that domain was extended. Students 

that made errors did so not out of the lack of knowledge but out of the 

possession of some knowledge. As a field, our stance toward students’ errors 

thus changed from an early judgment stance to a later inquiry stance: Rather 

than judging students as irrational when they make errors, we now strive to 

understand what rationality leads them to make those errors.   

We propose that we should think of the actions of teachers (and students) in 

the classroom by analogy with how we have come to think about error in 

children’s mathematical thinking. The analogy we propose is that we could think 

of “error” in instruction—really teaching that deviates from what might be 

deemed desirable—not as an indication of misfit, ill will, or lack of knowledge, 

on the part of the practitioner. Rather, we should think of this “error” as an 

indication of the possible presence of some knowledge, knowledge of what to do, 
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which is subject to a practical rationality that justifies it. This is a rationality that 

we should try to understand better before judging teachers or attempting to 

legislate their practice. It is this rationality, rather than simple stubbornness, that 

explains why many reforms are not able to make their way into classrooms. 

Teachers and students act in classrooms in ways that attest to the existence of 

specialized knowledge of what to do; knowledge that outsiders to those 

classrooms are less likely to have even if they know the knowledge domain being 

taught and learned. For example, as it relates to the scenario narrated above, 

teachers and students of geometry would likely see it as strange for Mr. Jones to 

ask the students for the givens of the problem. We focus here on the rationality 

associated with the role of the teacher and how this might warrant or refute 

actions like that one. 

Practical Rationality and the Role of the Teacher 

 The “teacher” of a specific course of mathematical studies, such as high 

school geometry, is an institutional role, not just a name to describe an aspect of 

an individual’s identity (Buchmann, 1986). There is a person who plays the role, 

for sure; that person comes to play the role with personal assets that are likely to 

matter in what he or she chooses to do. These assets are likely to include 

mathematical knowledge for teaching and skill at doing some tasks of teaching 

(Ball, Thames, and Phelps, 2008). It is widely believed that those assets make a 

difference; that teachers who have those assets may be able to figure out and do 

things that others may not be able to do. But while teachers’ causes and motives 
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to do things may have personal grounds, it is unlikely that their actions could be 

justified on personal grounds. One could imagine that Mr. Jones in the scenario 

above might have been bored with the prospect of giving his students another 

routine proof exercise or wanted to have a fun day teaching geometry. But we 

could not really expect him to use any of that as the warrant for doing what he 

did—his job is not to find activities that amuse him, but rather to teach geometry 

to his students. Even if the actual basis for his actions had been his own 

amusement, how could he justify having done that when talking with his peers? 

Those grounds for justification are what we call practical rationality. 

The notion of practical rationality points to a container of dispositions that 

could have currency in a collective, for example, within the set of colleagues who 

teach geometry in similar settings. These are dispositions to abide by the norms of 

the specific instructional situation a teacher is engaged in (i.e., the norms of the 

situation of doing proofs in high school geometry) as well as dispositions to 

honor the obligations to the profession of mathematics teaching. 

By dispositions we mean what Bourdieu (1998) describes as the categories of 

perception and appreciation that compel agents in a practice to act in specific 

ways. We interpret categories of perception to include the taken as shared ways 

in which practitioners perceive people, events, things, and ideas in the shared 

world of the classroom, as instantiated, for example in the language tokens they 

use to talk about the world of the classroom. We interpret categories of 

appreciation to include the principles and qualities on which practitioners rely to 
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establish an attitude toward people, events, things, or ideas. Dispositions tend to 

be tacit but they can be articulated to others when justifying to one’s peers (or to 

other stakeholders) why one might or might not do something like what Mr. 

Jones did with that proof problem. The high school geometry course and the 

work of doing proofs, in particular, have been particularly fertile grounds for us 

to develop theory about instruction and the practical rationality of mathematics 

teaching.  

Didactical Contract and the Role of the Teacher 

To conceptualize the work of the teacher as the playing of a role, we start 

from the notion of the didactical contract (Brousseau, 1997): The hypothesis that 

student and teacher have some basic roles and responsibilities vis-à-vis a body of 

knowledge at stake. What does it mean that there is knowledge at stake? The 

relationship between teacher and students exists because of the assumption that 

there is knowledge that can be communicated from one to the other; this 

knowledge is at stake because such communication may or may not happen. The 

didactical contract is a tacit assignment of rights and responsibilities between 

teacher and student vis-à-vis the communication of that knowledge. These 

responsibilities include the expectation for the teacher to give students work to 

do that is supposed to create opportunities to learn elements of that body of 

knowledge, and the expectation for the student to engage in the work assigned, 

producing work that can be assessed as evidence of having (or not yet having) 

acquired that knowledge.  
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We use the word norm to designate each of those statements that an observer 

makes in an effort to articulate what regulates a practice: Actors act as if they held 

such statement as a norm, though they may be quite unaware of it. Each class has 

a didactical contract that can be modeled by listing its norms. From the 

perspective of the teacher, the didactical contract authorizes a basic exchange 

economy of knowledge that he or she has to manage: An exchange between 

work designed for, assigned to, and completed by students and elements of 

knowledge, prescribed by the curriculum, at stake in that work, and hopefully 

embodied in students’ productions. The role of the teacher includes managing 

those exchanges between work and knowledge. This management includes, first, 

enabling and supporting mathematical work; and second, interpreting the results 

of this work, exchanging it for the knowledge at stake.  

The hypothesis of a didactical contract only says that a contract exists that 

fulfills those goals; the hypothesis means to describe any mathematics teaching 

inside an educational institution. But it is also obvious that the teacher and 

student roles and responsibilities are under-described by that hypothesis: There 

are many ways in which the didactical contract could be enacted that would 

have at least those characteristics; contracts could be quite different from each 

other not the least because the mathematics at stake could be very different from 

course to course and thus require very different forms of work to be learned. 

Even for the same course of studies, say high school geometry, different contracts 

could further stipulate the roles and responsibilities of teacher and student 
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differently. In particular, it is conceivable that some contracts might include the 

expectation that every new task would require negotiation about how the 

general norms of the contract apply (e.g., What is it required of the teacher to get 

students to work on a particular task? What does it mean for students to work on 

that task?). It is also conceivable, and we argue more likely, that contracts rely on 

a manifold of instructional situations that forego the need for some of those 

negotiations much of the time. These instructional situations include mostly tacit 

but specific norms that specify how the didactical contract applies for a range of 

tasks and the specific items of knowledge to be exchanged for the students’ work 

on those tasks.  

While some research has endeavored to conceptualize, enact, and study the 

characteristics of alternative contracts (e.g., Chazan, 2000; Lampert, 1990, 2001; 

Yackel & Cobb, 1996), the first author has been interested in using a variety of 

approaches to study the usual high school geometry contract and the practical 

rationality behind the teachers’ work managing the exchanges enabled by that 

contract. The reason for that is founded on the considerations about 

improvement made earlier. Sustainable improvement in instruction will not only 

need to provide new and better resources but also to be able to deal 

constructively with the inertia and possible reactions from established practice. 

Knowledge of how instruction usually works and what rationality underpins its 

usual operations is key for the design of reforms that are viable and sustainable. 

Furthermore, knowledge of how usual instruction works can encourage 
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piecemeal, incremental changes that don’t throw the proverbial baby with the 

bathwater.  

Instructional Situations and the Role of the Teacher 

The situation of “doing proofs” has been a useful starting point in that 

research agenda. Historical analysis (Herbst, 2002b; González & Herbst, 2006) 

has showed how the general skill “how to do proofs” became an object of study 

in and of itself, leaving behind the important relationships between proofs and 

specific concepts, theorems, and theories. The work that students do has also 

evolved to the current state in which what a student can prove from available 

givens matters much less than whether and how well they carry out a proof.  In 

exchange for a claim on that knowledge (to show that they know “how to do 

proofs”) students are to show that they can connect a “given” with a “prove” by 

making a sequence of statements justified with prior knowledge (regardless of 

the strength or the importance of the proposition proved): In other words 

students are learning the logical form of proof at the expense of its 

methodological function. In describing such exchange as an instructional 

situation, we posit that this exchange is facilitated by a specialized set of norms 

that elaborate how the didactical contract applies.  

From observing work in geometry classrooms we have noted that implicit 

expectations of who is to do what and when vary depending on the specifics of 

the object of study. In relation to diagrams, for example, the extent to which 

students can draw objects into a diagram or draw observations from a diagram 
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varies according to whether the work is framed as a construction, an exploration, 

or a proof (Herbst, 2004). While the didactical contract for a course may have 

some general norms that differentiate it from a contract for a different course, 

there is also differentiation between the more specific norms within a given 

course of studies, depending again on what is at stake. Much of those rules are 

cued in classroom interaction through the use of selected words such as prove, 

construct, or conjecture. These words frame classroom interaction by summoning 

special, mutual expectations, or norms, of who can do what and when. As noted 

above, we use the expression instructional situation to refer to each of those 

frames. Instructional situations are specialized, local versions of the didactical 

contract that frame particular exchanges of work for knowledge, obviating the 

need to negotiate how the contract applies for a specific chunk of work.  

“Doing proofs” is an example of an instructional situation in high school 

geometry; “solving equations” is an example of an instructional situation in 

algebra I (Chazan & Lueke, 2009). We contend that these frames for classroom 

interaction, these instructional situations, are defaults for classroom interaction, 

tacit knowledge held by the classroom as an organization (Cook & Brown, 1999) 

that specifies what to do; knowledge perpetuated through socialization (and 

with the aid of textbooks and colleagues) that, in particular, provides cues for the 

teacher on what to do and what to expect the student to do. Instructional 

situations are sociotechnical units of analysis; they organize joint action with 

specific content.  
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Our perspective centers on the situation rather than the individual and has 

the power to explain why the same individual might happen to do quite 

different things in different situations by no fault of their own. To implement this 

focus on the situations thus far we have created models of those situations. A 

model is not a portrait of what is desirable but rather a simplified operational 

description of a reality, in this case a human activity. Our models consist of 

arrays of norms that describe each situation in terms of who has to do what and 

when (Herbst & Miyakawa, 2008). Those models facilitate research on the 

content of practical rationality.  

Practical rationality is a container whose content includes the categories of 

perception and appreciation that are viable within the profession of mathematics 

teaching to warrant (or refute) courses of action in teaching. The notions of 

instructional situation, norm, and breach of a norm are the points of departure to 

study this rationality empirically. Based on the ethnomethodological notion of a 

breaching experiment (Mehan & Wood, 1975) we propose, as a methodological 

hypothesis, that if participants in an instructional situation are immersed in an 

instance of a situation where one of its norms has been breached, they will 

engage in repair strategies that not only confirm the existence of the norm but 

also elaborate on the role that the norm plays in the situation or on what might 

justify departing from the norm.  

Our data collection technique relies on representations of breached instances 

of instructional situations—representations made in videos, slideshows, or comic 
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strips, sometimes using real teachers and students (e.g., Nachlieli & Herbst, 2009) 

or using cartoon characters (Herbst, Nachlieli, & Chazan, 2011). We confront 

usual participants in an instructional situation with a breached representation. 

For example, the classroom scenario narrated above is quite close in content to an 

animated classroom story, “A Proof about Rectangles,” that we produced in 

order to study the rationality behind the tacit norm that the teacher is in charge 

of spelling out the givens and the prove. To find out about that rationality we 

attend to participants’ reactions to the representation: Do they perceive the 

breach of the norm? Do they accept the situation in spite of the breach? What do 

they identify as being at risk because of the breach? What opportunities, if any, 

do they see being created or lost because of the breach?  

Our aim is not to understand the participants themselves; our aim is to use 

the participants’ experience with the situation to understand the situation better. 

In particular we want to discover the elements of the practical rationality of 

mathematics teaching that teachers consider viable justifications of breaches of 

situations that would arguably be desirable, say because they might create a 

more authentic kind of mathematical work (see Weiss, Herbst, & Chen, 2009). In 

the case of the story narrated above we would pose the following concrete 

question:  On what account could a teacher justify (or rebuff) an action like the 

one Mr. Jones took? Clearly, researchers might be able to justify Mr. Jones’ action 

and we have tried to articulate that from a mathematical perspective. But in spite 

of the fact that some of us have had experience teaching we don’t know teaching 
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now in the way practitioners do. By virtue of the role that they play and the 

position from which they take on that role, teachers have to respond to specific 

obligations that shape their decisions.  

Experimentation and Teachers’ Responses to a Breach of a Norm  

In the previous section we noted that our technique to study the practical 

rationality with which practitioners might justify abiding by or departing from a 

norm in an instructional situation consists in creating a representation of practice 

that instantiates the situation and where the norm in question has been breached, 

then listening to how teachers respond to that representation. When teachers 

respond to a breach in an instructional situation, they might reject the situation 

or might repair the situation. By reject the situation we mean that they would 

come across as saying “this class is not doing a proof;” key in such a 

categorization is (1) the recognition that someone might argue that the target 

situation (doing proofs) describes the scenario being enacted and (2) their denial 

of the validity of such a description.  By repair the situation we mean a softer 

version of rejection: participants come across as describing the events using a 

different situation or as conforming to a contract different than the normative. 

For example, some teachers have said that Mr. Jones is leading students in an 

exploration rather than a proof.  
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“the only thing I could see him doing is that he was trying to get them the 

idea of making conjectures, okay?  What, what can we assume about this 

picture” (ITH062806, 4, 81, Tina)2 

“Maybe it's just like a -- kind of a like a blank canvas for just discussing 

without all of the restrictions tied on at this point just y'know lighter form 

of conversation y'know.” (ThEMaT082206, 10, 109, Lucille) 

Key in categorizing those expressions as repairs of the situation are that (1) 

participants are describing the events in terms of the larger grain size of the 

teacher’s instructional goal and that (2) participants are using some conventional 

labels for recurrent classroom activity to describe what happened in ways that 

fail to recognize the situation as one of “doing proofs” (e.g., conversation, 

making conjectures).  

 A third alternative, also present in our data, can be described as 

participants’ acceptance of the situation, namely recognized it as a case of “doing 

proofs.” For the sake of coding data, whenever participants don’t reject or repair 

the situation we take that as an acceptance, even if this is tacit. In some of these 

cases their acceptance of the situation came with comments that indicated that 

something about the particular task in which “doing proofs” was embodied had 

not been done as it should have been done. For example, some of our 

participants said  

                                                 
2 References to session data follow the convention (sessionid, interval, turn, speaker). 
All names are pseudonyms. 
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“So the fact that he's y'know not marking anything and asking them to 

kinda trust that drawing is kind of odd” (ThEMaT082206, 20,227, Edwin) 

“we tell them not to assume anything that we draw.” (ThEMaT082206, 

5,112,Tina) 

Among those comments accepting the situation as doing proofs, some comments 

indicated a positive appraisal of what the teacher had done. For example: 

“In the books we always go given-prove, right? So we don't really give 

them the option to even explore some of the nature of the figures.” 

(ThEMaT082206, 10,116, Jillian) 

We describe those responses as accepting the situation (the participant identifies 

or at least does not deny that the goal of the activity is to “do a proof”) but 

repairing the task (while the participant does not cast the situation as different 

than doing proofs, the participant recognizes some actions as deviating from the 

norm in that situation). A complete enumeration of contingencies includes, at 

least conceptually, the possibility that participants may accept the situation and 

accept the task: However, empirically one might observe those cases to be 

unmarked (e.g., the participant talks about something other than the breach). 

Incidentally, note that in this discussion we are proceeding rather globally and 

omitting considerations of the possible complexities of the unit of analysis for the 

sake of proposing how the experimental data could be aggregated: While the 

present considerations might be used to examine data gathered from individual 

practitioners providing a one-time response to a representation (for example, 
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responding to a multimedia questionnaire), data gathered from groups of 

practitioners in more extended conversations (such as those reported by Chazan 

& Herbst, 2012, or Herbst, Nachlieli, & Chazan, 2011) require more sophisticated 

considerations of the unit of analysis.  

From those broad considerations about the way we might code data from 

practitioners’ responses to a representation of an instructional situation we can 

anticipate a way of using this data to gauge the extent to which a hypothesized 

norm pertains to the situation under consideration—and in that way use 

experimentation to build basic knowledge about the practice of mathematics 

teaching. Consider first the case of practitioners responding to a representation 

of an instructional situation in which a hypothesized norm of that situation has 

been breached (e.g., the teacher asks students to provide the givens for a proof 

exercise). Consider further that the encounter between practitioners and 

representations is framed for them as a case of the situation (e.g., the instrument 

declares something to the effect of “we are going to see how a class works on a 

proof”) but no mention is made of the possibility that a norm might be breached 

nor is attention explicitly directed to the actions by which the breach is manifest. 

After the encounter, participants are asked to comment on how appropriately the 

teacher handled the situation (e.g., “what do you think of the way the teacher 

managed the class’s engagement in proving”). The data is then coded in ways 

that permit the aggregation shown in the contingency table below (and drawing 

on the definitions of reject, repair, and accept given above). 
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 Accept Situation Reject or Repair 

Situation 

Reject or Repair Task 2 1 

Accept Task 4 3 

 
 

The hypothesis that the norm breached is a norm for the situation being 

represented would justify the expectation that data would aggregate in cells 2 

and 3. Cell 2 represents responses of the kind ‘in this situation you’d rather do 

this other work instead’ (e.g., if you want students to do a proof, you give them 

the givens and the prove). Cell 3 represents responses of the kind ‘the kind of 

work you are doing there fits better in this other kind of situation’ (e.g., a 

question like that would be better off in a conversation than in a proof). Data that 

could be classified in any of those cells would provide evidence that adds 

credibility to the hypothesis that the norm applies. (Note that this evidence could 

but would not solely include repairs that specifically mention the norm 

breached—norms could stay tacit in spite of being breached and the evidence 

provided by participants might just reveal their sense that something has gone 

awry.) In contrast, cells 1 and 4 provide evidence that contradicts or at least 

provides no evidence in favor of the normative nature of the hypothesized norm.  

Intuitively, under the hypotheses that the norm applies to the situation, that 

the representation breaches the norm, and that the participants are experienced 
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enactors of the situation, one would expect the aggregate of Cells 2 and 3 (repairs 

of situation or of task) to be higher than the aggregate of Cells 1 and 4. One could 

define a measure of the extent to which the representation elicits repairs (2 + 3) 

or percentage of teachers who repaired over those who provided comments.. 

More generally, given a representation (related to a norm N of a situation S) and 

a sample of practitioners, the representation could be classified a priori as 

breaching or non breaching N, and each practitioner could be classified as 

experienced or not experienced in S. The percentages of repairs could be used in 

particular, to test (this time using the modern sense of experiment) the extent to 

which experienced practitioners in a situation hold norm N.  

Imagine a sample of experienced practitioners randomly assigned to one of 

the following two conditions. In the experimental condition the practitioners 

consider a breached representation, while in the control condition the 

practitioners consider a compliant representation.  The responses from 

practitioners would then be summarized in corresponding repair ratios r1,e and 

r0,e as defined above and the difference between these proportions could be 

tested for significance. Similarly, one could pose the question of whether this 

norm is significantly more salient for teachers experienced in the situation of 

interest than for teachers who do not have such experience. This question could 

lead one to compare the ratios r1,1 and r1,0, that is, the repair ratios for 

experienced and non experienced practitioners confronting a breached 

representation. Finally, one could consider randomly assigning practitioners who 
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are either experienced or inexperienced in the situation to either a breached or a 

compliant representation, and analyzing the table of contingencies below. The 

Chi Square test could be used to examine whether acknowledgment of Norm N 

is specific to teachers experienced in Situation S.  

 Experienced in S Inexperienced in S 

Breached Representation (of NS) r1,1 r1,0 

Compliant Representation (of S) r0,1 r0,0 

 
 

Of course the preceding argument is only a sketch of what the research ahead 

requires. In addition to the problem of determining the unit of analysis noted 

above, there remains the problem of finding operational ways of determining 

repairs, rejections, and acceptances of task and situation. While we have made 

some important progress identifying norms of situations to be researched and 

creating representations that breach those norms, the work of developing 

measures of the repairs that practitioners produce in response to those 

representations is still incipient. Our current work in this area investigates the 

use of elements of systemic functional linguistics, particularly the notions of 

modality and appraisal (Halliday & Matthiessen, 2004; Martin & White, 2007), to 

anchor the notion of repair in linguistic performance. Furthermore, as far as the 

implementation of the technique, these considerations oversimplify the certainty 

with which one can say that a representation of a situation breaches a norm or 
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complies with all norms—it isn’t only that the provisional nature of models 

challenges the extent to which one can ever say that a representation will be 

compliant, but the multidimensional and interactive nature of human activity 

makes it hard to represent breaches of a norm without other remarkable 

entailments needed for continuity’s sake. Along those lines, and because of the 

extent to which an instance of a situation may instantiate more than the actions 

specific to a norm, a third challenge consists of being able to reproduce the 

phenomenon (participants’ recognition of the norm) independently of the 

representation used: Would representations R and R’ of different instances of the 

same situation S, each of which breaches the same norm N, produce similar 

responses from practitioners experienced in S? Considering those 

methodological challenges, it is fitting to say that so far we have only been able 

to show how our theoretical agenda and basic research goals could use an 

experimental paradigm and within that to indicate more specific methodological 

goals.          

The sketch above does indicate a path for using an experimental approach in 

basic research on mathematics teaching—specifically, research that identifies and 

confirms the existence of specific norms for specific instructional situations. But 

as noted above, practical rationality includes more than the norms of 

instructional situations; it includes the categories of perception and appreciation 

with which practitioners can relate to actual and possible actions in teaching. In 

particular, practical rationality includes the grounds on which a breach of a norm 
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might be recognized as a breach and yet appraised favorably. Notwithstanding 

the possible use of the experimental design sketched above to test hypotheses, it 

is probably just as important for theory and practice to deepen the descriptive 

research that can lead to more refined hypotheses, especially hypotheses that can 

account for the difference between justifiable and unjustifiable breaches of 

norms.  

Practical Rationality and the Justifications for Breaches of Norms 

The data that we collect from practitioners in response to breached 

representations usually contains more than repairs of those breaches. 

Practitioners not only recognize the presence of a norm when they repair its 

breach, quite often they do so using discourse that commits a stance toward such 

a breach. Those stances are not always negative; when these stances are positive, 

practitioners may engage in a rather visible practical argument to justify an 

action in spite of the norm against it. As part of the agenda to flesh out the 

content of practical rationality we are interested in inventorying and accounting 

for the dispositions used by practitioners to warrant actions that breach norms 

(as well as those actions that comply with norms).    

 Sometimes, teachers’ responses to breaches of a norm may indict the 

teacher for breaching a norm and justify it with an argument that explicates why 

the norm exists. In the case presented above, the evidence we found suggests 

that the norm of providing the given and the “prove” may be justified on the 

grounds that it keeps students from making knowledge claims by relying on the 
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looks of a diagram. Indeed the line between, on the one hand, assuming 

something as given so as to start drawing necessary consequences from it and, on 

the other hand, assuming something else as true while one is drawing those 

consequences, may be blurry enough to justify keeping students from having to 

manage it. One could represent this argument for a norm by adapting Toulmin’s 

(1969; see also Inglis, Mejía-Ramos, & Simpson, 2007) argument layout, as shown 

in Figure 4 (where instead of data and claim we use circumstances and action 

respectively). 

 

Figure 4. A practical argument using Toulmin’s layout. 

 
The data also shows that teachers’ responses sometimes acknowledge the breach, 

but rather than indicting the teacher for the breach they might justify it while 

relaying whatever reasons they might have for that justification. In this sense, the 

breaching experiments give access to other elements of the practical rationality of 
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mathematics teaching. In the data shown above, one of the comments appeared 

to justify the breach by elaborating on the grounds for exception noted above. 

 

Figure 5. A practical argument for and against an action using Toulmin’s layout. 

 
 

The Norms and Obligations that Span Practical Rationality 

From our work in the past five years, looking at the responses from teachers 

to animations that represent breaches of situations in geometry and algebra, we 

have built an initial model of this practical rationality. In this model, conceivable 

moves by a teacher are justified or rebuffed on the basis of principles or warrants 

that attest to the presence of two sets of regulatory elements. One of those sets of 
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regulatory elements describes the roles the teacher is called to play in the 

contract, the instructional situations, or in mathematical tasks. As noted above, 

we call all of those norms: Some are norms of the contract (they regulate work 

across the many objects of knowledge in a course of studies), while others are 

norms of the instructional situation (they regulate work that is specific to an 

object of knowledge). A third kind of norms, norms of the task (regulating how 

the teacher supports the milieu for the students’ mathematical task) is also part 

of the model but is not discussed here (see Herbst, 2003; also Brousseau, 1997). 

The other set of regulations, which we explicate below, includes the professional 

obligations that tie an individual to the position of mathematics teacher, beyond 

the specific demands of a particular contract, situation, or task.     

In general, the first set of regulations for actions in teaching come from the 

structure of the different ‘games’ the teacher and the student play with specific 

content. The various norms that justify teachers’ actions respond to the 

requirements of the role the teacher is called to play in the contract for a course of 

studies, the situation that frames the different kinds of work that exchange for a 

particular object of knowledge, and a specific mathematical task. But these norms 

by themselves don’t explain why practitioners see some breaches of norms as 

acceptable (see, for example, Nachlieli & Herbst, 2009; Herbst, Nachlieli, & 

Chazan, 2011). The data that we have gathered shows not only that the norm 

exists and what problems it would help solve, but also on what grounds it could 

be breached. As we analyze the data from study groups that considered the 
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many animations we created in ThEMaT, a more systematic way of accounting 

for those warrants has become useful to us.     

Both the presence of norms and the breaches of norms can be accounted for 

by appeal to various professional obligations that we posit apply to the 

mathematics teacher (to some extent these obligations may also apply to the 

elementary teacher who teaches mathematics part of their time, but they likely 

need to be adapted). We propose that four professional obligations can organize 

the justifications (or refutations) that participants might give to actions that 

depart from a situational (or contractual) norm. We call these four obligations 

disciplinary, individual, interpersonal, and institutional (Herbst & Balacheff, 2009; 

see also Ball, 1993).  

The disciplinary obligation says that the mathematics teacher is obligated to 

steward a valid representation of the discipline of mathematics. This may include 

the obligation to steward representations of mathematical knowledge, 

mathematical practices, and mathematical applications.   

The individual obligation says that a teacher is obligated to attend to the well 

being of the individual student. This may include being obligated to attend to 

individual students’ identities and to their behavioral, cognitive, emotional, or 

social needs. 

The interpersonal obligation says that the teacher is obligated to share and 

steward their medium of interaction with other human beings in the classroom. 
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This may include attending to the needs and resources of shared discursive, 

physical, and social spaces within shared time.  

And the institutional (schooling) obligation says that the teacher is obligated to 

observe various aspects of the schooling regime. These include attending to 

school policies, calendars, schedules, examinations, curriculum, extra curricular 

activities, and so on.  

These obligations are not specific to a contract for a course of studies; they 

describe equally the teacher of AP Calculus and the teacher of informal 

geometry. They coalesce to justify contracts and their instructional situations; 

and they may combine with norms of contract, situation, or task in order to 

justify extraordinary actions. In general, combined with the norms of contracts, 

situations, and tasks these obligations span the practical rationality of 

mathematics teaching. The dispositions that compose practical rationality could 

be accounted for as combinations of norms and obligations. One can then say 

that the justifications for actions in teaching, either those actions that are usual or 

those that are unusual but viable, can be found by combining norms of the 

contract and situations that the teacher is enacting with obligations the teacher 

has to the profession of mathematics teaching.  

Within that rationality one can see specific contracts (high school geometry, 

algebra I) and their instructional situations (doing proofs, solving equations) as 

sociohistorical constructions that have persisted over time by complying in some 

way with those obligations. To the extent that the obligations could contradict 
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each other, it is quite an accomplishment for teaching to have been able to 

develop stable contracts and situations over time (Herbst, 2002a).  

Conclusion: Practical Rationality and Instructional Improvement 

The theory of practical rationality is a way of accounting for existing, stable 

practices. To the extent that our interest in improving practice stresses the need 

for improvements to be responsible, incremental, and sustainable, it is 

appropriate for us to try to understand what justifies the norms of stable 

contracts and situations, even if we might want to modify or do away with some 

of them: Understanding stable systems of practices as well as understanding how 

those systems react to perturbations is fundamental for the design of new 

practices.  Indeed, since improved practices will need to subject themselves to 

similar grounds for justification, practices that are close to those that are normal 

in existing instructional situations (as gauged by how many norms of a situation 

a practice breaches) may be easier to justify than others.  

The theory also provides the means for the researcher to anticipate how 

instruction may respond to new practices: A novel task such as “what is 

something interesting that could be proved about the object in Figure 1” conjures 

up by resemblance one or more instructional situations (e.g., “doing proofs” and 

“exploration”) as possible frames for the work to be done. Models of those 

situations provide the researcher with a baseline of norms that could be breached 

as the work proceeds. Researchers can then use the obligations to anticipate what 

kinds of reactions teachers may have to the enactment those breaches. This 
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anticipation can be useful in examining the potential derailments in the 

implementation of new practices in classrooms. That anticipation may also be 

useful in the examination of teachers’ responses to assessments or development, 

or their reactions to instructional interventions.  

Thus the theory provides not only the basis for the design of probes for the 

rationality of teaching (Herbst & Miyakawa, 2008) but also a framework for an 

analysis of the reactions from participants. Combined with finer tools from 

discourse analysis (e.g., Halliday & Matthiessen, 2004) teachers’ responses to 

representations of breaching (but arguably valuable) instances of an instructional 

situation can help us understand not only what justifies teaching as it exists 

today but also whether and how proposed new practices could be justified in 

ways that practitioners find compelling.  

Along these lines, the theory also provides a framework for teacher 

development. This framework puts a premium on the teachers’ noticing of 

actions in teaching, their consideration of alternative actions, and the 

consideration of justifications for those different actions. The various tools we 

have created, which include not only the animations and the cartoon characters 

but also software to create scenarios with them, software to annotate the 

scenarios individually or in forums, and software to author online sessions3 that 

                                                 
3 A dedicated software tool enables teacher educators to create an agenda for users to 
interact with representations of practice (e.g., videos, images), prompts and questions, 
and tools for the user to interact with the media (e.g., annotating, marking moments, etc.) 
and with each other. 
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use the materials, can be useful in implementing this development program.4 It is 

important to note that at the core of these developments there is a theory of 

teaching and its rationality that accounts for the teaching that is customarily seen 

in classrooms: At its base the theory attempts to be descriptive and explanatory 

rather than axiological or prescriptive. This is particularly visible in our 

identification of the obligations: We posit the institutional obligation in all its 

strength not necessarily out of advocacy for it but out of our recognition that 

practitioners are obligated to it regardless of anybody’s feelings about it.  

The theory does identify mechanisms for exploring empirically teaching that 

might be conceivable and desirable: The notions of situation, norm, breach, 

repair, and obligation can help examine a priori attempts to improve teaching 

and examine a posteriori the data from implementation. In that sense, the theory 

can support the piecemeal exploration of instructional improvement. The theory 

is a basic theory of mathematics instruction, a basic account of the activity of 

teaching mathematics in the school classroom—not an applied theory that 

reduces that phenomenon to the psychology of individual teachers. The 

psychology of mathematics teachers may still be useful to inform what enables 

and motivates individual teachers to do things, but the logic of action in 

mathematics teaching addressed by practical rationality may help us understand 

why some of those actions can be responsible, viable, and sustainable. 

                                                 
4 These tools and content, including examples of these learning experiences are available 
at www.lessonsketch.org 
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An important limitation of the theory in its current formulation is that it does 

not quite incorporate an explicit account of learning5 either by students or by 

teachers. Indeed the theory described above represents instruction as composed 

of stable patches of specific practices (contracts, situations, and tasks) and one 

might conclude that the theory describes only how knowledge is used by 

students and attested by teachers. Building on situated and socio-cultural 

accounts of learning and practice (e.g., Engestrom, 1992; Wenger, 1999) we 

contend that learning (by students and by the teacher) is accomplished in and 

through their practice in contracts, situations, and tasks.  Additionally, the notion 

that contracts and situations can be breached by tasks that fall outside the norms 

of a situation or a contract is key in describing how the teacher might promote 

adaptive learning deliberately; and it has been foundational for Brousseau’s 

(1997) theory of didactical situations. An explicit account of how this theory of 

instructional practice interfaces or complements accounts of student and teacher 

learning is needed and it remains a goal as we move ahead.    

  

                                                 
5 We appreciate Ron Tzur’s comment to this effect in the occasion of the first author’s 
plenary lecture at the 2010 PME-NA Conference. 
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