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ABSTRACT The reliability of electrical components affects the stable operation of the power system.

Electrical components inspection has long been important issues in the intelligent power system. The main

problems of traditional recognition methods of electrical components are low detection accuracy and poor

real-time performance, which are challenging to extract necessary features from the inspection images. This

paper proposes a way to detect the electrical components in the Unmanned Aerial Vehicle (UAV) inspection

image based on You Only Look Once (YOLO) V3 algorithm. Due to some of the inspection images are

not clear, which result in the reduction of the available dataset. On this basis, we adopt Super-Resolution

Convolutional Neural Network (SRCNN) to realize super-resolution reconstruction on the blurred image,

which achieves the expansion of the dataset. We compare the performance of the proposed method with other

popular recognition methods. The results of experiment verify the effectiveness of the proposed method, and

the technique reaches high recognition accuracy, good robustness, and strong real-time performance for UAV

power inspection system.

INDEX TERMS Deep Learning, SRCNN, YOLO V3, electrical components, object detection.

I. INTRODUCTION

The traditional manual inspection has been used for elec-

trical components detection for several decades. However,

this method is significantly constrained by the real inspec-

tion environment, such as steep terrain and harsh climate.

Also, this traditional solution appears to be slow, expensive,

and potentially dangerous. In recent years, the Unmanned

Aerial Vehicle (UAV) inspection technology [1]–[4] has been

widely applied in the detection of electrical components

by worldwide power grid companies. The UAV inspection

images enable the engineer to detect the electrical compo-

nents effectively. Meanwhile, the increasing industrial needs

have attracted more scholars for further research in the image

recognition technology. For example, Wang et al. in [5] pro-

pose an insulator defect-recognition method which integrates

the shape, colour, and texture of insulators to reduce the influ-

ence of the background texture and illumination effectively.

Lin et al. in [6] conduct a faulty insulator diagnosis method

for insulator detection based on repetitiveness feature from
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the UAV video sequence. Jin et al. in [7] realize shockproof

hammer recognition algorithm based on Haar-like features

and cascade AdaBoost classifier. A. Cerón et al. in [8] present

a novel method named Circle Based Search (CBS) for power

line detection based on the search of lines between two

opposite points. Juan I. Larrauri et al. in [9] present a new

automatic system in almost real-time for overhead power line

inspection byUAV.Carlos Sampedro et al. in [10] put forward

a supervised learning approach for solving the tower detec-

tion and classification problem. The UAV inspection com-

bined with various image processing skills can significantly

improve the speed and efficiency of power maintenance

and overhaul, reduce labour intensity and cost, and signifi-

cantly improve the safety of inspection operators and other

advantages. However, the images obtained by UAV inspec-

tion are also restricted by the environment, which brings

higher requirements for UAV image recognition technology.

In the past few years, the traditional electrical component

recognition algorithms are mainly based on local features of

images. Yan et al. in [11] present a fault diagnosis method for

transmission line based on Scale Invariant Feature Transform

(SIFT). Martinez et al. in [12] propose an approach based
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on HOG features and MLP neural networks for detecting

and classifying electric towers for power line inspection.

Han et al. in [13] conduct a method based on DPM to detect

and locate the rod-insulators in the image taken from the high-

speed railway catenary system. The abovemethods are lack of

scalability and poor real-time performance for some reason. It

is difficult to fully extract features from inspection images to

identify electrical components, especially when dealing with

occlusion problems, which makes these algorithms hard to

achieve the desired accuracy.

Due to the higher demand for image recognition of UAV

inspection, deep learning [14] has received extensive atten-

tion since 2012. Some scholars have applied improved deep

learning algorithms [15]–[17] to conduct related object detec-

tion. A great number of object detection frameworks are pro-

posed and improved successively. Two branches of them are

two-stage methods and one-stage methods. As for two-stage

methods, Girshick et al. in [18] combine the CNN [19] with

Region Proposal (RP), and propose the R-CNN framework.

However, the R-CNN network needs to fix the size of the

input image. Besides, the algorithm is computationally com-

plex and memory-consuming. In response to this problem,

Girshick [20] propose the Fast R-CNN framework to realize

the image input at any scale in the network by adding the SPP

layer. But there are still bottlenecks of R-CNN in the selection

of candidate regions. To solve this problem, Ren et al. [21]

propose the framework of Faster R-CNN which replaces

Selective Search (SS) with RPN and shares the convolutional

layer between RPN and Fast R-CNN. Furthermore, candidate

boxes are generated by convolutional feature map, which

significantly improves the detection speed and performance.

It needs to be emphasized that the training process of this

algorithm is still complex, and there is a significant optimiza-

tion space in the calculation process. Joseph Redmon et al.

propose the YOLO V1 [22] and its enhanced versions which

not only overcome the bottleneck of Faster R-CNN in recog-

nition speed, but also receive extensive attention for extreme

real-time performance and excellent accuracy. For the one-

stage algorithms, Single Shot Multibox Detector (SSD) [23]

and YOLO V1 have poor performance in small object detec-

tion. YOLOV2 [24] and YOLOV3 [25] are the typical meth-

ods which improve the speed and accuracy of object detection

while changing the structure constantly. Therefore, for the

purpose of improving the recognition speed and accuracy of

electrical components, object detection algorithms based on

deep learning have been widely used in power inspection

systems in recent years. Tao et al. in [26] propose a novel

deep CNN cascading architecture for both localization and

detection of insulators. Zhao et al. in [27] propose a CNN

model with a multi-patch feature extraction method to inspect

and represent the status of insulators. Lei et al. in [28] put for-

ward a method based on Faster R-CNN to locate the broken

insulators, and Zhang et al. in [29] also adopt Faster R-CNN

to identify the grading ring. In [30], Wang et al. adopt YOLO

to realize the identification of the insulators and the loca-

tion of the discharge position based on ultraviolet imaging.

It is worth mentioning that the accuracy and detection speed

of the above methods fail to meet the actual engineering

requirements, which lack of reliability. When the object is

multiple electrical components, the identification efficiency

is not good. It is of considerable significance to improve the

efficiency and speed of inspection.

In this paper, a framework of electrical components

recognition algorithm based on SRCNN and YOLO V3 is

proposed. The SRCNN network is used to achieve the super-

resolution reconstruction for blurred images. The recon-

structed clear images are combined with other training

images to enlarge the datasets. Then the YOLO V3 accom-

plishes the recognition of electrical components. In addition,

we have conducted further analysis on the production of

dataset, the selection of image classification algorithm, and

the determination of network parameters. And the experi-

mental results show that the proposed algorithm can realize

recognition effect in UAV inspection images compared with

Faster R-CNN and SSD.

The other parts of the paper are organized as follows:

Section II describes the detection procedure of electrical com-

ponents and the role of the various parts of the framework.

In addition, this section introduces the theoretical background

of the proposed SRCNN algorithm and introduces the detec-

tion principle of the proposed YOLO V3 in detail. Dataset,

experimental results, evaluation of our algorithms and com-

parison with other methods are discussed in Section III.

Finally, Section IV concludes this paper.

II. PROPOSED ELECTRICAL COMPONENTS DETECTION

FRAMEWORK

In this section, the application of the detection framework for

electrical components is presented. The procedure for elec-

trical components detection includes the reconstruction pro-

cess of SRCNN and detection process of YOLO V3. Firstly,

the network structure of SRCNN used in super-resolution

reconstruction is given, and then the network training of

SRCNN is introduced briefly. Secondly, the detection model,

network structure and network training process of YOLO

V3 are described in detail. Meanwhile, we optimize the gra-

dient descent algorithm in the training process of YOLO V3.

A. PRINCIPLE OF ELECTRICAL COMPONENTS DETECTION

1) DETECTION PROCEDURE OF ELECTRICAL COMPONENTS

Themain electrical components detection procedure is shown

in Figure 1. The UAV inspection image preprocessing can be

achieved via the following steps. Firstly, the original UAV

inspection image set can be classified into two types. One is

the qualified image set which can be used as the image train-

ing set, the other type is kind of blur image set with low reso-

lution. Secondly, the blur image set is processed via SRCNN

for super-resolution reconstruction, which means the blur

image set can be switched from the lower-resolution to higher

resolution. The processed images combined with the original

images can be applied as the suitable inspection image sets.
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FIGURE 1. The main electrical components detection procedure.

In addition, the new inspection image set is adjusted from

the original resolution to resolution 416×416 in the YOLO

V3 structure. The resized image set is input into the Darknet-

53 to extract electrical component features. Then the fea-

ture pyramid networks (FPN) makes the predictions across

3 different scales via feature outputs of Darknet-53. Overall,

the prediction results of YOLO V3 contain the parameters of

bounding box, objectness score and prediction over classes.

Next, YOLO V3 filters out the anchors that overlap the

ground truth object by more than a chosen threshold and then

outputs the classification and corresponding positioning of

each bounding box. Finally, the network outputs the detection

results.

2) IMAGE CLASSIFICATION

In this paper, we apply the Laplace variance algorithm to

classify the blurred image and the non-blurred image. Laplace

operator is adopted to calculate the second-order differential

of the image, which increases the difference between neigh-

borhood pixels and makes the mutation part of the image

more obvious. This paper uses Laplace operator to convo-

lute the input image firstly, and then calculate the variance.

In normal pictures, the boundary appears to be much clearer,

so the variance is larger. Instead, the boundary information of

blurred pictures is relatively less, so the variance is smaller.

Therefore, if the variance is lower than the predefined thresh-

old, the image is marked as ‘‘blurred’’. Conversely, if the

variance is higher than the predefined threshold, the image

is marked as ‘‘clear’’. After the above operation, the original

inspection image set is divided into a blurred image set and a

clear image set.

B. RECONSTRUCTION PROCESS OF SRCNN

1) SRCNN

Due to UAV fuselage shaking and problems of imaging expo-

sures, some inspection images show blurred quality, this will

severely hinder the effective recognition of electrical compo-

nents of UAV inspection. Therefore, the image preprocessing

should be a necessary step for forming the deep learning

training set. Chao Dong et al. in [31] propose the SRCNN

algorithm which is a network learning algorithm about data

preprocessing. This algorithm combines the super-resolution

reconstruction algorithm of deep learning [32]–[36] for the

first time, which effectively solves the above problems

by reconstructing low-resolution images to corresponding

high-resolution photos. The SRCNN mainly contains three

steps: image block extraction and representation, non-linear

mapping and high-resolution image block reconstruction.

a: IMAGE BLOCK EXTRACTION AND REPRESENTATION

The typical operation is to extract the image blocks from the

original inspection image, and then use a series of filters to

convolute with the image. Each filter can be regarded as a

base, and the optimization of the bases can be incorporated

into the optimization of the network. Based on the above

discussion, the processing of the first layer could be denoted

as:

F1 (Y ) = max (0,W1 ∗ Y + B1) (1)

whereW1 corresponds to n1 filters of size c× f1 × f1, c is the

number of channels of the input image, f1 is the spatial scale

of the filter, B1 is an n1-dimensional vector, and ∗ represents

the convolution operation. The output of the convolution

operation consists of n1 feature maps, and the output image of

the first convolution layer is obtained through the activation

function ReLU(max(0, x)) [37].

b: NON-LINEAR MAPPING

In the first convolutional layer, an n1-dimensional feature

vector is extracted from each image block. In the second

convolution layer, the output n1-dimensional feature vector

is nonlinearly mapped to the n2-dimensional feature vector.

The processing of the second layer can be described as:

F2 (Y ) = max (0,W2 ∗ F1 (Y ) + B2) (2)

where W2 corresponds to n2 filters of size n1 × f2 × f2, B2
is an n2-dimensional vector. The output of the convolution

operation consists of n2 feature maps.

c: HIGH-RESOLUTION IMAGE BLOCK RECONSTRUCTION

The third convolutional layer combines all the high-

resolution image blocks generated by the second layer to

create a high-resolution image, i.e. the final output image of

the SRCNNnetwork. On this basis, the processing of the third

layer could be indicated as:

F (Y ) = W3 ∗ F2 (Y ) + B3 (3)

whereW3 corresponds to c filters of size n2 × f3 × f3, B3 is a

c-dimensional vector.
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FIGURE 2. SRCNN network structure.

2) DATASET PREPARATION FOR TRAINING

Due to most blurred images in UAV inspection are caused

by jitter. Therefore, further processing of inspection images

should be considered before the training of SRCNN net-

work. This paper follows the training method of reference

paper [38] and [39] when preparing the training dataset for

SRCNN. We collect 100 clear images from the clear image

set. The blurred images can be obtained through using a

2×2 convolution kernel to dawn-sample the clear inspection

images. Meanwhile, the kinematics blur generating formula

(4) is used to process the clear images to get blurred images.

Finally, two parts of blurred images and corresponding clear

images are merged into blurred and clear image pairs to train

the SRCNN network.

g (x, y) =

∫ T

0

f [(x − x0 (t)) , (y− y0 (t))] dt (4)

3) NETWORK STRUCTURE OF SRCNN

The SRCNN network first enlarges the extracted blurred

inspection image to the target size using the Bicubic inter-

polation algorithm and records the interpolated image as Y .

The goal of super-resolution reconstruction is to restore Y to

the high-resolution image H , which is similar to the original

resolution image X . And obtain the corresponding ‘‘end-to-

end’’ mapping function F(Y ) through training. The basic

structure of SRCNN network is shown in Figure 2. It can be

seen from Figure 2 that the whole structure consists of a three-

layer convolution neural network, which can be divided into

three levels, corresponding to the three steps of image super-

resolution reconstruction.

1) The first convolutional layer extracts the image blocks

from Y , and then represent these low-resolution fea-

tures.

2) The second convolutional layer generates high-

resolution features through non-linear mapping.

3) The third convolutional layer accomplishes the recon-

struction of high-resolution images, which is equivalent

to create images that are close to the original high-

resolution images.

4) NETWORK TRAINING OF SRCNN

In the training process of the network, it is necessary to

learn the network parameter θ = {W1, W2, W3, B1, B2, B3}

to obtain the mapping function F between high-resolution

images. The learning of these parameters needs to minimize

the error between the reconstructed image F(Y ; θ ) and the

original high-resolution image X . The mean square error

(MSE) is adopted as the loss function, and MSE is shown

below:

L (θ) =
1

n

n
∑

i=1

‖F (Yi; θ) − Xi‖
2 (5)

where n represents the number of training samples, Xi is the

original high-resolution image, Yi is the input low-resolution

image, and F(Yi; θ) is the high-resolution image recon-

structed by SRCNN model.

C. DETECTION PROCESS OF YOLO V3

1) YOLO V3

YOLO V3 predicts boxes at different scales using the con-

cept of FPN. It mainly utilizes a certain amount of convo-

lutional layers and residual layers to complete the detection

process, and uses the features of the entire image to pre-

dict each bounding box. At the same time, it predicts all

classes of all bounding boxes to realize end-to-end training,

which maintains high average accuracy and strong real-time

performance.

YOLO V3 starts with dividing the input image into N×N

grids, and assigns one bounding box anchor for each ground

truth object. As shown in Figure 3, the network predicts

4 parameters (tx , ty, tw, th) for each bounding box, and then

applies a function to predict 4 corresponding coordinates:

the center point coordinates (bx , by) of the bounding box,

thewidth bw and the height bh. The prediction of the bounding

box and the Intersection-over-Union (IOU) are shown as the

following equations:

bx = σ (tx) + cx

by = σ
(

ty
)

+ cy
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FIGURE 3. Bounding boxes with dimension priors and location prediction.

bw = pwe
tw

bh = phe
th (6)

IOU =
area

(

BBdt ∩ BBgt
)

area
(

BBdt ∪ BBgt
) (7)

where the IOU in Equation (7) is the overlap rate between the

bounding box detected by the system and the ground truth

box. BBgt is the ground truth box based on training label,

BBdt is the detection bounding box, and area(·) indicates the

region.

2) DETECTION MODEL BASED ON YOLO V3

In the actual inspection images taken by UAV, due to the

complex shooting background and the small proportion of

the electrical components especially the shockproof hammer

of the entire image, it is necessary to optimize the network

structure to detect and recognize the state accurately. Fig-

ure 4 shows the detection model map of YOLO V3. Before

training, Figure 4(a) divides each input inspection image into

10×10 grids. Each grid in Figure 4(b) and Figure 4(c) predicts

bounding boxes and categories of probability. Figure 4(d)

outputs the final prediction with a 10×10×(3×(4+1+2))

tensor. As the detection results show that this model detects

an insulator and four shockproof hammers.

3) NETWORK STRUCTURE OF YOLO V3

Figure 5 shows the main structure of the YOLO V3 network,

which adopts the Darknet-53 structure. This structure is a

combination of YOLO V2, Darknet-19 and ResNet. And

YOLO V3 mainly uses 1×1 and 3×3 convolutional ker-

nels, and some shortcut connection structures. In Figure 5,

the input inspection image is first pre-processed, then its

resolution is adjusted to 416×416, and next the image is

operated through YOLO V3 subsequently.
1) The first part consists of 2 convolutional layers.

The input image size is 416×416×3, and the con-

volution kernel size is 3×3×32 and 3×3×64. The

size of the output feature map is compressed to

208×208×64 after the convolution operation.

2) The second part is composed of 3 convolutional layers

and a residual layer. The size of the convolution kernels

is 1×1×32, 3×3×64 and 3×3×128, and the output

feature map is compressed to 104×104×128 after the

convolution operation.

3) The third part is composed of 5 convolutional layers

and 2 residual layers. The size of the convolution ker-

nels is 1×1×64, 3×3×128 and 3×3×256, and the

output feature map is compressed to 52×52×256 after

the convolution operation.

4) The fourth part is composed of 17 convolutional lay-

ers and 8 residual layers. The size of the convolution

kernels is 1×1×128, 3×3×256 and 3×3×512, and the

output feature map is compressed to 26×26×512 after

the convolution operation.

5) The fifth part is composed of 17 convolutional lay-

ers and 8 residual layers. The size of the convolution

kernels is 1×1×256, 3×3×512 and 3×3×1024, and

the output feature map is compressed to 13×13×1024

after the convolution operation.

6) The sixth part is composed of 8 convolutional layers

and 4 residual layers. The size of the convolution ker-

nels is 1×1×512 and 3×3×1024, and the size of the

output feature map remains the same after the convolu-

tion operation.

7) The seventh part is composed of 3 prediction networks.

YOLO V3 predicts boxes at 3 different scales and

then extracts features form those scales. The prediction

result of the network is a 10×10×(3×(4+1+2)) tensor

for the 4 bounding box offsets, 1 objectness prediction,

and 2 class predictions.

4) NETWORK TRAINING OF YOLO V3

The network training of YOLO V3 is mainly divided into

three steps:

Step 1: Since the resolution of the original inspection

image taken by UAV is 3840×2160, which is too large to be

the input of the network. The original image is adjusted to a

size of 416×416 to speed up the network training process.

Step 2: VOC2007 dataset format is adopted to mark the

outer frame of insulators or shockproof hammers appearing

in each image.

Step 3: Initialize the network parameters of the YOLO

V3 model, and then train the YOLO V3 model to obtain

the training parameters for the detection of electrical com-

ponents. This paper makes a further analysis on the selection

of three important parameters.

1) Batch size: In theory, the bigger the value is, the better

the training will be. However, we can not increase the

value indefinitely due to the limitation of hardware con-

ditions, so we tried four batch sizes of 128, 64, 16 and

8, respectively. When the batch size is selected as 64,

16, 8 during training, there is no memory shortage,

sowe choose 64 as the batch size according to the above

discussion.
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FIGURE 4. Detection model of YOLO V3. (a) Divide the inspection image into 10×10 grids. (b) The predicted bounding boxes with confidence. (c) Class
probability map. (d) Final detection of YOLO V3.

FIGURE 5. YOLO V3 Network structure.

2) Weight decay: In order to prevent overfitting, we fix a

suitable learning rate firstly, and then adjust the decay

value from a fixed value (0.01), and finally the value is

0.0005.

3) Ignore_thresh: It refers to the size of the IOU thresh-

old, which determines the number of IOU involved in

the calculation of loss. If the threshold is too small,

the number will be too large, which will lead to under-

fitting. Conversely, if the threshold is too large, it

is easy to cause overfitting. Therefore, the value of

ignore_thresh is 0.65 based on the above discussion and

the actual situation.

The selection of the above three parameters will affect the

recognition accuracy. So it is necessary to adjust these param-

eters to effectively avoid the underfitting and overfittingwhen

training the model, so as to improve the average recognition

accuracy.

YOLO V3 adopts the multi-label classification, which is

different from the previous versions that use the mutually

exclusive label. And it uses a logistic classifier to calculate

the objectness score for each bounding box. For the loss of

the classification during training, YOLOV3 adopts the binary

cross-entropy loss for each label, which takes the place of the

mean square error used generally in the previous versions.
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The loss function used in parameter training of YOLO V3 is

indicated as follows:

L (sn) =

{

− log (sn) gn = 1

− log (1 − sn) gn = 0
(8)

where n indicates the sample index, sn ∈[0,1] represents the

objectness score predicted by the network, which measures

the predicted probability that the n-th sample is an electrical

component. And gn indicates the ground truth. It should be

noted that gn ∈{0,1} means if the n-th sample belongs to the

class of objects. The network parameters are trained through

minimizing the loss for all samples, i.e., 6nL(sn).

5) GRADIENT DESCENT OPTIMIZATION ALGORITHM

In this paper, we adopt Adaptive Moment Estimation(Adam)

[40] optimization algorithm to update network parameters.

Adam is a first-order optimization algorithm, which can

replace the traditional SGD [41] process and update the

network weight iteratively based on the training data. The

algorithm designs the corresponding adaptive learning rate

for different parameters by calculating the first and second-

moment estimation of the gradient. It combines two optimiza-

tion algorithms, including the advantages of adaptive gradient

algorithm [42] and root-mean-square propagation [43], which

is beneficial to improve the performance of sparse gradients

and the training efficiency.

III. EXPERIMENTS AND RESULTS

A. EXPERIMENTAL ENVIRONMENT

The basic configuration of PC used in this experiment is as

follows: Intel(R) Xeon(R) CPU E5-8276, primary frequency

4.0 GHz, using NVIDIA Tesla K80 as graphics card, dual

GPU accelerator, 24 GB GDDR4 memory, 128 GB memory,

and supporting 480 GB/s bandwidth. The operating system is

Ubuntu 16.04, and the deep learning framework of algorithm

programming is Tensorflow.

B. DATASET

Since there is no publicly available dataset of the insulator

and shockproof hammer, the dataset used in this experiment

is all derived from the UAV inspection images. The dataset

used in this experiment is derived from the power inspection

images taken byUAV in a specific area of China, clear images

and blurred images can be obtained by classifying the dataset.

Since training requires enough dataset, it is necessary to

restore the blurred images through super-resolution recon-

struction to supplement the dataset.

The dataset is divided into two categories, a total of 8128

pieces. Due to multiple electrical components may appear in

the same image, this dataset includes 4416 insulator images,

and 4352 shockproof hammer images. This paper applies the

hold-out method to divide the dataset containing 8128 sam-

ples into a training set containing 6432 samples and a test set

containing 1696 samples. Since the size, shape, light inten-

sity and other physical factors of insulators and shockproof

FIGURE 6. Images of insulators.

FIGURE 7. Images of shockproof hammers.

hammers in the dataset are different from each other, in order

to ensure the generalization performance of the YOLO V3

model, more training samples are generated by adjusting

the rotation angle, saturation, exposure and tone of some

samples in the dataset during the training process. The sample

images of partial insulator and shockproof hammer are shown

in Figure 6 and Figure 7, respectively.

C. EXPERIMENTS AND RESULTS ANALYSIS

The SRCNN network and YOLO V3 network have experi-

mented in this section, and the experimental results are ana-

lyzed in detail.
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FIGURE 8. Reconstruction performance of three algorithms.

1) ANALYSIS OF EXPERIMENTAL RESULTS OF SRCNN

NETWORK

The blurred image set obtained by classification is taken

as the experimental object for super-resolution reconstruc-

tion. The performance analysis of SRCNN network shows

that the reconstruction effect is affected by the number and

size of filters and the number of network layers. This paper

refers to the setting result of the SRCNN model parameters

in [38], and sets the parameters used in this experiment

to f1 = 9, f2 = 1, f3 = 5, n1 = 64, n2 = 32,

and the upscaling factor is 3. At the same time, traditional

algorithms such as Bicubic interpolation and Sparse Coding

[44] are used for experimental comparison. The experimental

results in Figure 8 show that the PSNR value of SRCNN

achieves 32.35 dB, which reaches the ideal reconstruction

quality level. To demonstrate the performance superiority

of the SRCNN network more obviously, Figure 9 shows

the average PSNR curves of the three algorithms. The fol-

lowing conclusions can be drawn intuitively and clearly

from Figure 9:

1) SRCNN exceeds Bicubic interpolation and Sparse

Coding only through a few training iterations.

2) The SRCNN algorithm further enhances the perfor-

mance of super-resolution reconstruction through more

training iterations.

3) The SRCNN algorithm can be effectively applied to the

super-resolution reconstruction of images. Therefore,

for the blurred power inspection images obtained by

classification, SRCNN algorithm can be used to train

a certain number of iterations to generate the corre-

sponding high-resolution images. The process is shown

in Figure 10.

FIGURE 9. The test convergence curve of SRCNN and results of other
methods.

2) ANALYSIS OF EXPERIMENTAL RESULTS OF YOLO

V3 NETWORK

This experiment adopts the optimized algorithm of the YOLO

V3 model in the previous chapter and initializes the network

on this basis. Then set some key parameters, in which the

kernel function of the convolutional layer is set to 1×1 or

3×3, the stride size is 1, the batch size is 64, the parameters

are updated once for each batch of training samples, and the

regularization coefficient of weight decay is 0.0005, the adap-

tive learning rate is changed dynamically with an initial value

of 0.01, and the maximum number of iterations is 1600.

In the training process, to check the detection perfor-

mance of YOLO V3 compared with Faster R-CNN and SSD,

the accuracy of the three algorithm models in identifying

the training samples is counted when the number of itera-

tions is 400, 800, 1200 and 1600 respectively. The results

are shown in Table 1. From the data in Table 1, it can be

seen that with the increase of iteration times, the average

recognition accuracy of the three algorithms also increases

gradually, among which the recognition accuracy of YOLO

V3 algorithm is the highest, reaching 95.84%. It also can be

concluded from Table 1 that in the case of the same number

of training samples, the YOLO V3 algorithm takes the least

training time to convergence, that is, the algorithm has the

fastest training speed. The recognition results of the insulators

and shockproof hammers in the inspection image are shown

in Figure 11. It can be seen clearly from Figure 11 that the

algorithm proposed in this paper can accurately locate the

electrical component. In the meanwhile, it also verifies

the effectiveness of the algorithm adopted in this paper in

recognition of electrical components.

After the network training is completed, the test set is used

to test and verify the detection performance of electrical com-

ponents in test samples by three algorithm models through

test accuracy and Mean Average Precision (mAP). The test

results are shown in Table 2. Both the test accuracy and mAP
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TABLE 1. The recognition accuracy of the three methods.

TABLE 2. Performance comparison of three algorithms.

FIGURE 10. Super-resolution reconstruction process using SRCNN (From left to right: (a) 15000 training iterations with SRCNN. (b) 35000 training
iterations with SRCNN. (c) 50000 training iterations with SRCNN).

value of YOLO V3 are the maximum, which means that

YOLO V3 achieves stronger generalization ability. Mean-

while, the testing process of YOLO V3 requires less time,

which further verifies that the speed of YOLO V3 algorithm

is the fastest.

In the process of training with the algorithm proposed in

this paper, to intuitively reflect the detection accuracy of cor-

responding objects in the dataset, the IOU is used to measure

the correlation between the real and the prediction. The higher

the association, the higher the IOU value. As the training
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FIGURE 11. Some recognition results on the test set. (a1) and (a2): Recognition result of insulators. (b1) and (b2): Recognition result of shockproof
hammers. (c1) and (c2): Recognition result of insulators and shockproof hammers.

FIGURE 12. The Region Average IOU curves.

batch increases during the training process, the IOU value

also increases, the IOU trend graph is shown in Figure 12.

The loss function is a way to measure the gap between

the predicted value and the actual value of the network

output, which is used to measure the quality of the model

prediction. The visualization function image is shown in Fig-

ure 13. It can be concluded obviously from Figure 13 that

FIGURE 13. Loss function comparison.

the loss of the three algorithms decreases gradually with the

increase of iteration times. When the number of iterations

is constant, the loss of YOLO V3 algorithm is the mini-

mum, and the convergence speed is faster than the other two

algorithms.

In conclusion, compared with Faster R-CNN and SSD,

the proposed method has more advantages in the detection

performance of electrical components.
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IV. CONCLUSION

Detection and recognition of electrical components is an

essential part of power inspection. To solve the problem that

the traditional algorithm cannot extract the image features

adequately under the interference of complex background and

other factors, this paper proposes a YOLO V3-based method

for electrical component detection from UAV inspection

images. The YOLO V3 model, combined with SRCNN, can

accurately identify the position and state of electrical compo-

nents under different angles, backgrounds and illumination

intensities. The experimental results show that the recogni-

tion accuracy of YOLO V3 is 1% to 3% higher than Faster

R-CNN and SSD. Meanwhile, YOLO V3 outperforms the

other two methods in recognition speed, which can achieve

almost real-time performance. The method proposed in this

paper has application value for the intelligentization of power

system inspection and has particular practical significance for

improving power inspection technology.
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