
Research Article

Research on Selection Method of Privacy Parameter ε

Pan Jun Sun

School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Minhang,
Shanghai, China

Correspondence should be addressed to Pan Jun Sun; sunpanjun2008@163.com

Received 17 August 2020; Revised 10 September 2020; Accepted 27 September 2020; Published 23 October 2020

Academic Editor: Vincenzo Conti

Copyright © 2020 Pan Jun Sun.*is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Budget factor is an important factor to measure the intensity of differential privacy, and its allocation scheme has a great impact on
privacy protection. *is paper studies the selection of the parameter ε in several cases of differential privacy. Firstly, this paper
proposes a differential privacy protection parameter configuration method based on fault tolerance interval and analyzes the
adversaryʼs fault tolerance under different noise distribution location parameters and scale parameters. Secondly, this paper
proposes an algorithm to optimize the application scenarios of multiquery, studies the location parameters and scale parameters in
detail, and proposes a differential privacy mechanism to solve the multiuser query scenarios. *irdly, this paper proposes the
differential privacy parameter selection methods based on the single attack and repeated attacks and calculates the upper bound of
the parameter ε based on the sensitivity Δq, the length of the fault tolerance interval L, and the success probabilityp as long as the
fault tolerance interval. Finally, we have carried out a variety of simulation experiments to verify our research scheme and give the
corresponding analysis results.

1. Introduction

In recent years, with the rapid development of information
technology, user data have experienced explosive growth.
Personal information extracted by data mining and infor-
mation collection has become a valuable resource for re-
search and decision-making of various research institutions,
organizations, and government departments [1]. *e anal-
ysis and use of massive user data not only bring convenience
to peopleʼs lives but also bring a great threat to user privacy
protection [2].

More and more people pay attention to protecting data
privacy while applying data. On the one hand, for published
data, k-anonymity, l-diversity, and T-closure protect sen-
sitive information from attacks, such as link attacks, skew
attacks, and underlying knowledge attacks [3–7]. However,
due to the lack of a strong attack model, they are not strong
against background knowledge attack. *e existing privacy
protection models lack effective and strict methods to prove
and quantify the level of privacy protection. Once the model
parameters change, the quality of privacy protection will not
be guaranteed. However, differential privacy has better

resistance to the above attacks and has good privacy pro-
tection, which has been widely used by scholars [8, 9].

1.1. Motivation. Privacy protection theory and technology
need to be able to prevent different attack means. What is
more, with the rapid development of data analysis tech-
niques such as data mining in recent years, attackers can
extract information related to user privacy from massive
data. *erefore, how to protect the privacy of user data and
provide high availability data as much as possible in the
process of data query, publishing, and sharing has become a
research hotspot in privacy protection [10, 11].

At present, most of the proposed privacy protection
schemes use anonymous fuzzy or data distortion processing
(such as adding random noise) and other technologies and
use mathematical regression analysis, data distortion ad-
justment, and noise scale parameter adjustment to reduce
the error caused by noise, so as to improve the availability of
data [12–14]. However, these schemes also have some
shortcomings; that is, the same query results will cause the
disclosure of privacy information when the query users with
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different permissions and reputation levels query the sen-
sitive data.

*e differential method has become a hot research topic on
many practical applications in recent years. Compared with the
traditional privacy protection mode, differential privacy has its
unique advantages. Firstly, themodel assumes that the adversary
has the greatest background knowledge. Secondly, differential
privacy has a solidmathematical foundation, a strict definition of
privacy protection, and a reliable quantitative evaluation
method. By using the output perturbation technology to add
random noise to the query output, the single record is in the
dataset or not in the dataset, which has little impact on the
calculation results. Even if the adversary has the maximum
background knowledge, it can ensure that the adversary cannot
obtain accurate individual information by observing the cal-
culation results.

*e research work of differential privacy protection
mainly focuses on improving the privacy protection and data
utility in the differential privacy data release, but a small
amount of strict mathematical reasoning and research is
conducted on the configuration method of privacy pro-
tection parameters in the specific practice of differential
privacy. In practice, the dataset size, query function sensi-
tivity, and privacy protection probability threshold should
be considered in the configuration of privacy protection
parameters.

Differential privacy is based on a good mathematical
basis and can quantitatively describe the problem of privacy
disclosure [1]. *ese two unique features make it different
from other methods. Even in the worst case, if an adversary
knows all the sensitive data except one record, it can ensure
that the sensitive information will not be disclosed, because
the adversary cannot judge whether the record is in the
dataset from the query output [2].

*e research of differential privacy protection technol-
ogy mainly considers three problems: (1) how to ensure that
the designed privacy algorithmmeets the differential privacy
to ensure that the data privacy is not leaked; (2) how to
reduce the error probability to improve the availability of
data; (3) in the face of different environments and attack
modes, how to determine the value range of parameter ε and
give a credible and reasonable reasoning proof process.

1.2. Contributions. Aiming at the above problems, to ensure
the privacy and availability of sensitive data in the process of
data query, solve the problem of real data information
leakage in the process of data, and reduce the probability of
attackers to obtain real results through differential attack and
probabilistic reasoning attack, we study the differential
privacy parameter selection methods in various situations;
these specific contributions are as follows:

(i) We propose a differential privacy parameter con-
figuration method based on fault tolerance interval
and analyze the adversaryʼs fault tolerance under
different noise distribution location parameters and
scale parameters and study the influence of the
user’s query permission on privacy protection pa-
rameter configuration.

(ii) We study the location parameters and scale pa-
rameters in detail and propose a differential privacy
mechanism to solve the multi-user query scenarios.

(iii) For a single attack, we propose a differential privacy
attack algorithm and calculate the upper bound of
the parameter ε based on the sensitivity Δq, the
length of the fault tolerance interval L, and the
success probability p. Furthermore, we propose an
attack model to achieve the security of differential
privacy protection technology under repeated at-
tacks, analyze the results of repeated attacks and the
characteristics of noise distribution function to
obtain the probability of noise falling into the fault-
tolerant interval, deduce the probability of the
adversaryʼs successful attack by the permutation and
combination method, and then obtain the selection
range of parameter ε.

(iv) We design several experiments, analyze the rela-
tionship between adversaryʼs fault tolerance and
privacy parameters, derive the configuration for-
mula of the privacy parameter ε, and configure
appropriate parameters without violating the pri-
vacy probability threshold.

*is paper studies the selection of the parameter ε in
three cases of differential privacy. *e structure of this paper
is as follows. In Section 2, we introduce and analyze the
research progress of correlation differential privacy pa-
rameters. In Section 3, we introduce the concept and theory
of differential privacy. In Section 4, we propose a privacy
parameter selection method-based fault tolerance and an-
alyze the case of multiple scale parameters. In Section 5, we
propose a differential privacy algorithm for a multi-user
query. In Section 6, we introduce the query attack mode in
differential privacy. In Section 7, we design relevant ex-
periments and show the characteristics of the study through
analysis and comparison. In Section 8, we summarize and
propose future work.

2. Related Work

Recently, many achievements have been made in differential
privacy research. At present, the research of differential
privacy protection technology combines database theory,
cluster algorithm, statistical knowledge, and modern cryp-
tography [1, 2]. It defines a very strict mathematical model
and provides rigorous and quantitative representation and
proof of privacy leakage risk [3–7, 15]. Based on the rele-
vance contents, this paper divides the research work of
differential privacy protection into two parts.

2.1. Research on the Basic 'eory of Differential Privacy.
How to reduce the noise of dataset on the premise of dif-
ferential privacy: Yi and Zhabin [16] proposed a data
publishing algorithm based on wavelet transform, which can
effectively reduce the size of ε parameter and improve the
accuracy of the histogram counting query. Park and Hon
[10] studied parameter ε to protect differential privacy and

2 Security and Communication Networks



introduced a new attack index to capture the relationship
between attack probability and privacy assurance. Yao [12]
introduced the concept of α-mutual information security
and showed that statistical security meant mutual infor-
mation security. Du andWang [13] proposed a query model
and implemented differential privacy by Laplace noise. Tsou
and Chen [17] quantified the disclosure risk and linked the
differential privacy with k-anonymity. Zhang and Liu [18]
proposed a privacy-preserving decision tree classification
model based on differential privacy mechanism, through the
Laplace mechanism and index mechanism, which provided
users with a secure data access interface and optimized the
search scheme to reduce the error rate.

Lin et al. [19] proposed an optimized differential private
online transaction scheme for online banking, which set
consumption boundary with additional noise, and selected
different boundaries while satisfying the definition of dif-
ferential privacy. Besides, they provided a theoretical
analysis to prove that the scheme can meet the differential
privacy restriction. *e choice of a privacy mechanism
usually does not have a significant impact on performance
but is critical to maintaining the usability of the result.
Goryczka and Xiong [20] described and compared dis-
tributed data aggregation methods with security and con-
fidentiality, studied the secure multiparty addition protocol,
and proposed a new effective Laplace mechanism, ensuring
the security of computation, the minimum communication
traffic, and the high reliability of the system. Kang and Li [21]
proposed a new framework based on the concept of dif-
ferential privacy, by purposefully adding noise to locally
perturb its training parameters, which achieved a com-
promise between the convergence performance and privacy
protection level.

Li et al. [22] focused on the linear query function based
on Laplacian mechanism and proposed a method to de-
termine the upper bound of the number of linear queries
from the perspective of information theory. Huang and
Zhou [23] proposed a differential privacy mechanism to
optimize the number of queries in multi-user scenarios and
analyzed the distortion of data distribution and the absolute
value of noise in terms of utility. Ye and Alexander [15]
studied the minimax estimation problem under the re-
striction of the discrete distribution in the privacy of dif-
ferential privacy, under the given conditions, considering
the structure ε- privacy level of the optimal problem of the
privatization program, minimizing expected estimated
losses.

2.2. Application of Differential Privacy. Differential privacy
has a wide range of applications. Cheng et al. [11] realized
the private publishing of high-dimensional data and de-
termined the optimal parameters by non-overlapping cov-
erage. *e studies in [14, 24] introduced differential privacy
to protect data privacy and prevented the adversary from
inferring important sensitive information. Due to the high
complexity and multi-dimension of data, [25] proposed a
data partition technology and further used the interactive
differential privacy strategy to resist the privacy leakage.

Based on noise estimation and Laplace mechanism, the work
in [26] studied the trade-off relationship between privacy
and utility, derived the optimal differential privacy mech-
anism, and effectively adapted to the needs of personalized
privacy protection.

Zhang et al. [27] formally studied the issue of privacy-
preserving set-value data publishing on hybrid cloud, pro-
vided a complete system framework, and designed a new
data partition mechanism, further setting up query analysis
tools that can be automatically switched on the structure of
the query optimization of hybrid cloud data query, ensuring
the confidentiality of data. In a voting system, users can
report their desired parameter values to the selector
mechanism. Without limiting user preferences, [28] struck a
balance between protecting personal privacy and returned
accurate results through the parameter epsilon control.

Sun and Tay [29] constructed an optimization frame-
work that combined local variance privacy and inferential
privacy measures and proposed a two-stage local privacy
mapping model that can achieve information privacy and
local variance privacy within a predetermined budget. Cao
and Yoshikawa [30] studied the potential privacy loss of a
traditional differential privacy mechanism under time de-
pendence, analyzed the privacy loss of adversaries with time
dependence, and designed a fast algorithm to quantify the
time privacy leakage. Based on the differential privacy
model, the study in [31] constructed a privacy protection
method based on clustering and noise and proposed a
privacy measurement algorithm based on adjacency degree,
which can objectively evaluate the privacy protection
strength of various schemes and prevent graph structure and
degree attacks.

In the cloud service, the study in [32] proposed a priority
ranking query information retrieval scheme to reduce the
query overhead on the cloud. *e higher-ranking query can
retrieve a higher percentage of matching files; users can
retrieve files on demand by selecting different levels of
queries. Sun and Wang [33] proposed a weight calculation
system based on the classification regression tree method,
which combined differential privacy and decision tree
method, and used differential private small-batch gradient
descent algorithm to track privacy loss and prevented ad-
versary from invading personal privacy. Chamikara et al.
[34] proposed a recognition protocol, which used different
privacy to disturb the featured face and stored the data in a
third-party server, which can effectively prevent attacks such
as member inference and model memory attacks.

To determine the reasonable release time of dynamic
positioning data, the study in [35] designed an adaptive
sampling method based on proportional integral derivative
controller and proposed a heuristic quadtree partition
method and a privacy budget allocation strategy to protect
the difference privacy of published data, which improved the
accuracy of statistical query and improved the availability of
published data. *ere is often a trade-off between privacy
and mining results. Xu and Jiang [36] described the inter-
action between users in the distributed classification sce-
nario, constructed a Bayes classifier, and proposed an
algorithm that allowed users to change their privacy budget;
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users can add noise to meet different privacy standards. Yin
and Xi [37] combined practicability with privacy to establish
a multi-level location information tree model and used the
index mechanism of differential privacy to noise the access
frequency of selected data.

3. Basic Concepts

Here, this paper will introduce some concepts of differential
privacy and related theories.

Definition 1 (Adjacent dataset) [1]. Given the dataset D and
D′ with the same attribute structure, when the number of
records difference is 1, the datasets D and D′ are called
adjacent datasets.

Definition 2 (Differential privacy) [1]. A random algorithm
A satisfies ε differential privacy, if and only if, for any two
sets D, D′ and any output S with only one tuple difference,
the following conditions are met:

Prob(A(D)) ∈ S
Prob A D′( )( ) ∈ S
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣≤ eε, (1)

where ε is a constant number of the user. Both D and D′
differ by at most one tuple; e is a natural logarithm constant.
When the parameter ε is small enough, it is difficult for an
adversary to distinguish whether the query function acts on
D or on D′ for the same output S.

Definition 3 (Global sensitivity) [1]. *ere is a function
q: D⟶ Rd; the global sensitivity Δq of function q is
expressed as follows:

Δq � max
D,D′

q(D) − q D′( ) 1, (2)

where D and D′ are adjacent datasets, d is the dimension of
function q, and ‖q(D) − q(D′)‖1 is the 1-order norm dis-
tance between q(D) and q(D′).

Definition 4 (Laplace mechanism) [1]. It adds independent
noise to the true answer and uses Lap(b) to represent the
noise from Laplace distribution with a scaling parameter b.

For a function q;D⟶ R over a dataset D, the mech-
anism A provides the ε-differential privacy:

A(D) � q(D) + Lap
Δq
ε

( ). (3)

For query q on the database D, the random algorithm
A returns q(D) + x to the user based on a query result
q(D) and adds the noise x to satisfy the Laplace distri-
bution. In the theory of probability and statistics, the
probability density function of variable x is expressed as
follows:

f(x | μ, b) �
1

2b
e− |(x− u/b)|. (4)

F(x) � ∫x
− ∞

f(μ)dμ �

1

2
e− ((x− μ)/b), x< μ,

1 −
1

2
e− ((x− μ)/b), x≥ μ,


�
1

2
+
1

2
sign(s − μ) 1 − e− (|x− μ|/b)( ).

(5)

*is is the Laplace distribution, μ is the position pa-
rameter, and b> 0 is the scale parameter, and x is the sample
value that satisfies the f(μ, b) Laplace distribution:
x∞f(μ, b), b � (Δq/ε); notice that the larger the ε, the
smaller the b. For the convenience of discussion, μ � 0; the
expectation and variance are μ and 2b2, respectively. *e
implementation of ε-differential privacy algorithm is rela-
tively simple. From Laplace distribution f(μ, b), the location
parameter μ does not affect the adversary, while the pa-
rameter b � (Δq/ε) directly affects the vulnerability of the
attack. When the parameter b is smaller, the sampling data x
is closer to the location parameter μ; on the contrary, when
the parameter b is large enough, the sampling data x is equal
to the average distribution on (− ∞,+∞), which is very
difficult for the adversary.

Definition 5 ((α, β) − useful) (see [1, 38]). A mechanism A
meets the (α, β) − useful; it has the formulafd6

Prob Ai(D) − Aj(D)
∣∣∣∣∣ ∣∣∣∣∣≤ a( )> 1 − β, (6)

where α and β are the accuracy parameters and Aj is the
private algorithm of Ai.

'eory 1 (Sequential composition theory [2]). For
A1, A2, . . . , Ak, they satisfyε1-difference privacy, ε2-differ-
ence privacy, and εk-differential privacy. When they are
applied to the same dataset, publishing results
t � < t1, t2, . . . , tk > meet the ∑k

i�1 εi-differential privacy,
t1 � A1(D), t2 � A2(D), . . . , tk � Ak(D).

'eory 2 (Parallel composition theory [2]). A
Prob(|Ai(D) − Aj(D)|≤ a)> 1 − β dataset D is divided into
k units, D1, D2, . . . , Dk, respectively, so that A1, A2, . . . , Ak
can satisfy ε1, ε2, . . . , εk differential privacy,
t � 〈t1, t2, . . . , tk〉 can satisfy maxi∈[1,2,...,k]εi-differential
privacy.

'eory 3 (Medium convexity theory [38]). Given that two
algorithms A1 and A2 satisfy ε-differential privacy, for any
probability p ∈ [0, 1], Ap is used as a mechanism. It uses the
algorithm A1 with the probability p and uses the A2 algo-
rithm with the probability 1 − p; then the A2 mechanism
satisfies the ε-differential privacy.
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4. Privacy Parameter Selection Based on
Fault Tolerance

*e query value of the adversary is generated based on the
real value; the distribution of noise directly affects the
probability of the adversary obtaining the real information.

4.1. PrivacyFault Tolerance. For some query functions, if the
noise x is distributed in [− L, L](L> 0), the adversary can

infer the true value f(x) with a large probability and then
analyze whether a specific record is in or not in the dataset.
In this paper, [− L, L] is called the fault tolerance interval,
and the corresponding fault tolerance is fatl(x).

According to the Laplace definition, the probability that
the random noise x lies in the fault tolerance F(x) can be
obtained by F(L) − F(− L). *us, the mathematical ex-
pression of the adversaryʼs fault tolerance fatl(x) is obtained
as follows:

fatl(x) � F(L) − F(− L) � ∫L
− L
f(μ)dμ �

1

2
exp

μ + L

b
( ) − exp

μ − L

b
( )( ), μ≤ − L≤ L,

1 −
1

2
exp

μ − L

b
( ) + exp

− L − μ

b
( )( ), − L≤ μ≤L,

1

2
exp

L − μ

b
( ) − exp

− L − μ

b
( )( ), − L≤L≤ μ.


(7)

*rough this mathematical theory analysis, we can select
appropriate privacy parameters ε and add noise that meets
the requirements of differential privacy protection, to pre-
vent the adversaryʼs probabilistic reasoning attack.

4.2. Analysis of Privacy Parameter. When the adversaryʼs
fault tolerance level satisfies the privacy probability
threshold, the appropriate scale parameter value can be
obtained. In this method, the privacy probability threshold
PTpr ∈ (0, 1) is determined by the privacy attribute, which
means that the adversaryʼs probabilistic inference attack will
not exceed the privacy protection threshold.

To meet the requirements of privacy protection, the scale
parameter b can meet the formula

fatl(x) � F(L) − F(− L) � ∫L
− L
f(μ)dμ≤PTpr. (8)

*e mathematical expression of fault tolerance fatl(x)
has many forms according to the different position pa-
rameters μ.

(1) When μ≤ − L≤ L, we can get the formula

fatl(x) �
1

2
exp

μ + L

b
( ) − exp

μ − L

b
( )( )≤ PTpr

⟶ exp
μ + L

b
( )≤ 2PTpr + exp

μ − L

b
( )

⟶ μ + L

b
≤ μ − L

b
+

2PTpr

exp(μ − L/b)

⟶ exp(μ − L/b)

b
≤
PTpr

L

⟶ μ − L

b
− ln b≤

PTpr

L

⟶ b2 − 1 − ln
PTpr

L
( )b + L − μ≥ 0.

(9)

(2) When b> 0, by solving the formula (8), we can get
the formula

b≥
1 − ln PTpr/L( ) + �������������������������

1 − ln PTpr/L( )( )2 − 4∗ (L − μ)
√

2
.

(10)

(3) When − L≤ μ≤L, we can get the formula
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fatl(x) � 1 −
1

2
exp

μ − a

b
( ) + exp

− a − μ

b
( )( )≤PTpr

⟶ exp
2μ

b
( ) + 1≥ 2 1 − PTpr( )exp μ + L

b
( )

⟶ exp
2μ

b
( ) μ + L

b
+ ln 2 1 − PTpr( )

⟶ 2μ

b
≥ ln(μ + L) − ln b +

b ln 2 1 − PTpr( )
μ + L

⟶ b(ln b) −
b2 ln 2 1 − PTpr( )

μ + L
− b ln(μ + L) + 2μ≥ 0

⟶ 1 −
ln 2 1 − PTpr( )

u + L
 b2 − [1 + ln(u + L)]b + 2u≥ 0.

(11)

(4) when b> 0, by solving the above inequality, we can
obtain the formulafd12

b≥
[1 + ln(μ + L)] +

�����������������������������������������
[1 + ln(μ + L)]2 − 8μ 1 − ln 2 1 − PTpr( )( )/μ + L( )[ ]√
2 1 − ln 2 1 − PTpr( )( )/μ + L( )[ ] . (12)

(5) When − L≤ L≤ μ, formula (8) can be rewritten as
follows:fd13

b2 − 1 + ln
L

PTpr

( )b + L + μ≥ 0. (13)

Budget parameter ε configuration can be expressed as
follows:

ε≤

2Δf
1 − ln PTpr/L( ) + ������������������������

1 − ln PTpr/L( )( )2 − 4(L − μ)
√( ), μ≤ − L≤L,

2Δf 1 − ln 2 1 − PTpr( )/u + L( )[ ]
1 + ln(μ + L) +

����������������������������������������
[1 + ln(μ + L)]2 − 8μ 1 − ln 2 1 − PTpr( )/u + L( )[ ]√( ), − L≤ μ≤L

2Δf
1 + ln L/PTpr( ) + ������������������������

1 + ln L/PTpr( )( )2 − 4(L + μ)
√( ), − L≤ L≤ μ.



(14)

From the above analysis, we can deduce the selection range
of privacy parameter ε under different location parameters, scale
parameters, and privacy probability thresholds.

In this paper, the value range of query authority is set as
[0, 1]. To configure smaller privacy protection budget pa-
rameters to users with low query rights, the privacy budget
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parameter ε′ � εPb is set. Based on this, the configuration
method of privacy parameter ε′ under different query
permissions can be obtained by the following formula:

ε′ � εPb ≤

2ΔfPb
1 − ln PTpr/L( ) + ������������������������

1 − ln PTpr/L( )( )2 − 4(L − μ)
√( ), μ≤ − L≤L,

2Δf 1 − ln 2 1 − PTpr( )( )/μ + L( )[ ]Pb
1 + ln(μ + L) +

�����������������������������������������
[1 + ln(μ + L)]2 − 8u 1 − ln 2 1 − PTpr( )( )/μ + L( )[ ]√( ), − L≤ μ≤L,

2ΔfPb
1 + ln L/PTpr( ) + ������������������������

1 + ln L/PTpr( )( )2 − 4(L + μ)
√( ), − L≤ L≤ μ.



(15)

*rough this privacy parameter configuration method,
the privacy protection probability threshold can be set, and
the appropriate privacy parameter ε can be selected
according to the query function and the fault tolerance, so as
to achieve the privacy protection and ensure the maximi-
zation of data utility.

5. Differential Privacy of Multiuser Query

In this section, we continue to study the location parameters
and scale parameters and propose a differential privacy
mechanism to solve the multi-user query.

Assume that the number of users is m, and the query
number of each user is k. *e query set is
Q � qij|i ∈ [m], j ∈ [k]{ }; the results for ith user are covered
with scale parameter b � (Δq/ε) and location parameter
u � ui. *e ui is randomly chosen from the interval
[μ − L, μ + L].

According to Definition 3, the global sensitivity is Δq, the
r̂ij � rij + xij is the noisy value of the query qij by the da-
tabase D, the rij is the real value of the qij, and xij is noise
with b � (kΔq/ε) and μ � μi. *e r̂ij′ � rij′ + xij′ is the noisy
value answer of the query qij by the database D′, xij′ is the
noisy value for qij by the databaseD′, and rij′ is the real value
for qij by the database D′.

'eory 4. For the database D and query set Q, the mech-
anism A is ε-differential privacy.

Proof. For the D, D′and the ith userʼs query qij, the location
parameter is μi, so it can get the formula

Prob r̂ij � A(D){ } � P rij + xij{ } � P xij � A(D) − rij{ }. (16)

xij meets the Laplace distribution; it can get the formula

Prob xij � A(D) − rij{ } � ε

2kΔq e
− ε A(D) − rij − μi

∣∣∣∣∣ ∣∣∣∣∣
kΔq

 .
(17)

For the adjacent database, it can get the formula

Prob r̂ij′ � A D′( ){ } � ε

kΔqe
− ε|A(D)̂rij′− μi|/kΔq( ). (18)

For the ith user’s query qij, it can get the formula

Prob xij{ }
Prob xij′{ } �

(ε/2kΔq)e − ε A(D) − rij − μi
∣∣∣∣∣ ∣∣∣∣∣/kΔq( )

(ε/2kΔq)e − ε A D′( ) − rij′ − μi∣∣∣∣∣ ∣∣∣∣∣/kΔq( )
� e

− ε A(D) − rij − μi

∣∣∣∣∣ ∣∣∣∣∣
kΔq −

− ε A D′( ) − rij′ − μi∣∣∣∣∣ ∣∣∣∣∣
kΔq

 
≤ e (ε/kΔq) r̂ij − r̂ij′

∣∣∣∣ ∣∣∣∣( )( )
� e(ε/k).

(19)
In Algorithm 1, there are some denotations. *e data-

base is denoted by D and its global sensitivity is ΔD. for the
query qij of the ith user, the privacy budget is (ε/k).
According to*eory1 of differential privacy for the query set
Q, this mechanism is ε differential privacy. □

6. Research of the Attack Model

In the actual application scenario, users often face attack
problems of different privacy. *is section is divided into
two parts: single attack and repeated attack.

6.1. Single Attack. Assume that there are only two potential
input sets in the worst case, this section discusses how to
guess the real value q(D) according to the q(D) + x. An
adversary puts forward a query question q against the attack
object. *e database owner gets the result q(D) according to
the query question and returns it to the adversary after
adding the noise x. *e adversary needs to make a judgment
by the result q(D) + x; an attack object is not in the col-
lection. Each noise x satisfies the Laplace distribution, so it is
impossible for the adversary to accurately guess this x.
Considering the characteristics of query functions, the ad-
versary can only guess that x falls in a certain range. To
describe the above phenomenon, the probability of x in
interval [μ − L, μ + L] decreases with the increase of b, which
can reflect the difficulty of the adversary.
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Lemma 1. If the Laplace distribution is used to add noise x to
q(D), then the probability of q(D) + x in the interval
(− ∞, Q(D) + μ + L) is expressed as 1 − (1/2)e(− Lε/Δq).

Proof. Based on Definition 3, the probability of q(D) + x
falling in the interval (− ∞, q(D) + μ + L) is equal to the
probability of x in the interval (− ∞, μ + L). *erefore, from
the Laplace function, according to b � (Δq/ε), the proba-
bility of x in the interval (− ∞, μ + L) is expressed as
F(μ + L) � (1/2) + (1/2)(1 − e(− L/b)) � 1 − (1/2)(− L/b). □

Lemma 2. 'e probability of an adversaryʼs success in
Algorithm 2 is 1 − (e(− ε/2)/2).

Proof. Assume that q(D) � m or q(D) � m + 1; there are
two intervals (− ∞, m + 0.5) and [m + 0.5,+∞) for
q(D) + x. From *eory1, if q(D) � m, the probability of
q(D) + x in the (− ∞, m + 0.5) is 1 − (e(− ε/2)/2). If
q(D) � m + 1, the probability of q(D) + x in the
[m + 0.5,+∞) is the same.

*erefore, according to q(D) + x, the probability of
success is 1 − (e(− ε/2)/2); if q(D) + x falls into the (− ∞, m +

0.5) interval, then q(D) � m; otherwise, q(D) � m + 1.
Note: q(D) � m means the adversary is not in the original
data; q(D) � m + 1 means that the adversary is in the
original data. For a common query, it can deduce the
probability 1 − (1/2)e(− Lε/Δq).

With Lemma 2 and Algorithm 2, when the adversaryʼs
success probability p≤ (1 − (1/2)e(− Lε/Δq)) is solved, it can
obtain the upper bound of the ε that meets the formulafd20

ε≤ ln 2(1 − p)Δq
L

. (20)

*e upper bound of the parameter ε in formula (20) is
independent of the dataset, which is related to the query
function (Δq, L) and the adversaryʼs success probability
p. □

6.2. Repeated Attack. Although differential privacy is the
latest technology to protect personal privacy, it has an ob-
vious defect in the Laplace mechanism. If the adversary can

perform the same query function infinitely, he can infer the
real query result by observing which point the query results
concentrate on.*erefore, it is necessary to study the limit of
the number of query times.

According to the above sections, an adversary can obtain
q(D) + x1, q(D) + x2, . . . , q(D) + xn results afterN times of
attacks.

Lemma 3. If the adversary attacks N times and adds noise
x1, x2, . . . , xN to q(D) by Laplace distribution, the proba-
bility of n times q(D) + xi in (−∞, q(D) + μ + L) is expressed
as follows:

CnN 1 −
1

2
e(− Lε/Δq)( )n 1

2
e− (Lε/Δq)( )N− n. (21)

Proof. According to Definition 2, it can be known in a query
that the probability of q(D) + x in the (−∞, q(D) + μ + L) is
expressed as follows:

F(μ + L) � 1 −
1

2
e(− Lε/Δq). (22)

If there are n times in the interval (−∞, q(D) + μ + L),
from the binomial distribution function, the probability of n
in the N times of repeated attacks is
CnN(1 − (1/2)e

(− Lε/Δq))n((1/2)e− (Lε/Δq))N− n.
In Algorithm 3, Δq � 1 is the normal query, μ � 0; the

half-length of the fault-tolerant interval L � 0.5. After

Require: the number of user is m
*e number of query for each user is k
*e query set is Q
*e interval is [μ − L, μ + L]
*e database D and its global sensitivity is Δq
*e privacy budget is ε
Ensure: the set of answer r̂ij{ } for queries
(1) For each user i ∈ [n] do
(2) Choose μi from [μ − L, μ + L] for ith user
(3) Set the ith user’s noise distribution lap((kΔq/ε), μi)
(4) For each query qij ∈ Q do
(5) *e answer r̂ij � qij(D) + lap((kΔq/ε), μi)
(6) End

ALGORITHM 1: Multi-user query.

Input: A(q(D)) � x + q(D)
Output present or absence
/∗ Laplace distribution f(μ, b), and q(D) ∈ m,m + 1{ }

(1) y � x + q(D)
(2) y ∈ [m + 0.5,+∞]
(3) Return present
(4) Else
(5) Return absence

ALGORITHM 2: Single attack query.
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making N times of attack, the adversary can judge whether
the attack object is in the result set. □

Lemma 4. According to Algorithm 3, the adversary performs
N(N � 2n + 1) times of query, and the probability of success
is expressed as follows:

∑n+1
i�1

Cn+12n+1 1 −
1

2
e(− ε/2)( )n 1

2
e− (ε/2)( )N+1− i. (23)

Proof. Let N � n + 1; assume that q(D) � y or
q(D) � y + 1. Considering two intervals (− ∞, y + 0.5] and
(y + 0.5,+∞], a times falls into [y + 0.5,+∞) and b times
falls into (− ∞, y + 0.5] afterN times of attacks. According to
Lemma 4, if q(D) � y + 1, the probability of a> b, a � (n +
1, n + 2, . . . , 2n + 1) is ∑n+1

i�1 C
n+1
2n+1(1 − (1/2)e

(− ε/2))n+i

((1/2)e− (ε/2))N+1− i.
If q(D) � y, then a< b; the probability of b � (n + 1, n +

2, . . . , 2n + 1) is ∑n+1
i�1 C

n+1
2n+1(1 − (1/2)e

(− ε/2))n+i

((1/2)e− (ε/2))N+1− i.
*erefore, the probability of a successful attack is

expressed as ∑n+1i�1 C
n+1
2n+1(1 − (1/2)(e

− ε/2))n+i

((1/2)e− (ε/2))n+1− i.
q(D) � y indicates that the attack object is not in the

original dataset, and q(D) � y + 1 indicates that the attack
object is in the original dataset. □

7. Experiment Simulation Analysis

*e experimental environment: Intel core i7-7500, CPU
2.9GHz, 8GB memory, Windows 10 operating system,
MATLAB 2015b. *e experiment uses UCI machine
learning dataset, which contains 48842 records of US census
data with 14 attributes. Here, we select five attributes in
Table 1: education, marital status, occupancy, native
country, and work class.

7.1. Fault-Tolerant Experiment. To express the problem
more intuitively, according to the configuration method of
privacy parameter in Section 4, the parameter ε is analyzed
qualitatively and quantitatively.

In Figure 1, PTpr � 0.7, when the location parameter μ is
outside the fault tolerance interval (μ≤ − L≤L or
− L≤ L≤ μ), the adversaryʼs fault tolerance on the fault in-
terval [− L, L] is low; the adversary cannot effectively obtain
the real information in the dataset. *is is because the lo-
cation parameter is large, the data distortion is serious, and
the data availability is low.

When the location parameter μ is in − L≤ μ≤ L, the
adversaryʼs fault tolerance is higher, which has reference
significance for privacy protection analysis. According to
Figure 1, this paper analyzes the impact of different interval
lengths on the adversaryʼs fault tolerance when the location
parameter μ is within the fault tolerance interval.

In Figure 2, the configuration of ε is related to the lo-
cation parameter μ and fault tolerance interval [− L, L] of
noise distribution. Under the same fault tolerance interval,
when the position parameter ε is taken as 0, the adversaryʼs

fault tolerance is larger. Under the same location parameters,
the larger the fault tolerance interval, the greater the fault
tolerance level. *e maximum privacy parameter value can
be obtained without violating the privacy protection
probability threshold PTpr.

In Figure 3, the smaller the query authority is, the smaller
the upper limit of privacy protection budget parameters is.
By limiting the upper limit of privacy protection budget
parameters, different values can be configured for query
users with different query permission ranges.

Input A(q(D)) � X + q(D)
Output present or absence
/∗ Laplace(μ, b) distribution, and q(D) ∈ y, y + 1{ } ∗/
(1) a � 0, b � 0, i � 1
(2) While i<N
(3) Begin
(4) m � x + q(D)
(5) If m ∈ [y + 0.5,+∞]
(6) a � a + 1
(7) Else
(8) b � b + 1
(9) i � i + 1
(10) End
(11) If a> b
(12) Return present
(13) Else
(14) Return absence

ALGORITHM 3: Repeated attack algorithm (RAA).

Table 1: Attributes of dataset.

Attribute KL-divergence Standard deviation

Education 0.010183 0.013650
Marital status 0.016147 0.019767
Occupation 0.001250 0.001680
Native country 0.121652 0.068400
Work class 0.088199 0.088485
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Figure 1: Fault tolerance values of adversary under different
parameters.
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7.2. Query Success Rate Experiment. ε is an important factor
to measure the intensity of privacy protection. Its different
allocation schemes have a great impact on the error of the
privacy protection algorithm. Next, we give the query
probability in different conditions to verify the role of our
parameters.

In Figure 4, in the interval [− ∞, μ + L], with the in-
creasing of the value of ε, the probability of q(D) + x falling
in the given interval also increases.

Figure 5 shows the probability curve of different values of
the privacy parameter ε in the interval [μ − L, μ + L]. It can
be seen from the figure that, in the range of [μ − L, μ + L], the
probability of q(D) + x falling into the interval [μ − L, μ + L]
will decrease with the increase of the value of ε; that is, the
probability of q(D) + x falling in the interval [μ − L, μ + L]
will decrease with the increase of ε.

Figure 6 shows the probability curve image of the noise
value falling in the interval [− ∞, μ − L] with different pri-
vacy parameters. As can be seen from Figure 6, with the
increase of the privacy parameter ε, the probability of q(D) +
x falling into a given interval becomes smaller.

In Figure 7, under the same privacy budget ε, the
probability of attack success increases with the number of
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Figure 4: ε in interval [− ∞, μ + L] and attack success probability.
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Figure 5: ε in interval [μ − L, μ + L] and attack success probability.

0 1 2 3 4 5 6 7 8 9 10

Su
cc

es
s 

p
ro

b
ab

il
it

y 

0

0.1

0.2

0.3

0.4

0.5

∈

Figure 6: ε in interval [− ∞, μ − L] and attack success probability.
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Figure 2: Fault tolerance values of adversary under different
intervals.
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Figure 3: Fault tolerance values under different query conditions.
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attacks; with the increase of ε, the success rate reaches 1;
furthermore, the selection range of parameters can be de-
duced by formula (23).

8. Conclusion

*is paper studies the selection of the parameter ε in several
cases of differential privacy. Firstly, this paper proposes a
differential privacy parameter configuration method based
on fault tolerance interval and analyzes the adversaryʼs fault
tolerance under different noise distribution location pa-
rameters and scale parameters. Secondly, this paper pro-
poses an algorithm to optimize the application scenarios of
multi-query and proposes a differential privacy mechanism
to solve the multi-user query scenarios. *irdly, this paper
proposes the differential privacy parameter selection
methods of several attack models and calculates the upper
bound of the parameter ε based on the sensitivity Δq, the
length of the fault tolerance interval L, and the success
probability p. Finally, we have carried out a variety of
simulation experiments to verify our research scheme and
given the corresponding analysis results.

*e research of ε is limited not only to choosing a proper
privacy parameter value in the Laplace mechanism but also
to choosing a reasonable ε in exponential mechanism and
calculating an ideal parameter value by the method of
probability and statistics.
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