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Abstract

Single Nucleotide Polymorphisms (SNPs) found in Genome-Wide Association Study

(GWAS) mainly influence the susceptibility of complex diseases, but they still could not

comprehensively explain the relationships between mutations and diseases. Interactions

between SNPs are considered so important for deeply understanding of those relationships

that several strategies have been proposed to explore such interactions. However, part of

those methods perform poorly when marginal effects of disease loci are weak or absent,

others may lack of considering high-order SNPs interactions, few methods have achieved

the requirements in both performance and accuracy. Considering the above reasons, not

only low-order, but also high-order SNP interactions as well as main-effect SNPs, should be

taken into account in detection methods under an acceptable computational complexity. In

this paper, a new pairwise (or low-order) interaction detection method IG (Interaction Gain)

is introduced, in which disease models are not required and parallel computing is utilized.

Furthermore, high-order SNP interactions were proposed to be detected by finding closely

connected function modules of the network constructed from IG detection results. Tested

by a wide range of simulated datasets and four WTCCC real datasets, the proposed meth-

ods accurately detected both low-order and high-order SNP interactions as well as disease-

associated main-effect SNPS and it surpasses all competitors in performances. The

research will advance complex diseases research by providing more reliable

SNP interactions.

Introduction

Detecting disease-associated SNPs is of great importance, because SNPs can affect diseases pro-

gression, how humans respond to drugs, vaccines, and other agents [1]. It is still a challenge to

largely identify SNPs for any disease, one of the reasons is traditional single-loci test methods
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in GWAS can reveal only a few diseases causing SNPs, but more important reason is, SNPs do

not work individually in complex diseases, rather, they cooperate with other SNPs to manifest

a disease condition, which has been found in Osteoporosis [2] and breast cancer [3,4]. A recent

report by Gerke et al. [5] also suggests that SNP interactions may carry more information

about the phenotype than those observed from individual SNPs alone. Researchers are now fo-

cusing on detecting such SNP groups that are strongly associated with the disease phenotype.

However, previous methods could not efficiently capture all those SNP interactions, especially

when marginal effects of disease loci are weak or absent. Meanwhile, there are more than

10 million SNPs in the human genome, traditional two-locus based association studies are fac-

ing crucial computational burden, even worse of three or high-order-locus studies.

A number of methods have been proposed to detect pairwise interactions between SNPs, in-

cluding Exhaustive algorithms (Nelson et al. [6]), Multifactor Dimensionality Reduction meth-

ods (e.g. MDR [7–10]), regression methods (e.g. Lasso Penalized Logistic Regression [11–13]),

heuristic methods (Carlborg et al. [14], SNPHarvester [15]), mutual information method (e.g.

SNPsyn [16]), as well as many other methods [6,17–20]. Exhaustive algorithms can find out all

significant SNP interactions by enumerating out all possible SNP combinations, but have prob-

lems of long running time and poor scalability in dealing with large SNP datasets. The MDR

method [7] is inspired by the combinatorial partitioning method, which can effectively reduce

the genotype predictors from n dimensions to one dimension. However, its amount of calcula-

tion is excessive when dealing with more than 10 SNPs [21]. Regression methods have been

pointed out as appropriate methods to estimate the strength of association between a predictor

and disease [13]. However, they have limited performance in modeling high-order interactions

[12]. To improve efficiency, two-stage approaches were used as a common heuristic strategy

[15], that is, a subset of potential interacting SNPs is selected as candidate SNPs in the first

stage, then analyzing interactions among them in the second stage. Despite the high speed effi-

ciency such methods achieved, SNPs in low marginal effects are likely to be discarded in stage

one. So, heuristic methods cannot guarantee to find the optimal solution. Other methods have

low detection accuracy or performance when high-order SNP interactions are taken into con-

sideration. In short, there are three major drawbacks of the methods mentioned above. Firstly,

they were designed only for pairwise interactions detection, high-order interactions were not

enough taken part into consideration according to their importance. Secondly, with the

amount of data increasing, they dropped quickly in performance and accuracy. Thirdly, they

all performed poorly especially when marginal effects of disease loci were weak or absent.

SNPsyn [16] implemented an information theoretic approach for synergistic interaction analy-

sis, which did not require users to specify which gene interaction models to test. It can use one

or more GPUs to speed-up processing significantly. It can not only detect SNP interactions but

also allow users to identify "main-effect" SNPs, i.e., SNPs that by themselves carry the most in-

formation of the related disease. However, SNPsyn does not take linkage disequilibrium be-

tween SNPs into consideration. There is an urgent need to develop new methods, with an

acceptable computational complexity, for pairwise especially high-order SNP interactions de-

tection. Furthermore, main-effect SNPs need to be measured from a new point of view.

In this study, we firstly propose a pairwise (or low-order) SNP interaction detection method

IG (Interaction Gain), which is an extension of information gain in information theoretic

[22,23]. Low-order SNP interactions will be parallel detected with IG from the data, by doing

this, IG can scale to large datasets. Interaction gain expresses the amount of information bound

up in a set of variables, beyond that which is presented in any subset of those variables. Con-

trary to other approaches, IG does not require users to specify which disease models to test in

SNP interaction analysis, instead, it discovers them from data itself. Interaction gain of any

pair of SNPs are calculated in parallel rather than only calculated heuristically. So, IG performs
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well even when marginal effects of disease loci are weak or absent. Instead of enumerating out

all possible SNP combinations, high-order SNP interactions are efficiently detected by finding

functional modules of SNP-SNP interaction network by using network clustering algorithms.

In fact, SNP-SNP interaction network has similar topology structure as complex networks. By

finding functional modules, we can achieve much higher speed while keeping high accuracy.

With the SNP-SNP interaction network, finding main effective SNPs can be done by finding

key nodes, which are measured by their degree and betweenness centrality. By using a number

of simulated datasets and four WTCCC [24] real datasets, the performance of proposed meth-

ods were evaluated. Compared with previous methods, the proposed methods accurately de-

tected out almost all forms of SNP interactions and surpassed all competitors in performances.

The research will advance the complex diseases study by providing more reliable

SNP interactions.

Materials and Methods

WTCCC datasets

SNP interactions are scanned on the publicly available dataset of Hypertension (The case indi-

viduals including 2000 patients in the British population, The control individuals came from

two sources: 1,500 individuals from the 1958 British Birth Cohort (58C) and 1,500 individuals

selected from blood donors recruited as part of this project (UK Blood Services (UKBS) con-

trols). Both cases and controls are genotyped using the Affymetrix GeneChip 500k Mapping

Array Set) from the Wellcome Trust Case Control Consortium (WTCCC) [24] which contains

511104 SNPs in all. Other WTCCC datasets, including bipolar disorder (BD), coronary artery

disease (CAD), and type 2 diabetes (T2D), are also used in our experiments. Details of those

datasets are presented in Table 1. Compared with SNPs from two different chromosomes,

SNPs on the same chromosome tend to have much higher IG values. Besides, when SNPs are

located on the same chromosome, if two SNPs have very high IG value then the distance be-

tween them is certainly very short (shown in Fig. 1). In other words, SNPs prone to interact

with their physically close SNPs. However, when two SNPs are close to each other, a higher IG

value may be obtained due to LD (linkage disequilibrium) existed between them. To deal with

this problem, LD values between any SNP pairs of the SNP-SNP interaction network are calcu-

lated using SNAP (http://www.broadinstitute.org/mpg/snap/ldsearchpw.php) [25]. All the

SNP pairs whose r2 > 0.8 are discarded (Unless specified otherwise, we set r2 = 0.8, which

works well in practice.). Considering the relationships between IG value and their base pair dis-

tance, four forms of IG values were calculated. As shown in Fig. 1, very high interaction gain

values can be achieved only when two SNPs are physically close. So, only using SNPs located

on the same chromosome to conduct our experiment will ensure accuracy of the final results.

Simulated datasets

Four kinds of epistatic models [20] are used to generate simulated datasets, their odds tables

are given in Table 2. Model 1 is a multiplicative model. Model 2 is an epistatic model which has

been used to describe handedness and the color of swine. Model 3 is a classical epistasis model.

Model 4 is the well-known XOR model. In simulation, once the disease prevalence value P(D)

and the genetic heritability value h2 are specified, the parameters δ and t can be numerically

solved (δ represents the impact value of the genotype at SNP location when there is no epistasis

between SNPs; t represents the change of impact value when there are interactions between

SNPs.). More specifically, we set h2 = 0.03 for model 1 and h2 = 0.02 for models 2, 3, 4. P(D)is

set to 0.1 for all the models as in [15,20]. Genotype data is generated under the condition of the

Hardy-Weinberg Equilibrium. The minor allele frequency (MAFs) of disease-associated SNPs
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is set to 0.1, 0.2, and 0.4. The MAFs of unassociated SNPs are generated uniformly between

[0.05,0.5]. 100 datasets are simulated under each parameter setting of each disease model. Each

dataset contains 1000 SNPs (x1 x2 . . . x1000, each has three values 0, 1, 2. The true interaction

is between x1 and x1000). To take sample size into consideration, 1600 samples with 800 cases

and 800 controls are simulated respectively.

Table 1. Details of real data sets got from WTCCC.

Data Sets SNP Case/Control Chromosome

BD (bipolar disorder) 6865 1998/3000 21

HT (hypertension) 6207 2000/3000 22

CAD (coronary artery disease) 6114 1988/3000 19

T2D (type 2 diabetes) 4847 1999/3000 14

doi:10.1371/journal.pone.0119146.t001

Fig 1. Relationship between interaction gain value and SNP base pair distance. (a) Interaction Gain value is calculated using SNPs all located in the
area between genes. (b) Interaction Gain value is calculated using SNPs all located on the same gene. (c) Interaction Gain value is calculated using SNPs
one locates on a gene and the other locates in the area between genes. (d) Interaction Gain value is calculated using SNPs all located on genes but on two
different genes. We set α = 0.1 during all the computation.

doi:10.1371/journal.pone.0119146.g001
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IG (Interaction Gain)

Interaction gain is defined as the difference between the actual decrease in entropy achieved by

the joint attribute (X; Y) and the expected decrease in entropy with the assumption of indepen-

dence between attributes X and Y. The higher the value, the more information is gained by

joining the attributes together in comparison with the information gained from

single attributes.

a. Definitions and notations. Matrix XN×M represents the cohorts of N individuals (in-

cluding both cases and controls) typed atM polymorphic sites, where each entry {0,1,2}in the

matrix represents the number of minor alleles at a SNP site, rather than the presence or absence

of a minor allele. Xi,v represents the genotype carried by individual i at variant site v. X⋅v (0) = |

{i | Xi,v = 0}|, X
⋅v (1) = |{i | Xi,v = 1}| and X

⋅v (2) = |{i | Xi,v = 2}| represent the number of individ-

uals carrying genotype 0, 1, 2 respectively at the variant site v. Therefore, Pv (0) = X
⋅v (0) / N is

the corresponding 0-frequency of v, while Pv (1) and Pv(2) denote the 1-frequency and 2-fre-

quency of v respectively. Considering the case of two SNPs v1 and v2 with, for example, geno-

types AA (0), AC (1), CC (2) and TT (0), TG (1), GG (2) respectively. Consequently, there are 9

genotype combinations between v1 and v2 defined as follows:

Xi⋅v1v2 = 00 if Xi⋅v1
= AA and Xi⋅v2

= TT of individual i at locus v1 and v2

Xi⋅v1v2 = 01 if Xi⋅v1
= AA and Xi⋅v2

= TG of individual i at locus v1 and v2

Xi⋅v1v2 = 02 if Xi⋅v1
= AA and Xi⋅v2

= GG of individual i at locus v1 and v2

Xi⋅v1v2 = 10 if Xi⋅v1
= AC and Xi⋅v2

= TT of individual i at locus v1 and v2

Xi⋅v1v2 = 11 if Xi⋅v1
= AC and Xi⋅v2

= TG of individual i at locus v1 and v2

Xi⋅v1v2 = 12 if Xi⋅v1
= AC and Xi⋅v2

= GG of individual i at locus v1 and v2

Xi⋅v1v2 = 20 if Xi⋅v1
= CC and Xi⋅v2

= TT of individual i at locus v1 and v2

Xi⋅v1v2 = 21 if Xi⋅v1
= CC and Xi⋅v2

= TG of individual i at locus v1 and v2

Xi⋅v1v2 = 22 if Xi⋅v1
= CC and Xi⋅v2

= GG of individual i at locus v1 and v2

Similarly as in single loci situation, X
⋅v1v2 (00) = |{i | Xi⋅v1v2 = 00}| represents the number of

individuals that carry genotype 0 at v1 and genotype 0 at v2 (and analogously for X⋅v1v2 (01),. . .,

X
⋅v1v2 (22)). Pv1v2 (00) = X

⋅v1v2 (00) / N is the corresponding 00-frequency of v1v2 (and P⋅v1v2

(01),. . ., P
⋅v1v2 (22) are calculated correspondingly).

Table 2. Four models used for simulated data generation.

Model 1 bb Bb BB Model 2 bb Bb BB

aa δ δ δ aa δ δ (1+t) δ (1+t)

Aa δ δ (1+t) δ (1+t)2 Aa δ (1+t) δ δ

AA δ δ (1+t)2 δ (1+t)4 AA δ (1+t) δ δ

Model 3 bb Bb BB Model 4 bb Bb BB

aa δ δ δ (1+t) aa δ δ (1+t) δ

Aa δ δ (1+t) δ Aa δ (1+t) δ δ (1+t)

AA δ (1+t) δ δ AA δ δ (1+t) δ

δ represents the impact value of the genotype at SNP location when there is no epistasis between SNPs; t represents the change of impact value when

there are interactions between SNPs.

doi:10.1371/journal.pone.0119146.t002
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The most fundamental concept of information theory is the entropy. The entropy [26] of a

random variable X is defined by Eqn. (1):

HðXÞ ¼ �
X

x

pðxÞlog pðxÞ ð1Þ

Where, p(x) is the marginal probability distribution function of variable X.

For two random variables X and Y, the joint entropy is defined by Eqn. (2):

HðX;YÞ ¼ �
X

x;y

pðx; yÞlog pðx; yÞ ð2Þ

Where, p(x, y) is the joint probability distribution function of random variables X and Y.

The mutual information or information gain of variables X and Y is defined by Eqn. (3):

IðX;YÞ ¼
X

x;y

pðx; yÞlog
pðx; yÞ

pðxÞpðyÞ
ð3Þ

The conditional mutual information of X and Y given Z is defined by Eqn. (4):

IðX;Y jZÞ ¼
X

xyz

pðx; y; zÞlog
pðx; yjzÞ

pðxjzÞpðyjzÞ
ð4Þ

Where, p(x,y | z) is the conditional joint probability distribution function of variables X, Y,

Z; p(x | z) and p(y | z)are conditional probability distribution functions of variables X, Y given

Z respectively.

Using interaction gain as the metric to evaluate whether two SNPs are associated with the

phenotype arises as a natural option. Two SNPs (X, Y) are associated with the phenotype P

with a user-defined threshold α (Unless specified otherwise, we set α = 0.1, which works well in

practice. The role of α is further discussed in parameter discussion section) if and only if I(X;

Y; P)>α. I is the interaction gain and expresses the amount of information bound up in a set of

variables, beyond that which is present in any subset of those variables, I(X; Y; P) = I(X; Y|P)-I

(X; Y). Combined with Equation (3) and Equation (4), we can get Equation (5). If the informa-

tion that SNP X provides about phenotype P is higher if we know SNP Y than it is if we do not

know SNP Y, then this additional information is the interaction gain between the SNP X and Y

with respect to phenotype P. The interaction gain of two SNPs i.e. SNP1, SNP2 with respect to

phenotype P is defined in Eqn. (5):

IðSNP1; SNP2;PÞ ¼
X

x;y;c

pðx; y; cÞlog
pðx; y; cÞpðcÞ

pðx; cÞpðy; cÞ
�
X

x;y

pðx; yÞlog
pðx; yÞ

pðxÞpðyÞ
ð5Þ

Where, x takes the values of 0, 1 or 2 (0 for homozygous dominant;1 for heterozygous; 2 for

homozygous recessive); y also takes values from {0,1,2}; c takes values of 0,1 (0 for case; 1 for

control).

b. Mapping SNPs on gene or between gene. The number of SNP combinations grows ex-

ponentially with the increase of the order of interaction (i.e. number of SNPs in combination)

and the amount of SNPs in datasets. For example, given 6207 SNPs on chromosome 22, there
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are 19260321 pairwise SNP-SNP interactions, let alone higher-order interactions. Heuristic,

non-exhaustive search requires shorter running time, but cannot guarantee to detect all signifi-

cant interaction pairs. In this paper, we did not devise a new fast computing algorithm; rather,

we calculated all interaction gain values in parallel to accelerate our computations. More specif-

ically, SNPs locate on the same chromosome were firstly divided into two groups according to

their chromosome bases location relationship with genes on that chromosome. As a result, of

the 6207 SNPs of HT on chromosome 22, 2869 SNPs were mapped on 330 genes. Others locat-

ed in the intergenic regions. The mapping results of other datasets are presented in Table 3.

c. Workflow of IG. IG works in the following steps: Firstly, SNPs locate on the same chro-

mosome are divided into two groups by mapping them on genes or between genes. Secondly,

five forms of SNP-SNP interactions (SNPs within a certain gene, SNPs locate on two different

genes, SNPs all locate between genes, SNPs locate on one gene with SNPs locate between genes,

SNPs locate on one chromosome with SNPs on another.) are tested in parallel using Eqn. (5).

Thirdly, LD values of all the SNP pairs are calculated using SNAP (http://www.broadinstitute.

org/mpg/snap/ldsearchpw.php) [25]. All the SNP pairs whose r2 bigger than 0.8 are discarded.

Finally, potential SNP-SNP interactions are selected according to threshold value α and are

represented into a SNP-SNP interaction network. By executing those steps, IG can achieve

high speed-up while maintaining high accuracy.

SNP interaction detection

a. Network construction. SNP pairs with interaction gain values bigger than α will be se-

lected to construct the SNP-SNP interaction network, otherwise, they are discarded. As a result,

2676 and 2789 pairs of SNP-SNP interactions were selected respectively from the HT and T2D

detection results. The degree and shortest path length distribution of the SNP-SNP interaction

network are depicted in Fig. 2 and Fig. 3 respectively.

As shown in Fig. 2, the node degree follows the power law distribution just as it in PPI net-

works. Of the 1649 SNPs in the network, only few of them have very high degrees. The average

degree is about 3.4. However, the path length distribution has some differences compared with

those in other complex networks. The path length distribution of SNP-SNP interaction net-

work is asymmetric and the common length is 2, which is 4 in PPI networks (Fig. 4). In fact,

pairwise interactions are most common in SNP-SNP interaction network, but at the same time

few high order interactions also exist. Besides, in PPI networks path length usually shorter than

9, while in SNP-SNP interaction networks this value can reach to 11.

b. SNP functional module detection. High-order SNP interactions are detected by find-

ing functional modules rather than by enumerating out all possible SNP combinations. Ac-

cording to previous analysis, SNP-SNP interaction network has some similar properties as

complex networks [27]. One important characteristic of complex network is that it contains

function modules (complexes) within the network. Predicting function modules from complex

networks has long been studied and methods mainly include the following three categories: (1)

Methods based on seed node expansion [28]. Such methods predict complexes in two stages,

firstly, finding out seed nodes; secondly, expanding those seed nodes. Different strategies used

in seed node selection and expansion affect performances of those methods significantly. (2)

Methods based on hierarchical clustering [29,30]. Such methods represent the entire network

in a tree like structure and find functional modules by cutting the whole tree at different levels.

(3) Heuristic methods [31]. This kind of methods usually have better performance due to intro-

ducing additional information about nodes besides the topology of complex networks. Since

SNPs tend to interact with SNPs who are close to them. So, methods based on seed node expan-

sion strategies are best at detecting SNP functional modules in SNP-SNP interaction networks.
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SNP tends to interact with its physically close neighbor SNPs and form functional modules.

Similar with protein functional module in PPI networks, we define SNP functional module as a

group of closely connected SNPs that are together affecting the occurrence and development of

disease. MCODE [32] is the earliest protein complex detection method based on seed node

Table 3. Mapping results of all the SNPs researched.

Data sets Chromosome All On Gene Between Gene Gene

HT 22 6207 2869 3338 330

BD 21 6865 3089 3776 280

CAD 19 6114 3507 2607 1028

T2D 14 4847 1804 3043 192

All: the number of SNPs considered; On Gene: the number of SNPs mapped on genes; Between Gene: the number of SNPs mapped between genes;

Gene: the number of genes mapped by SNPs

doi:10.1371/journal.pone.0119146.t003

Fig 2. Node degree distribution of SNP-SNP interaction work constructed with α = 0.1.Degree is calculated by counting the edges of a SNP in
the network.

doi:10.1371/journal.pone.0119146.g002
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expansion strategy. It can easily find out known functional modules in the PPI network. Conse-

quently, by applying MCODE to the SNP-SNP interaction network such modules can be easily

found. In this way, computing burden can be greatly reduced while ensuring higher precision.

Besides, high-order SNP interactions between or outside SNP functional modules are also con-

sidered, however, few of them can be clustered together, due to their low interaction

gain values.

Main effective SNPs detection

In genome-wide single-locus statistic tests, examining each SNP independently for association

to the phenotype, statistical tests are different for quantitative traits versus case/control studies.

Quantitative traits are generally analyzed by analysis of Variance (ANOVA), which is similar

to linear regression. Dichotomous case/control traits are generally analyzed using either con-

tingency table methods or logistic regression [33]. Recently, random forest method [18] which

can give variable importance measure is preferred in single-loci association studies. Different

to all the methods mentioned above, in this paper, SNP importance is measured by its degree

Fig 3. Shortest path length distribution of SNP-SNP interaction network constructed with α = 0.1. Shortest path means the shortest path between any
two SNPs among all the possible paths. Frequency means howmany SNP pairs have a certain shortest path length.

doi:10.1371/journal.pone.0119146.g003
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and betweenness centrality. SNPs with higher degree and betweenness centrality are more like-

ly to be associated with the emergence and development of the disease than those with low

such values.

Statistical validation

When selecting potential SNP pairs, only those with higher IG values will be selected. The nat-

ural question is how big the probability is when this large score occurs by chance. The probabil-

ity is estimated by defining a null hypothesis which represents, essentially, the scenario that we

are not interested in. It is done by shuffling the bases of SNPs on each chromosome. After this

shuffling procedure, high-scoring occurrences of the SNP pairs will only appear due to random

chance. Then recalculate their IG values. We define our p-value[34] as the probability that a

score at least as large as the observed score would occur in data drawn according to the null hy-

pothesis (p-value is set to 0.05 just as researchers usually do.). Unfortunately, as we increase

the number of hypotheses in the test, we also increase the likelihood of witnessing a rare event,

and therefore, the chance to reject the null hypotheses when it's true (type I error). Amultiple

Fig 4. Shortest path length distribution of PPI network. Shortest path means the shortest path between any two proteins among all the possible paths.
Frequency means howmany protein pairs have a certain shortest path length.

doi:10.1371/journal.pone.0119146.g004

Research on SNP Interaction Detection from Network Perspective

PLOS ONE | DOI:10.1371/journal.pone.0119146 March 12, 2015 10 / 19



testing correction procedure is needed to adjust our statistical confidence measures based on

the number of tests performed. In this paper, Bonferroni correction is used for multiple testing

correction procedure. In short, if you are using a significant threshold of β (in this paper β =

0.05), but you perform n separate tests, then the Bonferroni correction deems a score signifi-

cant only if the corresponding p-value is�β / n. The IG values, p-value and corresponding

p-values after Bonferroni correction as well as FDR (false discovery rate) on type 2 diabetes

(T2D) is presented in Table 4.

Results

Results on simulated datasets

The performance of IG (Interaction Gain) is compared with that of BOOST [20] and PLINK

[19] with simulated datasets. The power is defined as the ratio of the number of successful

identifications and the number of datasets. Results are shown in Fig. 5. Under each parameter

setting, 100 datasets are generated, each has 800 cases and 800 controls. We set the interaction

gain threshold value α = 0.1 (According to our result, interaction gain between two SNPs can

be as small as 0, which means two SNPs are independent, and can be as large as 1, which

means two SNPs have strong interaction. But the vast majority of interaction gains fell between

0 and 0.1. See Table 4 for more information), parameters of the other two methods use default

values. As shown in Fig. 5, within the 300 datasets generated under model 1, IG outperforms

the other two methods, and when MAF = 0.1, IG reached the power of 0.78. As for the datasets

generated by model 2, all methods performed well when MAF = 0.2 and MAF = 0.4, however,

when MAF = 0.1 IG can still maintain higher detection power. As for datasets generated by

model 3, PLINK performed poorly when MAF takes values of 0.2 and 0.4. While IG still per-

forms well under each parameter settings. All in all, by using IG almost any form interactions,

if they exist, can be captured.

Results on WTCCC datasets

With SNPs predicted by Random Forest [18] as benchmark dataset, the performance of IG in

identifying main-effect SNPs is compared with that of BOOST and SNPsyn. BOOST [20] cre-

ates multiple paths in which the visited SNP functional modules tend to be statistical associated

with disease, then harvests those significant SNP functional modules which pass the statistical

tests. It greatly reduces the number of SNPs tested. SNPsyn detects synergy SNP pairs taking

use of mutual information, and can also give SNP importance measurement. The performance

of Random Forest in genetic data analysis has been investigated which has been shown to out-

perform Fisher’s exact test [35] and many other methods [18] as a screening tool when interac-

tions are present. For this reason and lack of other high confidence reference datasets, top

ranked 150 SNPS predicted by Random Forest in each dataset were used as benchmark datasets

(Shown in S2 File). We measure the importance of each SNP by measuring its degree and be-

tweenness centrality. Threshold values of all the methods were adjusted in order to filter out al-

most the same number of disease associated SNPs. Results were shown in Fig. 6.

To grow RFs (Random Forests) and estimate SNP importance value, the randomForest

package by Liaw and Wiener is used. 500 trees were grown with a random selection of 20 vari-

ables per node. On average, each variable was contained in a RF 84 times. The average impor-

tance scores across all RFs were used as the global importance value of a variable. In each result

only top 150 most important SNPs were selected. As shown in Fig. 6, IG can match more SNPs

predicted by Random Forest than other two methods. However, even in T2D, of the 150 SNPs

predicted by IG only 100 of them are also predicted by Random Forest. It does not mean that

Random Forest performs better than IG. For example, of the SNPs predicted by IG but not of
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Table 4. Relationship between α, p-value, FDR using data set of T2D (type 2 diabetes).

α SNP Interaction Pair Number p-value Significant threshold (Bonferroni correction) FDR

0.001 895654 0.0682 2.37e-9 1.00

0.002 90160 0.0038 2.37e-9 0.89

0.003 34584 1.7e-4 2.37e-9 0.11

0.004 26764 6.87e-6 2.37e-9 0.0054

0.005 24264 2.37e-7 2.37e-9 2.06e-4

0.01 16911 <2.37e-8 2.37e-9 <0.1e-6

0.05 6456 <2.37e-9 2.37e-9 <0.1e-9

0.1 2789 �2.37e-10 2.37e-9 <0.1e-10

All the SNP interaction pairs in LD are deleted. There are 4595 SNPs in all.4595*4595 = 21114025 pairs of SNPs are tested under NULL hypothesis. The

significant threshold after Bonferroni correction = 0.05/21114025 = 2.37e-9.

doi:10.1371/journal.pone.0119146.t004

Fig 5. The power comparison between BOOST, PLINK and our method (IG) based on interaction gain. The power is calculated as the proportion of the
100 data sets in which the interactions of the disease-associated SNPs are detected. The absence of bars indicates no power. MAF means minor
allele frequency.

doi:10.1371/journal.pone.0119146.g005
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Random Forest, SNP rs2877832 (PubMed: 17903298) was proved to be associated with type 2

diabetes; SNPs rs688034 (PubMed: 1754300), rs2269511 (PubMed: 18794856) were shown to

be associated with hypertension, all of them cannot be identified by Random Forest. By using

degree and betweenness centrality as metric to select disease associated SNPs, IG achieved

much higher accuracy than BOOST and SNPsyn. As shown in Fig. 6, compared with BOOST,

SNPsyn can find out more disease related mutations. Because by taking advantage of mutual

information, SNPs associated with disease are more likely to be selected.

The power of IG, BOOST and SNPsyn in detecting disease related low-order (pairwise)

SNP interactions was compared using the T2D and CAD datasets. The power is defined as the

ratio of disease related genes and all mapped genes. For simplicity, only top ranked 100 SNP-

SNP interaction pairs are selected and compared in each dataset. To compute the power, SNPs

contained in each of the 100 pairs of SNP-SNP interactions are mapped on genes using

SNP4disease (SNP4Disease (http://snp4disease.mpi-bn.mpg.de/index.php) is a knowledge da-

tabase which is constructed using data and literature mining techniques to incorporate data

from various publicly-available databases. It provides the information about disease associated

SNPs (genes) and their potential biological impacts.). Mapping results are shown in supple-

mentary material (S1 File). For example, 121 SNPs contained in the top ranked 100 SNP-SNP

interaction pairs predicted by IG. Those SNPs are mapped on 10 genes. Three (SLC7A7,

C14orf—, KCNH5) of them were validated have relations with T2D. So the power of IG con-

sidering this data set is 3/10. Comparison results are shown in Fig. 7. More information can be

Fig 6. Comparison of the performance of IG, BOOST and SNPsyn in identifying SNPs associated with corresponding disease.During comparison,
top 150 SNPs predicted by RandomForest in eachWTCCC dataset was used as reference datasets (details are shown in S2 File). The other three methods
also took their top 150 most significant SNPs.

doi:10.1371/journal.pone.0119146.g006
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Fig 7. The power comparison of BOOST, IG, SNPsyn in detecting disease associated SNP-SNP interaction pairs using data sets of T2D and CAD.
The power is defined as the ratio of disease related genes and all mapped genes.

doi:10.1371/journal.pone.0119146.g007

Table 5. Five SNP functional modules detected by MCODE using HT.

SNP functional
module ID

SNP members Genes Involved SNPs In
PubMed

Functional
module

1 rs2017874,rs738536,rs738387,rs8138930,rs4820483,rs738378,
rs13433641,rs4822208,rs2273142

PACSIN2, ARFGAP3 rs738536(ID:
20018033)

See S1 Fig.

2 rs9605422,rs2165971,rs2075453,rs4819644,rs2075444,
rs1057721,rs2016042,rs11917,rs2075455,rs873387

MICAL3 no See S2 Fig.

3 rs7289941,rs1034589,rs2413035,rs5753659,rs2106294,
rs5998067,rs6518752,rs9609297,rs7287267

RNF185, LIMK2,SFI1,
EIF4ENIF1

rs2106294(ID:
21150874)

See S3 Fig.

4 rs1569492,rs5757187,rs1946990,rs6519120,rs5757203,
rs1056610,rs10135,rs5757133,rs138702,rs6001173,rs4820335,
rs138703

JOSD1, SUN2, TOMM22,
LOC646851, DMC1

rs5757133(ID:
20084279)

See S4 Fig.

5 rs5770112,rs916251,rs2688171,rs2253004,rs2688155,
rs5770111,rs2688148,rs5769491

NULL rs5770111(ID:
17357082)

See S5 Fig.

SNP members are the SNPs that falls into the same SNP complex. SNPs in the PubMed represent the SNPs in the SNP functional module that have

been researched by other people.

doi:10.1371/journal.pone.0119146.t005
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got from supplementary material (S1 File). As can be seen from Fig. 7, IG achieved much

higher power than the other two methods with T2D and CAD datasets.

As for high-order SNP interaction detection, MCODE was applied to the SNP-SNP interac-

tion networks constructed from the WTCCC HT and T2D datasets. Since there is no reference

high-order SNP interaction datasets, the performance of MCODE in detecting SNP functional

modules is evaluated by counting the number of SNPs within each module which have been re-

searched by others. The result was presented in Table 5. Some SNP functional modules de-

tected from the network constructed from IG detection results are shown in S6 Fig., S7 Fig., S8

Fig., S9 Fig., S10 Fig. As shown in Table 5, SNPs within the same SNP functional module tend

to come from the same gene or from genes which are close to each other. Single mutation with-

in the gene may have few bad effects on it, for a disease to occur relevant genes may need to ex-

perience substantial changes. That is the reason why SNPs tend to form SNP functional

modules (high-order SNP interactions) and together contribute to disease development. Apart

from the SNP interactions exist in the same SNP functional modules, higher order interactions

occur between SNP functional modules or outside SNP functional modules were also consid-

ered. Unfortunately, due to the low interaction value between those SNPs, few high-order SNP

interactions can be detected. Considering this, finding high-order SNP interactions by finding

SNP functional modules can ensure the accuracy and stability of the final results.

Discussion and Conclusion

Parameters discussion

In the previously sections, threshold value α is set to 0.1. In this section, the effect of α on net-

work size is studied (the number of SNP pairs). Results are shown in Fig. 8. According to our

calculations, interaction gain between two SNPs can be as small as 0, which means two SNPs

are independent. In fact, the vast majority of interaction gain values fall within the range be-

tween [0,0.1]. The relationship between α, p-value and FDR is presented in Table 4 (using data-

set of T2D). According to Table 4, when α = 0.1 we can get more reliable interactions with

lower p-value and FDR. So we choose α = 0.1 as our threshold value, because SNPs with higher

interaction gain values are more likely to have true interactions.

Conclusion

Given numerous GWA studies that have recently or are currently being performed, it is clear

that, genome wide interaction research will be the natural next step following the single-locus

testing. In fact, there are growing interests in developing and applying computational and sta-

tistical approaches for SNP interactions detection. Detecting low-order and high-order SNP in-

teractions is considered important for deeply understanding of relationships between

mutations and diseases. In this paper, both low-order and high-order SNP interactions were

detected with the proposed methods. Besides, we proposed to measure main-effect SNPs from

a new point of view. More specifically, a pairwise (or low-order) interaction detection method

IG (Interaction Gain) working in parallel computing was designed by taking advantage of en-

tropy and information gain in information theory. High-order SNP interactions were proposed

to be detected by finding functional modules of the network constructed from IG detection re-

sults. Main-effect SNPs were measured by their degree and betweenness centrality. Perfor-

mance comparisons were done between IG, PLINK, BOOST and SNPsyn on both simulated

datasets andWTCCC datasets. With proposed methods more reliable interactions were discov-

ered with higher accuracy and better performance. Knowledge of major SNP interactions pro-

vides insight into the relationship of complex pathways and also highlights key genes that

could be targets for therapy or drug targets. The research will advance the complex diseases
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research by providing more reliable SNP interactions. While we have provided internal valida-

tion for a subset of the tested SNP interactions in this study, corresponding interactions require

further cross validations in other populations.

Supporting Information

S1 Fig. One of the SNP functional modules detected by MCODE within the network con-

structed from IG detection results using HT (hypertension) dataset. The nodes represent

SNPs, and the edge between any two SNPs indicates there exist interaction between them.

SNPs within the same functional module tend to together affecting the emergence and develop-

ment of disease. All of the SNPs and edges formed the high-order SNP interactions we are

interested in.

(TIF)

S2 Fig. One of the SNP functional modules detected by MCODE within the network con-

structed from IG detection results using HT (hypertension) dataset. This figure has the

same meaning with S1 Fig.

(TIF)

S3 Fig. One of the SNP functional modules detected by MCODE within the network con-

structed from IG detection results using HT (hypertension) dataset. This figure has the

same meaning with S1 Fig.

(TIF)

Fig 8. Relationship between α and node and edge number of the SNP interaction network constructed. α is the threshold value.

doi:10.1371/journal.pone.0119146.g008
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S4 Fig. One of the SNP functional modules detected by MCODE within the network con-

structed from IG detection results using HT (hypertension) dataset. This figure has the

same meaning with S1 Fig.

(TIF)

S5 Fig. One of the SNP functional modules detected by MCODE within the network con-

structed from IG detection results using HT (hypertension) dataset. This figure has the

same meaning with S1 Fig.

(TIF)

S6 Fig. One of the SNP functional modules detected by MCODE within the network con-

structed from IG detection results using T2D (type 2 diabetes) dataset. This figure has the

same meaning with S1 Fig.

(TIF)

S7 Fig. One of the SNP functional modules detected by MCODE within the network con-

structed from IG detection results using T2D (type 2 diabetes) dataset. This figure has the

same meaning with S1 Fig.

(TIF)

S8 Fig. One of the SNP functional modules detected by MCODE within the network con-

structed from IG detection results using T2D (type 2 diabetes) dataset. This figure has the

same meaning with S1 Fig.

(TIF)

S9 Fig. One of the SNP functional modules detected by MCODE within the network con-

structed from IG detection results using T2D (type 2 diabetes) dataset. This figure has the

same meaning with S1 Fig.

(TIF)

S10 Fig. One of the SNP functional modules detected by MCODE within the network con-

structed from IG detection results using T2D (type 2 diabetes) dataset. This figure has the

same meaning with S1 Fig.

(TIF)

S1 File. WTCCC-SNP-SNP-comparison result. This file shows the mapping results of

BOOST IG SNPsyn as well as the prediction power of the three methods.

(XLSX)

S2 File. WTCCC-Results-Single-SNP-RandomForest-top150. This file shows the details of

the top 150 SNPs predicted by RandomForest in each WTCCC dataset.

(XLSX)
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