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With the rapid growth of digital music today, due to the complexity of the music itself, the ambiguity of the definition of music
category, and the limited understanding of the characteristics of human auditory perception, the research on topics related to
automatic segmentation of music is still in its infancy, while automatic music is still in its infancy. Segmentation is a prerequisite
for fast and effective retrieval of music resources, and its potential application needs are huge. Therefore, topics related to
automatic music segmentation have important research value. This paper studies an improved algorithm based on negative
entropy maximization for well-posed speech and music separation. Aiming at the problem that the separation performance of the
negative entropy maximization method depends on the selection of the initial matrix, the Newton downhill method is used instead
of the Newton iteration method as the optimization algorithm to find the optimal matrix. By changing the descending factor, the
objective function shows a downward trend, and the dependence of the algorithm on the initial value is reduced. The simulation
experimental results show that the algorithm can separate the source signal well under different initial values. The average iteration
time of the improved algorithm is reduced by 26.2%, the number of iterations is reduced by 69.4%, and the iteration time and the
number of iterations are both small. Fluctuations within the range better solve the problem of sensitivity to the initial value.
Experiments have proved that the new objective function can significantly improve the separation performance of neural
networks. Compared with the existing music separation methods, the method in this paper shows excellent performance in both

accompaniment and singing in separated music.

1. Introduction

Music is the most common form of artistic expression in
daily life, which greatly meets people’s spiritual and cultural
needs and enriches people’s leisure life. People relax and
enrich their lives by enjoying music. With the development
of digital music, the threshold of music creation is getting
lower and lower. As a kind of audio signal, music signal is
widely spread through the convenient Internet. With
copyright permission, people can download all kinds of
music on the Internet. Therefore, the amount of music audio
data is getting larger and larger, and the requirements for
retrieval tasks are getting higher and higher [1, 2]. However,
many mainstream music search engines are still based on
simple text retrieval, that is, manually labeled song names,

singers, years, and so on. If retrieval can be performed based
on the content information of the music signal itself (such as
melody, rhythm, harmony, timbre, intensity, speed, mode,
and musical style) and these features can be automatically
identified, this has meaning for retrieval efficiency and user
experience major [3-5].

The key technology of automatic music segmentation
has important research value. The index structure estab-
lished based on the results of the automatic segmentation
will further improve the performance of the music retrieval
system [6]. In addition, the automatic music segmentation
system also helps to establish an objective theoretical system
of music analysis in addition to the subjective way of human
perception and intuition and reduces human prejudices and
prejudices [7]. The music style segmentation system can be
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used to identify the works of a specific composer by training
the segmenter, to help determine the copyright of unknown
musical works, and to determine the main characteristics
that distinguish different genres. By comparing with the
“objective” features obtained by the computer segmenter,
the segmentation results will also support research on the
concept of human music similarity in sociology and psy-
chology and the process of music group formation. The
segmenter can also automatically analyze and segment the
records added to a large database. Based on the analysis and
segmentation of music content, the music recommendation
system can be used to find popular or high and low music
works in a massive music database and recommend lesser-
known works according to personal preferences [8]. This
kind of personalized recommendation is expected to weaken
the strong trend of popular music and better search for
massive music resources. After training, the segmenter can
segment personal music collections according to emotions
and scenes and can automatically select suitable records in
different situations such as driving, meeting customers, and
cleaning. Similarity analysis can also be used to monitor the
distribution of various types of records. Using the results of
music segmentation, the automatic music transcription
system can also identify different styles of sound effects as
corresponding notes [9].

In this paper, an algorithm that combines negative
entropy maximization and Newton’s downhill method is
adopted, and the downhill factor makes the objective
function have a descending property. The simulation ex-
perimental results show that the algorithm can separate the
speech signal and music signal well under different initial
values. Observing the experimental results of 30 sets of
random initial matrices, the average iteration time of the
improved algorithm is reduced by 26.2% and the number of
iterations is reduced. The iteration time and the number of
iterations fluctuate within a small range, which better solves
the problem of sensitivity to the initial value. Experiments
have proved that the method in this paper can significantly
improve the separation performance of neural networks.
Compared with the existing music separation methods, the
method in this paper has excellent performance in sepa-
rating the accompaniment and singing voice in music. At the
same time, the method in this paper has excellent perfor-
mance in separating music. It is less affected by the separated
signal and has strong universality and generalization
performance.

2. Related Work

In classical theory, the short-time Fourier transform is used
to analyze the signal, and the frequency amplitude is ap-
proximated by the coeflicient of the harmonic function [10].
This usually does not adequately represent the music signal,
because the music signal is not only a mixture of multiple
instruments playing the same pitch (fundamental fre-
quency), each instrument has a specific range of overtones
(the collection of these overtones is called timbre), all
musical instruments have a frequency distribution that is
much more ambiguous than a single sine, for specific
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musical instruments or different players, the frequency
distribution has certain fluctuations, and the singer’s voice is
often mixed, so the harmonic function is used [11]. To
represent the signal, quite a lot of coefficients are needed.
Using wavelet function, Gabor function and other time-
frequency analysis methods can better describe each musical
instrument or describe different aspects of music, namely,
timbre. Because the time-frequency resolution of wavelet
transform is adapted to each signal, the signal can be rep-
resented more effectively [12].

In order to compare music in order to effectively extract
features, a specific representation method is required. Due to
the differences in the capabilities of different wavelet
transforms, the music signal representation method suitable
for one feature extraction is not so sufficient when describing
other features, so each feature needs to be represented
differently. Sparse component transformation is a method
that can fully describe a variety of features so far. For ex-
ample, the DIRAC base can describe the random noise in the
signal, the DCT can describe the frequency characteristics of
the entire time interval, and the wavelet packet can be used
to describe the short-term and long-term events of the
signal, such as the phenomenon at the beginning of a note
and the long-term events [13]. Through experiments and
analysis, it is necessary to find a set of dictionary functions
that can effectively represent different characteristics of
music signals [14].

The segmenter uses the idea of template matching to
create a template for each audio type, then calculates the
feature vector of the actual audio frame, and uses the feature
vector to match the template vector (usually calculating their
distance in the vector space) to identify the audio type. In the
music clustering system developed by scholars from the
Australian Institute of Artificial Intelligence, the type
judgment method of template matching is adopted, the
matching is performed by calculating the Euler distance
between the template vector and the feature vector, and the
retrieval system ARS also uses a template-based audio re-
trieval algorithm [15-17].

Since the first application of auditory scene analysis to
the separation of voice and music, the separation of voice
and music has introduced methods such as fundamental
frequency analysis, time-frequency analysis tools, and blind
source separation [18]. Related scholars have simulated how
the human auditory system can distinguish a sound from a
mixed sound and determine which parts of the spectrum
come from the same channel of information according to the
endpoint information, frequency changes, and overtones of
different frequency ranges and form the same signal based
on these characteristics [19]. Researchers have proposed a
system for separating piano accompaniment and singing,
using the existing piano accompaniment score or overtone
trajectory as prior knowledge and using a linear combination
of sinusoids with time-varying frequency, amplitude, and
phase to simulate piano accompaniment and singing [20].
The source signal can be obtained by obtaining the coeffi-
cients of these linear combinations. Related scholars use
blind source separation algorithms to separate speech and
music signals in the actual environment [21]. The limited
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filter length and nonlinear sensor noise of the hybrid model
in the theoretical algorithm make the algorithm limited in
practical applications. Assuming that the number of source
signals and the number of sensors are fixed, the frequency
domain blind source separation algorithm without any prior
knowledge is used to separate the signals, and the separated
signals are divided into dominant ones according to the
relative power.

Related scholars added short-term continuity and
sparsity constraints to the nonnegative matrix factorization
to achieve the separation of mixed music signals [22]. The
basic idea of the paper is to decompose the amplitude
spectrum of the input signal to obtain the sum of a series of
vectors. On the contrary, when the decomposition vector is
known, the source signal can be recovered by solving the
coeflicients. The square of the gain difference between ad-
jacent frames is used as the cost function of short-term
continuity, and the nonzero gain is used as the cost function
of sparsity [23]. The parameters of each signal are obtained
by minimizing the reconstruction error between the input
spectrum and the model obtained by NMF training.
Compared with independent component analysis and
nonnegative matrix factorization methods, NMF with re-
stricted conditions can get a better separation effect. Among
them, short-term continuity is more effective in detecting
high-pitched music signals. Related scholars have proposed
a semiblind separation of speech and music based on
sparsity and continuity; they used sparsity and continuity
constraints to optimize dictionary coefficients, used the
dictionary to represent the power spectral density of each
source signal, and mixed them through a nonlinear function
[24-32]. The power spectrum of the signal is mapped to the
dictionary space, and finally, the source signal is recon-
structed using an adaptive Wiener filter and spectral
subtraction.

3. Music Feature Analysis and Musical
Note Modeling

3.1. Analysis of Music Features. The tone has four charac-
teristics of pitch, value, intensity, and timbre. These four
characteristics correspond to the vibration frequency, du-
ration, vibration amplitude, and frequency spectrum dis-
tribution of the musical instrument, respectively. Pitch is a
perceptual attribute of sound. Pitch can be quantified as
frequency, which depends on the speed at which sound
waves vibrate the air, and has almost nothing to do with the
strength or amplitude of the wave. In other words, a “high”
tone means a very fast oscillation, and a “low” tone corre-
sponds to a slower oscillation. Since the vibration of the
sounding body is usually composed of a set of waveforms
with different frequencies and different amplitudes, it is
stipulated that the lowest vibration frequency in this group
of compound vibrations is the fundamental tone, and the
others are all overtones, where the fundamental tone de-
termines the pitch. In the production of musical instru-
ments, each key or string of the musical instrument
corresponds to a different fundamental tone. Therefore, a
reference tone must be drawn up first. On this basis, the

remaining notes are calculated according to the tempera-
ment used. Temperament is the scientific basis for the
quantitative characterization of musical notes. The sche-
matic diagram of note time value cutting is shown in
Figure 1.

The pronunciation time of the pronunciation body is
related to the vibration it produces. The vibration stops and
the pronunciation stops. In the field of music, the beat is
used to describe the sound value. The beat does not have a
fixed length, but it is closely related to the style of the music
and the duration of the performance. Beat is the basic unit of
rhythm. Any music has a rhythm. The notes of different
pitch values are combined into bars, and then each bar is
connected in series to form a rhythm. Because the rhythm of
each music is unique, rhythm research is also very helpful for
song identification.

Sound intensity is the subjective perception of sound
pressure by the human ear. It is defined as a kind of auditory
attribute; according to this attribute, the sound can be sorted
from quiet to noisy. Sound intensity is also related to
psychological factors, which means that loudness and am-
plitude are not exactly proportional to each other. In the field
of music research, if the sound frequency of the musical
instrument does not change, the strength of the sound of the
musical instrument depends only on the amplitude of the
musical instrument’s own vibration.

The timbre belongs to the auditory sensory character-
istics of the human ear and is mainly determined by the
frequency spectrum of the sound. According to the
American Standards Association’s definition of timbre, the
difference in sound quality other than pitch and intensity is
called timbre. After analyzing the sound containing the same
spectrum components, it can be known that the timbre is to
a large extent related to the amplitude variation charac-
teristics of the overtones in the compound vibration at the
beginning and the end of the vibration. In addition, timbre
can also distinguish different types of sound production and
help the human ear distinguish different instruments in the
same category such as oboe and clarinet.

3.2. Signal Preprocessing. After analyzing the four major
characteristics of music and mastering the key acoustic
characteristics of note modeling, the relevant parameters of
the notes are extracted based on these acoustic character-
istics. The discrete signal after sampling and quantization
must be preprocessed before being used for data analysis.

3.2.1. Preemphasis. According to the string vibration
equation, it can be seen that the standing wave generated by
the string vibration is mixed with many high-frequency
overtones, and its power spectrum decreases with the in-
crease of frequency. This causes the signal to have a large
low-frequency signal-to-noise ratio and a high-frequency
signal-to-noise ratio. In addition, the signal exhibits low-
pass filtering characteristics during transmission, which
makes high-frequency transmission very difficult. In order
to solve the problem of high-frequency transmission, it is
necessary to emphasize the high-frequency signal
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FIGURE 1: Schematic diagram of note time value cutting.

component to generate a modulation index that is more
equal to the transmission spectrum, that is, to compensate
the high-frequency component of the input signal. This
processing method is preemphasis. The paper uses frequency
domain technology for preemphasis, and the original signal
is calibrated and filtered before subsequent processing. The
transfer function of the preemphasis filter is as follows:

H(iz)=1+% (1)
z

In the formula, « is the preemphasis coefficient.

3.2.2. Windowing and Framing. In the field of signal
analysis, according to the characteristics of inertia, it can be
considered that the distribution of nonstationary signals in a
relatively short period of time does not change with time, so
the steady-state method can be used to analyze nonsta-
tionary signals. The audio signal is a typical nonstationary
signal. Before analyzing and processing it, it first needs to be
aligned for time-domain framing. The framing is realized by
a movable window of limited length. In order to ensure the
continuity of the voice, there must be a certain overlap
between each frame of data when the window is moved, and
the number of samples moved each time is the frame shift.

3.2.3. Endpoint Detection. Endpoint detection is to deter-
mine the starting point and ending point of a valid voice
from the audio file. Only when the starting and ending
points of the valid audio are found, the subsequent signal
analysis is meaningful. The significance of signal endpoint
detection is that it can reduce the amount of data processing

for note recognition in the embedded system, which is
mainly manifested in the following two aspects.

On one hand, it can reduce the amount of blank voice
signal transmission inside the system and reduce the
computing load of the processor. This is of great significance
to the real-time recognition of signals; on the other hand, it
can filter out noise signals that do not contain effective
information. If the signals to be recognized are mixed with
noise, it will not only cause waste of memory resources but
also disrupt the recognition process to a certain extent.

3.3. Establishment of Mathematical Model of Musical Notes.
The purpose of mathematical modeling is to find a corre-
sponding relationship, under which the corresponding
mathematical form of quantity and quantity can be realized,
and the maximum matching accuracy between two physical
quantities can be achieved through the corresponding re-
lationship. Mathematical modeling of musical notes is to
find the correspondence between note names and wave-
forms. Through the analysis of the four characteristics of
music, the paper extracts the time-domain envelope and
frequency spectrum parameters of the note signal and
performs parameter fitting in Matlab according to the fre-
quency domain parameters. The specific process is shown in
Figure 2. Figure 3 is a model based on the attenuation law of
the note envelope.

The envelope function of the note time-domain
contains the characteristics of the note value and inten-
sity; the analysis of the note spectrum is mainly to study
the fundamental tone and overtone of the note. Therefore,
the mathematical representation of musical notes is as
follows:
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Y = Hcos(Znnft)OAnfOEt. (2)

In the formula, f is the fundamental frequency cor-
responding to the key, nf represents the n-th octave of the
fundamental frequency, t represents the duration of the
note, A, is the amplitude fitting function of each fre-
quency, and Et is the note time-domain envelope decay
function.

Based on the establishment of the single-note model, the
continuous-note signal is the superimposition of the single-
note signal in the time domain. According to the mathe-
matical model of the single-note signal, the mathematical
representation of the continuous-note signal can be derived;
namely,

Y = H H cos(2nnft)eA, ok, ;. (3)

k
i=1 t;_

i-1

In the formula, k means containing k single notes, [t;_;, t;]
means the duration of the i note, and f; means the funda-
mental frequency of the i note.

4. Improved Speech and Music Signal
Separation Based on Negative
Entropy Maximization

4.1. Negative Entropy Maximization Method. The most
commonly used method of blind source separation is in-
dependent component analysis, which mainly uses the in-
dependence between signals to separate signals. If the
components of the source signal vector are independent of
each other, the source signal vector is subjected to matrix
transformation. The individual components are also inde-
pendent of each other. The essence of independent com-
ponent analysis is the process of separating statistically
independent source signals from the mixed signal, which is
basically obtained by maximizing or minimizing the ob-
jective function. The distribution of the sum of multiple
independent random variables tends to be Gaussian; that is,
the Gaussianness of the sum of the variables is stronger than
the Gaussianness of each variable. We consider a component
of Y(t)yi(t) = wX(t), w is a column vector of the separation
matrix W and requires w that maximizes the non-Gaus-
sianity of yi(t); then, we separate a component from the
observed signal. Commonly used non-Gaussian measures
include kurtosis and negative entropy. For zero-mean sig-
nals, kurtosis is its fourth-order statistic, which is defined as

kurt(y - 1) = E(y4) - 3E(y3)2. (4)

According to the value of kurtosis, the signal can be
divided into three categories according to Gaussian. When
the kurtosis is equal to zero, it is a Gaussian signal; when the
kurtosis is greater than zero, it is a super-Gaussian signal,
and when the kurtosis is less than zero, it is a sub-Gaussian
signal. The value of negative entropy is greater than or equal
to zero. When the variable obeys the Gaussian distribution,
the negative entropy is zero. The kurtosis can be used to
approximate negative entropy, but kurtosis is sensitive to
singular values. For this reason, an approximation method
for negative entropy is proposed:

J(y;) = E[G(y;1)] —EIG(v - 1)]%. (5)

In the formula, y; and v are output variables and
Gaussian random variables with zero-mean and unit



variance, respectively, and G is a nonsquare nonlinear
function. According to the mixed signal, the nonlinear
function can be divided into the following three types:

1
G, (y) =—log, cosh(a,y)0<a, <3,
a;

G,(y) = exp(0.5 . yz), (6)

G;(y)=0.25%x (y—1)°.

Among them, G,(y) is suitable for mixing sub-Gaussian
signals and super-Gaussian signals, G,(y) is suitable for
mixing super-Gaussian signals, and Gs(y) is suitable for
mixing sub-Gaussian signals. The application is based on the
Gaussian nature of the signal. We choose a suitable non-
linear function.

This paper uses the method of unsupervised learning.
Aslong as there is no change or small change in W during
the two iterations, it can be considered as convergent and
an independent component is separated. We use the above
steps to extract multiple independent components and
iterate out the separation matrix components Wy, W, ...,
W, in turn. When a new independent component is
extracted in each iteration, the newly obtained W; is
separated from the previously obtained i. The matrix
components are orthogonalized to ensure that the newly
obtained vector is different from the convergence direc-
tion of the calculated vector. The orthogonalization
method is as follows:

i-1
Wiy =w,-[[wwl'w,

j=0 (7)
Wi = Wi’<WiT+1Wi—1)_(1/2)-

The negative entropy maximization algorithm has the
following characteristics: (1) The advantage of the Newton
iteration method in the algorithm is the fast convergence
speed, which is generally quadratic convergence. (2) The
parameters in each iteration process are obtained through
the results of the previous step. (3) Only one independent
component is extracted after each iteration of the algorithm
until convergence, so if you are interested in a component in
the mixed signal and have sufficient prior knowledge, you
can quickly extract the required component, thereby re-
ducing the calculation of the amount. (4) According to the
Gaussianness of the signal, there are three kinds of nonlinear
functions that can iterate out independent components.
Choosing a suitable nonlinear function can improve the
algorithm performance.

4.2. Improved Blind Separation Algorithm for Initial Value
Sensitivity. Negative entropy is an important non-Gaussian
measurement method. Maximizing negative entropy max-
imizes the non-Gaussian nature of random variables,
thereby making the output components independent of each
other. The negative entropy maximization algorithm takes
negative entropy as the objective function and the Newton
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iteration method as the optimization algorithm. Aiming at
the problem of sensitivity to initial value selection in
Newton’s iteration method, this paper replaces Newton’s
iteration method with Newton’s downhill method. By
changing the downbhill factor, the objective function is in a
downward trend and the algorithm’s dependence on the
initial value is reduced.

The separation of speech and music signals based on the
maximization of negative entropy uses negative entropy as
the objective function and the Newton iteration method as
the optimization algorithm. There are two main problems
with the Newton iteration method: large amount of calcu-
lation and sensitivity to initial value. Both need to calculate
the derivative, which increases the amount of calculation,
and when the initial value is too far from the root, the it-
eration will not converge. Therefore, modifying the Newton
iteration method is a way to improve the performance of the
algorithm.

The Newton iteration method selects the initial value of
the iteration more strictly. If the initial value is not well
selected, it may cause nonconvergence. To ensure that the
initial value converges in a larger range, the deformed
Newton downhill method of the Newton iteration method
can be used. The current calculation result and the calcu-
lation result of the previous step are processed as a weighted
average, and the average value is used as the new approx-
imate value. The process is as follows:

Xier1 = (1 —A)xk _Aykfl‘ (8)

Here, A is called the downbhill factor. Introducing the
Newton downhill method in the separation of speech and
music signals based on the maximization of negative en-
tropy, the iterative process can be obtained as

BW(k-1)+ E[WxTxg (k)T]
BI - E[Wx"g' (k)']

W(k+1)=W(k-1)-Ae

(9)

In order to avoid singular weights, the denominator of
formula (9) is not zero. Among them,

B = E[xx"gW (k) ]. (10)

W(k) is the separation matrix component obtained in the
previous iteration. The above formula introduces a downhill
factor, and the current value and the separation matrix
component obtained in the previous step are weighted and
averaged to make the calculation result more stable.

4.3. Algorithm Implementation. The flowchart of the blind
separation of speech and music signals based on the max-
imization of negative entropy is shown in Figure 4.

(1) Mix n channels of voice and music signals into m
channels of mixed signals, and each channel has a
length of N.

(2) Perform zero-mean and whitening preprocessing on
the mixed signal, so that the components of the
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whitened signal are independent of each other and
meet the condition that the mean value is zero.

(3) Let the number of iterations k = 0 and the descending
factor A =1, and set the initial matrix randomly.

(4) Update W(k + 1) and normalize.

(5) The algorithm converges, and an independent
component is estimated; otherwise, the algorithm
does not converge, k=k+1, and A is halved.

(6) Obtain m separation matrix components, and each
time a separation matrix component is obtained, it is
orthogonalized with the previously obtained
components.

(7) Calculate the estimation of the source signal Y= WX
from the separation matrix W, and analyze the al-
gorithm performance.

5. Experimental Results and Analysis

5.1. Experimental Data Settings. The music data in the ex-
periment use the music data set MIR-1K released by Hsu
Lab. The data set consists of 110 Chinese songs edited into
1000 pieces of music, each piece of music is 4s-12s, using
18 kHz to save the accompaniment and singing in the left
and right channels of the WAVE file, and the singing part is
recorded by amateurs. In order to facilitate neural network
training, the music fragments in MIR-1K are divided into
audio with a length of 2s to ensure that the length of the
training input data is consistent.

The pure accompaniment and singing voice used in the
experiment are the audio stored separately in the left and
right channels, and the mixed music used in the experiment
is the single-channel audio mixed with the pure accompa-
niment and singing voice of the left and right channels in the
above audio file at 0dB. The hidden layers of the neural
network are 3 layers of standard LSTM and 1 layer of bi-
directional LSTM. The number of hidden cells in each layer
is 128. The training data are the frequency spectrum of
audio. 128 points are selected as one frame, and the over-
lapped half-frames are used as short-time Fourier. For
transformation, the timestep is set to 2, the optimizer selects
Adam, and batch_size is set to 100. The training process is
about 1 hour.

0.006
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0.001

0 50 100 150 200 250 300 350 400 450 500
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—— Improved model for maximizing negative entropy
—— DNN

FiGure 5: Convergence curve comparison.

5.2. Experimental Results. Convergence speed, as an im-
portant evaluation index of the neural network model, is an
important criterion for measuring a network model [33-35].
Figure 5 shows the convergence curve of the DNN-based
speech separation model and the improved negative entropy
maximization model used in this paper. It can be seen from
Figure 5 that the algorithm in this paper is superior to the
DNN-based model in terms of convergence speed. Although
the convergence speed of the two types of models has de-
creased, the error value still maintains a continuous de-
crease. When the training reaches about 50 rounds, the
convergence speed of the model gradually stagnates, and the
error value reaches the limit.

The basic structure of the model in this paper uses the
LSTM network, which can make full use of the correlation
between the previous and next frames of the spectrum
during training. The ¢ SA based on discriminative training is
used as the training objective function of the model in this
paper. It has more advantages than the traditional neural
network using the mean square error function (MSE) as the
objective function. It can distinguish the difference between
different source signals. In the process, a faster convergence
rate can be achieved. We choose a piece of music randomly
from MI-1K, and its time-domain waveform is shown in
Figure 6.
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FIGURE 7: Waveform comparison before and after music segment separation. (a) Original accompaniment waveform. (b) Original singing
waveform. (c¢) Accompaniment waveform after separation. (d) Singing waveform after separation.

It can be seen from Figure 7 that the separated ac-
companiment and singing have clear waveforms, which are
basically the same as the original and pure accompaniment
and singing waveforms. Figure 7(a) is compared with
Figure 7(c). The separated accompaniment has a slight re-
duction in amplitude, but it can basically be ignored.
According to the actual sound effects, the reduction in
amplitude will not affect the actual information expression
of the accompaniment. That is, the separated accompani-
ment has the same melody, rhythm, and pitch as the original
accompaniment, and the amplitude reduction will only
reduce the loudness of the sound. It can be seen from
Figures 7(b) and 7(d) that the separated singing voice has a
clear waveform structure, and the peak position and am-
plitude are consistent with the original singing voice. In the
first second of the separated singing voice, there is a slight
fluctuation in amplitude, and the original singing voice is
basically 0 in this 1s waveform. According to the rela-
tionship between the time-domain waveform and the sound

effect, it shows that the separated singing voice appeared
during this period of time. Noise interference is also mu-
tually confirmed by the partial distortion of the separated
singing frequency spectrum. At the same time, it also shows
that when the method of this paper separates the accom-
paniment and singing, the separation result will produce
noise interference for the audio of the silent section.

We use the method in this paper and traditional existing
algorithms to separate 1000 pieces of music in the MIR-1K
data set, use the blind source separation tool to evaluate and
compare, and calculate the global average GSAR (Global
SAR). The separation result is shown in Figure 8. It can be
seen from Figure 8 that the method in this paper is superior
to the separation method based on DNN in the separation
index GSAR. This shows that the network used in this paper
is more suitable for separating the singing voice in music
than the DNN-based network model.

Randomly we select 100 pieces of music with weaker
rhythm and 100 pieces of music with stronger rhythm from
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MIR-1K and use the traditional method and the method of
this paper to separate, and the separation results are aver-
aged as shown in Figures 9 and 10.

It can be seen from Figures 9 and 10 that the algorithm
has a great difference in separation performance for music
with a stronger sense of rhythm and weaker music. For

music with a weak sense of rhythm, the separation effect of
the DNN separation algorithm is relatively poor. This is
because the DNN algorithm needs to be modeled according
to the melody and beat of the music when separating, and
the weaker rhythm music does not have a clear beat, so it is
impossible to establish a clear beat model, which leads to the
poor separation effect of the DNN algorithm in this type of
music. Compared with traditional algorithms, for this kind
of music with weaker rhythm, it can be seen from the figure
that the method in this paper still maintains a better sep-
aration effect.

For music with a strong sense of rhythm, traditional
algorithms have a better separation effect when separating
accompaniment and singing. For this type of music, the
separation effect of the method in this paper is not much
different from that of weaker rhythm music. There is no huge
change in the separation performance due to the strength of
the rhythm, which shows that the method in this paper is
different from the traditional nonneural network algorithm
in separating music. The method in this paper is less de-
pendent on music samples, and it has good separation
performance whether it is music with a strong or weak
rhythm. At the same time, it also shows that the method in
this paper has good generalization performance and is
suitable for separating different types of music.

6. Conclusion

Negative entropy is an important non-Gaussian measure-
ment method. Maximizing negative entropy maximizes the
non-Gaussian nature of random variables, thereby making
the output components independent of each other. The
negative entropy maximization algorithm takes negative
entropy as the objective function and the Newton iteration
method as the optimization algorithm. Aiming at the
problem that the Newton iteration method is sensitive to the
initial value selection, the Newton descending method is
used instead of the Newton iteration method, and the ob-
jective function is changed by changing the descending
factor. The downward trend reduces the dependence of the
algorithm on the initial value. The experimental results show
that the algorithm can separate the source signal well under
different initial values. The average iteration time of the
improved algorithm is reduced by 26.2% compared with that
before the improvement, the number of iterations is reduced
by 69.4%, and the iteration time and the number of iterations
are both relatively low. Fluctuations in a small range better
solve the problem of sensitivity to the initial value. The
separation effect under multiple sets of different mixing
matrices shows that the separation effect has nothing to do
with the mixing matrix. The results show that the new
objective function can significantly improve the separation
performance of the neural network. Compared with the
existing music separation methods, the method in this paper
shows excellent performance in both accompaniment and
singing in the separation of music. The study of the overall
feature space of music involves the level of music under-
standing. At this time, how to combine the relevant theories
of musicology to extract essential features and better express
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the structure and information in music has become the key
to solving the problem. Through the analysis of a large
number of music data samples, combined with music theory
and subjective evaluation methods, we compare the map-
ping relationship between various basis functions or dic-
tionary functions and the overall characteristics of music
structure, music style, and emotional connotation and de-
termine basis functions or dictionaries. The feature subspace
corresponding to the function is a useful research idea in the
future.
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