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ABSTRACT In a complex environment, how to construct a resilient supply chain network (SCN) that can 
resist disruptions is a problem of great concern in supply chain management. In order to provide some 
insights for constructing a resilient SCN, this paper studies the influence of network structures on SCN 
resilience from the perspective of complex networks. Considering the exit and reselection of enterprises 
that have been ignored in previous studies, we propose a new SCN model in which nodes are connected 
with each other based on degree, fitness, and distance. Subsequently, different disruption scenarios are 
simulated and the resilience of the SCN generated by the proposed model is compared with that of previous 
models. The simulation results show that the SCN generated by the proposed model is resilient to random 
disruptions, but vulnerable to targeted disruptions. In particular, the resilience of the SCN will be seriously 
affected when the strong-strong alliance is broken. Through the research on the influence of the parameters 
(e.g., α, β, and f) of the proposed model on SCN resilience, we find that α has a significant impact on SCN 
resilience. The larger the value of α, the worse the resilience of the corresponding SCN. The parameter β 
has a slight effect on SCN resilience, and the more uniform the distribution of f in the network, the better 
the resilience of the corresponding SCN. This study may contribute to the design and resilience 
optimization of SCNs. 

INDEX TERMS Complex networks, disruptions, network structures, supply chain network resilience.

I. INTRODUCTION 

With the development of globalization, a supply chain 
system has gradually evolved into a huge and complex 
system, in which the cooperation between enterprises has 
formed a complex supply chain network (SCN) [1]–[2]. In 
an increasingly turbulent and complex environment, SCNs 
are exposed to various disruptions, such as earthquakes, 
floods, and terrorist attacks, which will affect the normal 
operation of SCNs and even cause serious economic losses 
[3]–[6]. For example, the tsunami and earthquake in Japan 
in 2011 disrupted the SCN of Toyota Motor Corporation 
and resulted in the production losses of 140,000 vehicles 
[7]. Similarly, the outbreak of Corona Virus Disease 2019 
has seriously affected the logistics and production activities 
of many industries, such as automobile industry, aviation 
industry, and tourism industry [8]–[11]. Facing a complex 
and changeable environment, how to design a resilient SCN 

that can withstand various disruptions has attracted the 
attention of many scholars [12]–[18]. 

A resilient SCN means that it can operate stably or 
quickly return to a normal state despite disruptions [1], 
[19]–[20]. The guarantee of SCN resilience is usually 
related to preventive measures, reaction behaviors, and 
recovery strategies against disruptions [3], [21]–[25]. 
Intuitively, supply chain network disruptions (SCNDs) are 
defined as unexpected events that interrupt the normal 
operation (e.g., the flow of goods and services) of SCNs 
[26]–[27]. They may be caused by natural disasters or 
man-made events.  

In order to design a resilient SCN, many scholars have 
conducted studies from multiple perspectives, such as risk 
management [28]–[32], control theory [33]–[37], and 
mathematical modeling and simulation [38]–[42]. In 
addition, many researchers have studied SCN resilience 
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from the perspective of complex networks [43]–[50], 
because it is a simple and effective method that can capture 
the structural characteristics of an SCN, thus contributing to 
the construction of a resilient SCN. This paper also studies 
from the perspective of complex networks, regarding 
enterprises as nodes and cooperative relationships as edges. 
As demonstrated in [51], the structure of an SCN has a 
significant impact on SCN resilience. Different network 
structures show different resilience in the face of 
disruptions. For example, the scale-free network [52] is 
vulnerable to targeted disruptions, while the random 
network [53] is resilient. Meanwhile, a local failure of an 
SCN may cause the failure of the whole supply chain 
system due to the interaction between enterprises in an 
SCN. It is called cascading failures [54] or ripple effects 
[55]. Generally, there are static and dynamic methods can 
be used to study SCN resilience from the perspective of 
complex networks. The dynamic method considers 
cascading failures, while the static method does not. 
According to [5], the static method can simply and 
intuitively analyze the influence of network structures on 
SCN resilience. Thus, the static method is also used in this 
paper. In most cases, the failure of an enterprise to manage 
SCNDs is usually due to the lack of understanding of SCN 
structures [6]. Thus, the exploration of SCN structures can 
help supply chain managers design a resilient SCN or 
respond to SCNDs. 

Network models are very important for the study of SCN 
resilience from the perspective of complex networks, 
because they can generate SCNs with specific structures [5]. 
After extensive classification, Perera et al. [56] found that 
SCN models mainly focus on BA [52], ER [53] and WS [57] 
models. In particular, BA model has attracted wide 
attention because it reflects the growth and priority 
connection characteristics of a real network. The 
degree-based priority connection of BA model reflects the 
enterprise's attention to the business scale of its partners. 
The enterprise (node) with larger business scale (larger 
degree) can establish cooperative relationships (edges) with 
more enterprises. This also reflects the reality that the rich 
are getting richer. As time goes on, older enterprises will 
get more cooperation, i.e., older nodes will have larger 
degrees. However, the growth rate of a node‟s degree is not 
only related to the age of the node. In reality, enterprises 
with high-quality products can obtain a lot of cooperative 
business in a short time. This property is called the fitness 
of a node [58]. In addition, enterprises will give priority to 
closer enterprises when looking for partners [1], [5]. 
Therefore, in addition to the degree of a node, the fitness of 
a node and the distance between nodes need to be 
considered when setting the connection rules of an SCN 
model. 

Moreover, most existing studies only consider the 
situation of new nodes entering the network. In reality, the 
structure of an SCN is not immutable. There will be 

enterprises entering an SCN because of the need of 
cooperation, and there will also be enterprises leaving an 
SCN because of the end of cooperation or market transfer. 
For example, an enterprise in an SCN will withdraw from 
the SCN when it ends its cooperative relationships with 
other enterprises. Meanwhile, in order to ensure the 
continuous operation of business, the enterprises that 
originally cooperated with it will seek for cooperation with 
other enterprises (i.e., reselection). Therefore, we propose a 
new SCN model based on the above considerations. In 
addition, most studies only consider random or targeted 
disruptions, whose objects are only nodes or edges. In fact, 
an SCN may face random and targeted disruptions at the 
same time (mixed disruptions [5]), and nodes and edges 
may also be damaged simultaneously [6]. Therefore, this 
paper will fully consider different disruption scenarios and 
study the influence of network structures on SCN resilience, 
so as to provide some insights for building a resilient SCN. 

In summary, this study contributes to the existing 
literature by filling in the following research gaps: (i) the 
exit and reselection of enterprises that have been neglected 
in previous studies are considered in this study when 
modeling an SCN; (ii) node degree, fitness and distance are 
considered simultaneously in the connection rules of the 
SCN model; and (iii) different from previous studies,  

different disruption scenarios are fully considered in this 
study, including different disruption types and objects. 

The rest of this paper is organized as follows. Section II 
reviews the related research, and Section III describes the 
proposed SCN model and the resilience metrics used. In 
Section IV, different disruption scenarios are simulated, 
and the results are analyzed in Section V. Section VI 
summarizes the results and discusses the future work. 

II. RELATED WORK 

This paper mainly studies the impact of network structures 
on SCN resilience under different disruption scenarios. 
Thus, the literature review mainly focuses on SCN models, 
SCNDs, and resilience metrics. 

A. SUPPLY CHAIN NETWORK MODELS AND 

RESILIENCE METRICS 

Different SCN models generate SCNs with different 
structures. In previous studies, researchers have proposed 
many SCN models. For instance, Xuan et al. [59] 
introduced different supplier-customer connection rules in 
their model to construct SCNs, and compared with BA and 
ER models. The connection rule of BA model is the 
degree-based priority connection, i.e., the larger the degree 
(the number of neighbour nodes) of an old node, the larger 
the probability of a new node connecting with it, while the 
connection rule of ER model is random connection. Kim et 

al. [6] used the models mentioned in [60] to generate SCNs 
with scale-free, block-diagonal, centralized, and diagonal 
structures. Zhao et al. [43] proposed a random local 
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TABLE 1.  Some existing SCN models and their resilience metrics 

 

Studies Connection rules Resilience metrics 

Zhao et al. [1] ●  Degree-based priority connection. 
●  Distance-based rule: a new node is more likely to 
connect with a closer old node. 

●  Supply availability rate. 
●  Size of LFS. 
●  Average supply path length in LFS. 
●  Maximum supply path length in LFS. 

Shi et al. [5] ●  Degree-based priority connection. 
●  Random connection. 
●  Distance-based rule. 

●  Size of LFCS. 
●  Average path length in LFCS. 
●  Maximum path length in LFCS. 

Nair and Vidal [44] ●  Degree-based priority connection. 
●  Random connection. 
 

●  Average path length. 
●  Clustering coefficient. 
●  Size of LCS. 
●  Maximum path length in LCS. 

Sun et al. [45] ●  Priority connection based on node degree and 
competition coefficient: a new node is more likely to 
connect with an old node with larger degree and larger 
competition coefficient. 

●  The ratio of the size of LCS to the size of the network 
after disruptions. 
●  The rate of change of the size of LCS. 
●  The ratio of the average degree of LCS to the average 
degree of the original network. 
●  The ratio of the average path length in LCS to the average 
path length in the original network. 

Ledwoch et al. [46] ●  Degree-based priority connection. 
●  Random connection. 

●  Total cost incurred by all agents. 
●  Costs incurred by the original equipment manufacturer. 
●  Average unit fill-rate of agents. 
●  Unit fill-rate of the original equipment manufacturer. 

Thadakamalla et al. [51] ●  Degree-based priority connection. 
●  Random local connection: a new node is randomly 
connected to an old node in a local area. 

●  Size of LCS. 
●  Average path length in LCS. 
●  Maximum path length in LCS. 

Xu et al. [62] ●  Priority connection based on node strength and 
distance: a new node is more likely to connect with an 
old node with higher strength and closer distance. 

/ 

Wang et al. [63] ●  Degree-based priority connection. 
●  Random connection. 
●  Supply-specific. 

●  Supply availability rate. 
●  Size of LFS. 
●  Average supply path length in LFS. 
●  Maximum supply path length in LFS. 
●  Network resilience score. 

Xia [64] / ●  Size of LCS . 
●  The reciprocal of average path length in LCS. 

Li and Zobel [65] ●  Degree-based priority connection. 
●  Random connection. 
●  Random reconnection. 

●  Number of healthy nodes. 
●  Size of LCS. 
●  The ratio of the size of LCS to the average path length in 
LCS.  

rewiring rule to simulate the situation that an SCN will 
adjust after a period of time. Sun et al. [45] introduced a 
competition coefficient and established an SCN model 
based on BA model. Ledwoch et al. [46] used BA and ER 
models to generate SCNs and studied the influence of 
network structures on the effectiveness of risk management. 
Wang et al. [48] used BA and KE [61] models to generate 
SCNs and studied their under-load cascade failures. Xiong 
et al. [50] and Thadakamalla et al. [51] established 
corresponding SCN models based on the characteristics of 
military SCNs. Xu et al. [62] established an agile SCN 
model based on node strength and distance to analyze its 
evolution mechanism. These SCN models correspond to 
different connection rules. Table 1 lists some existing SCN 
models and their resilience metrics. 

As shown in Table 1, the existing SCN models rarely 
consider the situation of nodes exiting the SCN. Although 
Shi et al. [5] considered the exit of nodes, they did not 
consider the situation that other nodes will choose nodes 
again after some nodes exit. This is also a very common 
phenomenon in reality. Therefore, this paper also considers 
the exit and reselection of nodes besides the entry of nodes. 
Moreover, most of the models in Table 1 consider the 
degree-based priority connection. However, as 
aforementioned, the degree-based priority connection does 
not reflect the fact that young enterprises with high-quality 
products can also get a lot of cooperative business. 
Therefore, the fitness of a node also needs to be considered 
[58]. Following [1] and [5], the distance-based rule is also 
considered in this paper. 
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Generally, most existing studies use the largest connected  
sub-network (LCS) to measure SCN resilience. As shown 
in [44], the size of LCS and the maximum path length in 
LCS were used by them to measure SCN resilience. The 
size of LCS, the average path length, and the maximum 
path length in LCS were used by Thadakamalla et al. [51] 
to measure SCN resilience. The size of LCS and the 
reciprocal of average path length in LCS were used by Xia 
[64] to measure SCN resilience. The size of LCS and the 
ratio of the size of LCS to the average path length in LCS 
were used by Li and Zobel [65] to measure SCN resilience.  
Moreover, considering the different roles of nodes, Zhao et 
al. [1] and Shi et al. [5] proposed metrics based on the 
largest functional sub-network (LFS) and the largest 
full-role connected sub-network (LFCS) respectively to 
measure SCN resilience. Essentially, LFS and LFCS can be 
regarded as LCSs with consideration of nodes‟ 
heterogeneity, so they are more suitable for SCN resilience 
evaluation. LFS is more suitable for military SCNs, and 
LFCS is more suitable for SCNs in the context of 
manufacturing. This paper measures SCN resilience based 
on LFCS. 

B. SUPPLY CHAIN NETWORK DISRUPTIONS 

SCNDs can be divided into random and targeted 
disruptions [1]. The objects of disruptions include nodes 
and edges. Random disruptions are mainly caused by 
natural disasters, such as floods, earthquakes, and tsunamis. 
The probability of this kind of event occurring is small, but 
once it happens, it will bring serious consequences. For 
example, the flood in Thailand in 2011 and the tsunami and 
earthquake in Japan in 2011 all brought heavy losses to the 
corresponding industry [6]–[7]. In the case of random 
disruptions, the probability of each node or edge being 
attacked is equal. By contrast, targeted disruptions are 
mainly caused by man-made disasters, such as terrorist 
attacks, military strikes, and economic sanctions. Examples 
of this category include terrorism and piracy in Somalia in 
2008, political crises in Nepal in 2015, and the legal dispute 
between Volkswagen and its suppliers in 2016 [66]–[67]. In 
targeted disruptions, the more important parts are more 
likely to be attacked. Once the important nodes in an SCN 
are attacked, the whole network will collapse quickly [1]. 

In a word, it is very important to design a resilient SCN 
that can resist various disruptions. Meanwhile, it is 
necessary to understand the resilience of an SCN under 
different disruptions. In previous studies, Ledwoch et al. 
[46] and Li and Zobel [65] studied the situation where 
nodes were randomly disrupted. Zhao et al. [1] and 
Thadakamalla et al. [51] studied the impact of node 
disruptions on SCN resilience against random and targeted 
disruptions. Azad et al. [68] studied the situation where 
nodes or edges were randomly disrupted. Adenso-Díaz et al. 
[69] studied the situation of edge disruptions in random and 
targeted disruptions. According to [6], Disrupting only 
nodes or edges may not cause network-level disruptions, 

thus they proposed the concept of network-level disruptions 
and simulated random disruptions. Shi et al. [5] proposed 
the concept of mixed disruptions in consideration of the 
situation that random and targeted disruptions may occur 
simultaneously, and conducted research on node disruptions. 
Table 2 lists some of the disruptions simulated in existing 
studies. 

 
TABLE 2.  SCND scenarios of some existing studies 

 

Studies Disruption types Disruption objects 

Zhao et al. [1] ●  Random disruptions 
●  Targeted disruptions 
 

●  Nodes 

Shi et al. [5] ●  Random disruptions 
●  Targeted disruptions 
●  Mixed disruptions 

●  Nodes 

Nair and Vidal [44] ●  Random disruptions 
●  Targeted disruptions 
 

●  Nodes 

Ledwoch et al. [46] ●  Random disruptions 
 

●  Nodes 

Thadakamalla et al. 
[51] 

●  Random disruptions 
●  Targeted disruptions 
 

●  Nodes 

Li and Zobel [65] ●  Random disruptions ●  Nodes 
 

Bier et al. [67] ●  Random disruptions 
●  Targeted disruptions 
 

●  Nodes  
 

Azad et al. [68] ●  Random disruptions ●  Nodes 
●  Edges  
 

Adenso-Díaz et al. 
[69] 

●  Random disruptions 
●  Targeted disruptions 
 

●  Edges 

Reyes Levalle and 
Nof [70] 

●  Random disruptions 
●  Targeted disruptions 

●  Nodes 

 
In general, most studies only consider random or targeted 

disruptions, and only nodes or edges are disrupted. Actually, 
the type of disruption is usually unknown. In addition to 
random and targeted disruptions, an SCN may also face 
mixed disruptions [5]. In any disruption type, the disruption 
object may be only nodes or edges, or both nodes and edges 
may be disrupted at the same time. Thus, different 
disruption scenarios are fully considered in this paper. 

III. METHODS 
A.  COMPLEXITY ANALYSIS OF SUPPLY CHAIN 

NETWORKS 

An SCN is a complex network composed of a large number 
of interacting individuals. It shows the characteristics of 
node complexity, structural complexity, and dynamic 
complexity of network topology. 

The node complexity is mainly reflected in the diversity 
of nodes. There are a large number of nodes in a complex 
network, and each node represents an independent 
individual with its own unique functions. For example, 
there are many enterprises such as suppliers, manufacturers, 
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distributors, and retailers in an SCN. Nodes represent these 
enterprises, and the establishment of connections between 
nodes reflects their functionality. 

The structural complexity is mainly reflected in the 
complex links between nodes. In a complex network, due to 
the large number of nodes, the connections between 
different nodes eventually form different network structures, 
thus presenting different structural characteristics. In an 
SCN, the relationship between enterprises is very complex. 
Usually, one enterprise has partnerships with multiple 
enterprises. If the industrial chain of an enterprise is 
regarded as one chain, an SCN is the integration of multiple 
chains. 

The dynamic complexity of network topology mainly 
means that the network structure is constantly changing, 
which is mainly affected by two aspects. First, it is the 
impact of the environment. An SCN is in a complex and 
changeable environment. Politics, culture, economy, and 
other factors all affect its composition and development. 
Second, an SCN is a self-organizing network, and it has a 
collaborative evolution process with the dynamically 
changing environment. In the network, nodes are constantly 
entering and exiting, and new cooperative relationships are 
constantly being produced. Nodes with strong adaptability 
continue to grow and develop. 

In addition, the core enterprises in an SCN have high 
aggregation. In an SCN, a core enterprise has a great 
market advantage, and it is often relied on by many 
enterprises, thus it plays an important role in the SCN. 
Therefore, enterprises with greater market advantages in 
market competition tend to have stronger competitiveness. 

B. SUPPLY CHAIN NETWORK MODEL 

Following [1], [5] and [51], an SCN is represented as an 
undirected graph G(V, E), where V is the set of nodes, 
representing enterprises. V is composed of subsets Vs 

(suppliers), Vm (manufacturers), Vd (distributors), and Vr 
(retailers), as in (1) [5]. E is the set of edges, representing 
cooperative relationships. If there is a cooperative 
relationship between enterprises Vi and Vj, then nodes Vi 
and Vj are interconnected with each other to form an edge 
eij. 

,s m d rV V V V V where ,x yV V 
 

when , , { , , , }x y x y s m d r      
(1)  

Figure 1 illustrates an SCN with 20 nodes, including six 
suppliers, three manufacturers, four distributors, and seven 
retailers. There will be connections not only between 
upstream and downstream enterprises, but also between 
enterprises at the same level. 

As aforementioned, there are both entry and exit of 
enterprises in a real SCN. When an enterprise exits, the 
enterprise that originally cooperated with it will reselect an 
enterprise to cooperate. Moreover, according to [5], an  

 

FIGURE 1.  An example of an SCN. 

 
SCN will experience three stages of growth, maturity, and 
decline from the perspective of life cycle. In the growth 
stage, more enterprises enter than exit. In the maturity stage, 
there is a balance between entry and exit, and more 
enterprises exit during the decline stage. Therefore, 
considering the above phenomena, we propose a new SCN 
model, which is called the growth-maturity-decline and 
reselection (GMDR) model.  

The connection rules of GMDR model consider node 
degree, fitness and distance, which are proposed on the 
basis of [1], [5], [52] and [58]. At present, most SCN 
models are based on BA model [45]. The degree-based 
priority connection rule of BA model means that a new 
enterprise is more willing to cooperate with enterprises 
with more partners. Thus, the new enterprise is more likely 
to obtain greater benefits. However, the degree-based 
priority connection will cause the degree of an old node to 
accumulate over time. Actually, if an old enterprise cannot 
adapt to the development of society, it will eventually be 
eliminated. Similarly, if a young enterprise has good 
development potential and can provide high-quality 
products (i.e., large fitness), it also has the opportunity to 
establish partnerships with a large number of enterprises. 
Therefore, it is necessary to consider not only degree, but 
also fitness. The node fitness follows a certain probability 
distribution [58]. Meanwhile, the distance between nodes is 
considered because a new node is more likely to connect to 
a closer old node, which means less costs [1], [5]. The 
distance between two nodes refers to the shortest path 
length between two nodes, i.e., the number of edges in the 
shortest path from one node to another. Nodes representing 
suppliers (s), manufacturers (m), distributors (d), and 
retailers (r) enter successively according to a certain ratio (s: 
m: d: r). The GMDR model can be described as follows: 

Step 1: This model starts with N0 fully connected nodes. 
Step 2: Growth stage (GMDR-G). G new nodes enter the 

network and each of them is connected with W old nodes in 
the network. After that, G/2 nodes are randomly selected to 
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exit the network. The connection rules are as follows: 
●  Rule 1: The first edge is connected to an old node Vi 

with probability Pi, which is determined by the node's 
degree ki and fitness fi, defined as 

( )
, 0

( )

i i
i

j jj

k f
P

k f



  


          (2) 

●  Rule 2: The second edge is connected to an old node 
Vj (Vj≠Vi) with probability Pj, which is determined by 
the distance dj between the new node and the old node 
Vj, defined as 

, 0
j

j

ll

d
P

d



 



 


           (3) 

●  Rule 3: When a node Vb exits the network, each 
neighbor node of node Vb is connected to a node Vc 
with probability Pc, which is jointly determined by the 
degree kc and fitness fc of node Vc, as well as the 
distance dc between the neighbor node of Vb and node 
Vc, defined as 

( )

( )

c c c
c

u u uu

k f d
P

k f d

 

 









          (4) 

Step 3: If the number of nodes does not reach the total 
number of nodes (N), return to Step 2, otherwise, go to Step 
4. 

Step 4: Maturity stage (GMDR-M). G new nodes enter 
the network, and then G nodes are randomly selected to exit 
the network. This process is repeated Z times. The 
connection rules are the same as Step 2. 

Step 5: Decline stage (GMDR-D). G new nodes enter the 
network, and then G/2 nodes are randomly selected to exit 
the network. This process is repeated Z times. After that, 
G/2 new nodes enter the network, and G nodes are 
randomly selected to exit. This process is repeated Z times. 
The connection rules are the same as Step 2. 

Equation (2) is a connection rule based on degree and 
fitness. The larger the degree and fitness of an old node, the 
larger the probability that a new node will connect to it. In 
(2), α is a priority parameter of degree and fitness. The 
larger the value of α, the more likely a new node is to 
connect to a node with larger degree and fitness. Equation 
(3) is a connection rule based on distance. It means that the 
probability of connecting with local nodes is large. In (3), β 
is a distance priority parameter. The larger the value of β, 
the more likely a new node is to connect to a closer node. 
Equation (4) is a connection rule based on degree, fitness, 
and distance. It means that the nodes with large degree, 
large fitness, and close distance will be selected 
preferentially. 

C. RESILIENCE METRICS 

As aforementioned, most studies are based on LCS (i.e., the 
largest sub-network in which any two nodes can be 
connected) to measure SCN resilience, such as the size of 
LCS and the average path length in LCS. The size of LCS 
refers to the number of nodes in LCS, and the average path 
length in LCS refers to the average of the shortest path 
lengths of all node pairs in LCS. However, the use of LCS 
usually ignores the heterogeneity of nodes. In a real SCN, 
different types of enterprises play different roles. Upstream 
enterprises provide products for downstream enterprises, 
and downstream enterprises pay funds to upstream 
enterprises. As demonstrated in [1] and [71], only by 
maintaining the supply-demand relationship between 
upstream and downstream enterprises can the normal 
operation of an SCN be maintained. According to [5], an 
SCN can operate stably for a long time only when suppliers, 
manufacturers, distributors, and retailers exist. Therefore, 
following [5], the LFCS is used to measure SCN resilience 
in this paper. The LFCS refers to an LCS that includes each 
type of node (Vs, Vm, Vd, and Vr), as shown in (5) ~ (7). 

 ( , ) { ( , ) | , , }A i j ijG V E G V E V V V V e E        (5) 

 ( , ) { ( , ) | , , ,B A i s j mG V E G V E i V V j V V l        
 , }l d h rV V h V V    (6)  

 ( , ) { ( , ) | ( , ) ( , ),LFCS B BG V E G V E G V E G V E     
 | ( , ) | | ( , ) |}BG V E G V E  (7) 

GA(V, E) is the connected network set, GB(V, E) is the 
full-role connected network set, and GLFCS(V, E) is the 
LFCS set. This paper uses the size of LFCS (SLFCS) and 
the average path length in LFCS (as shown in (8)) to 
measure SCN resilience. 

1

( 1)
LFCS iji j

LFCS LFCS

L d
N N 


          (8) 

Equation (8) is the calculation of the average path length 
in LFCS (LLFCS), where NLFCS is the total number of nodes 
in LFCS, and dij is the shortest path length from node Vi to 
node Vj. 

The SLFCS reflects the connectivity of an SCN. When 
an SCN is attacked, it may be divided into several 
sub-networks, and the cooperation between enterprises will 
be limited to a smaller network. Therefore, the larger the 
SLFCS, the better the SCN resilience. Moreover, the 
average path length in LFCS reflects the efficiency of an 
SCN. The shorter the distance between two enterprises, the 
more convenient the cooperation between them. Therefore, 
the shorter the average path length in LFCS, the better the 
SCN resilience. 

IV. NUMERICAL SIMULATION 
A. SIMULATION SETUP 

Since it is very difficult to experiment with SCNDs in 
reality, we use computer simulations for experiments. First, 
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BA, ER, ASCN [62], and GMDR models are used to 
generate SCNs (in the absence of specific instructions, the 
corresponding SCN is represented by the corresponding 
model, e.g., the SCN generated by ER model can also be 
represented by ER model), then disruptions are simulated. 
After that, their resilience is compared. The disruption 
schemes are shown in Table 3. Assuming that N = 600, 
node fitness follows a normal distribution, f ~ N(50, 10). 
This means that the average value of fitness in a network is 
50, and variance is 10. Here, the value of fitness is large, 
making it possible for young nodes to get a lot of 
connections as well. Corresponding to the connection rules 
of new nodes entering the network, W = 2 is set. 
Accordingly, N0 = 2. Following [5], G = 2, s: m: d: r = 5: 4: 
1: 10, and Z = 200. Furthermore, α = 1, and β = 1. Every 
situation runs 20 times independently and takes the average 
value. 

TABLE 3.  Disruption schemes 

 

Disruption types Disruption objects 

Random disruptions ●  Nodes 

●  Edges 
●  Nodes and edges 

Targeted disruptions ●  Nodes 

●  Edges 
●  Nodes and edges 

Mixed disruptions ●  Nodes 

●  Edges 
●  Nodes and edges 

 
Figure 2 illustrates the degree distribution of an SCN 

generated by GMDR model. As shown in Figure 2, the 
degree distribution of this SCN shows the characteristic of 
a power-law distribution, which is the significant feature of 
a scale-free network. 

 

 

FIGURE 2.  The degree distribution of GMDR model with 600 nodes. 

As shown in Table 3, different disruption scenarios are 
simulated. In any disruption type, the edge connected to a 
node will also fail when the node is disrupted. Therefore, 
when only nodes are disrupted, edges connected to the 
removed nodes are removed together. In order to simulate 
the situation that nodes and edges are disrupted at the same 
time, a node and its edges are removed first, and then an 
edge is removed from the remaining edges. In random 
disruptions, nodes/edges are randomly removed from a 
network, while the important nodes/edges are preferentially 
removed from a network in targeted disruptions. There are 
many ways to measure the importance of nodes/edges, such 
as degree centrality and betweenness centrality [1], [5], 
[72]. This paper chooses the widely used degree centrality 
to measure the importance of nodes. The larger the degree 
of a node is, the more important the node is. Since there is 
no clear definition of the degrees of edges, following [72], 
betweenness centrality is chosen to measure the importance 
of edges. The edge betweenness of an edge is defined as the 
proportion of the number of shortest paths passing through 
the edge in the total number of shortest paths in a network. 
Therefore, the edge betweenness (B(e)) for an edge eE is 
defined as 

( )
( ) ab

a b
ab

Q e
B e

Q
              (9) 

where Qab(e) is the number of paths passing through edge e 
among all the shortest paths from node Va to node Vb, and 
Qab is the number of the shortest paths from node Va to 
node Vb. The larger the edge betweenness is, the more 
important the edge is. As mentioned in [5], in order to 
simulate the mixed disruptions, the targeted disruptions are 
performed first, and then the random disruptions are 
performed.  

In our simulation, 5% of nodes and/or edges of a network 
are removed at each step, which is the same as [1]. In order 
to ensure fairness, an SCN generated by each model has the 
same number of nodes. With the occurrence of disruptions, 
SLFCSs of different models will change differently due to 
the different network structures they generate. LLFCS will 
also change with the SLFCS, but it is unreasonable to 
compare it in different SLFCSs [1], [5]. Therefore, divide 
LLFCS by the initial average path length (L0) in the network 
to ensure reasonableness and fairness. 

B. SIMULATION RESULTS OF RANDOM DISRUPTIONS 

Figure 3 reveals the responses of BA, ER, ASCN, and 
GMDR models to random disruptions. As can be seen from 
Figure 3(a), SLFCSs of these models decrease almost 
linearly with the removal of nodes, and their performances 
are very similar. For example, when 50% of nodes are 
removed, about 47% of nodes in BA, ER, and ASCN 
models remain connected, and about 42% of nodes in 
GMDR model remain connected. This shows that they are 
resilient to random disruptions of nodes. In Figure 3(b), 
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(a) SLFCS when nodes are disrupted       (b) The ratio of LLFCS to L0 when nodes are disrupted 

 

(c) SLFCS when edges are disrupted       (d) The ratio of LLFCS to L0 when edges are disrupted 

 
(e) SLFCS when nodes and edges are disrupted     (f) The ratio of LLFCS to L0 when nodes and edges are disrupted 

FIGURE 3.  Responses of BA, ER, ASCN, and GMDR models to random disruptions. (a) is the SLFCS when nodes are disrupted, (b) is the ratio of LLFCS 
to L0 when nodes are disrupted, (c) is the SLFCS when edges are disrupted, (d) is the ratio of LLFCS to L0 when edges are disrupted, (e) is the SLFCS 
when nodes and edges are disrupted, and (f) is the ratio of LLFCS to L0 when nodes and edges are disrupted. 

 
their average path lengths first increase and then decrease. 
Generally, the network connectivity will be affected after 
removing some nodes, so the average path length will 
increase, indicating that the supply accessibility between 

enterprises will deteriorate [1]. When a certain number of 
nodes are removed, the average path length in a network 
begins to decrease, because the network has been 
decomposed into several small sub-networks with relatively 
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close nodes‟ distances. At this time, the SCN has become 
very fragmented and cannot provide normal functions. 
Thus, the slower the average path length increases and the 
later the inflection point of a curve appears, indicating that 
the better the resilience of an SCN. Figure 3(b) shows that 
the average path length of GMDR model increases more 
slowly than that of BA, ER, and ASCN models, indicating 
that GMDR model is more resilient than BA, ER, and 
ASCN models when only nodes are disrupted in random 
disruptions. Similarly, BA and ASCN models perform 
similarly, and they are both better than ER model. 

Figures 3(c) and 3(d) reflect the resilience of BA, ER, 
ASCN, and GMDR models when only edges are disrupted 
in random disruptions. As shown in Figure 3(c), SLFCSs of 
these models first decrease slowly with the removal of 
edges, and then drop rapidly when 70% of edges are 
removed. It means that they are very resilient in this case. 
In Figure 3(d), the average path length of GMDR model 
increases more slowly than that of BA model, while that of 
BA model increases more slowly than that of ASCN and 
ER models. The average path length of ER model increases 
the fastest. Moreover, according to the order of inflection 
points, we can see that ER model first appears an inflection 
point, then ASCN and BA models, and finally GMDR 
model. Therefore, GMDR model is the most resilient when 
edges are disrupted randomly, BA model is better than 
ASCN model, and ER model is the worst. Similarly, 
according to Figures 3(e) and 3(f), similar results can be 
obtained as shown in Figures 3(c) and 3(d) when nodes and 
edges are disrupted simultaneously in random disruptions. 
In a word, BA, ER, ASCN, and GMDR models are resilient 
to random disruptions. GMDR model performs best, BA 
model is better than ASCN model, and ER model performs 
worst. 

C. SIMULATION RESULTS OF TARGETED 

DISRUPTIONS 

Figure 4 shows the responses of BA, ER, ASCN, and 
GMDR models to targeted disruptions. Figure 4(a) shows 
that the SLFCS of GMDR model drops rapidly as nodes are 
removed. For example, when 30% of nodes are removed, 
GMDR model has collapsed. This means that GMDR 
model is very vulnerable when nodes are disrupted in 
targeted disruptions. BA model is slightly better than 
GMDR model, but it is also vulnerable. When 35% of 
nodes are removed, BA model almost collapses, while 
about half of the nodes in ER model remain connected. 
Similarly, ASCN model is slightly better than BA model, 
but worse than ER model. Therefore, ER model is more 
resilient than ASCN, BA, and GMDR models when only 
nodes are disrupted in targeted disruptions. According to 
the change of the average path length of each model in 
Figure 4(b), the same result can be obtained as Figure 4(a). 
Figures 4(c) and 4(d) reflect the resilience of these models 
when only edges are disrupted in targeted disruptions. As 

shown in Figure 4(c), SLFCS of GMDR model shows an 
obvious downward trend after a few edges are removed. 
The curves of BA, ER, and ASCN models decline more 
slowly than that of GMDR model. Obviously, SLFCSs of 
BA and ASCN models drop very slowly in the early stage, 
but rapidly in the later stage. Figure 4(d) shows that the 
average path length of GMDR model starts to decline after 
a transient rise. BA and ASCN models appear inflection 
points when 55% of edges are removed, and ER model 
appears an inflection point when 80% of edges are removed. 
The average path length of ASCN model increases more 
slowly than that of BA model. Thus, GMDR model is very 
vulnerable, ASCN model performs better than BA model, 
and ER model performs best in this case. Figures 4(e) and 
4(f) show the responses of these models when nodes and 
edges are disrupted simultaneously in targeted disruptions. 
The curve shapes in Figures 4(e) and 4(f) are similar to 
those in Figures 4(a) and 4(b), respectively. Therefore, the 
same results can be obtained as shown in Figures 4(a) and 
4(b). In general, GMDR model is very vulnerable to 
targeted disruptions. BA model is better than GMDR model, 
ASCN model is slightly better than BA model, and ER 
model is the best. 

D. SIMULATION RESULTS OF MIXED DISRUPTIONS 

Figure 5 shows the responses of BA, ER, ASCN, and 
GMDR models to mixed disruptions. Figures 5(a) and 5(b) 
show the results that only nodes are disrupted. As shown in 
Figure 5(a), the SLFCS of GMDR model drops the fastest. 
The SLFCS of BA model drops slightly faster than that of 
ASCN model, and the SLFCS of ER model drops the 
slowest. For example, when 40% of nodes are removed, 
GMDR model almost collapses while there are 41% of 
nodes remain connected in BA model, 53% in ER model, 
and 48% in ASCN model. Moreover, Figure 5(b) shows 
that GMDR model first appears an inflection point, then 
BA model, and finally ASCN and ER models. Therefore, 
we can know that GMDR model is vulnerable to mixed 
disruptions of nodes. ASCN model performs better than BA 
model, and ER model performs best. Figures 5(c) and 5(d) 
show the results that only edges are disrupted. According to 
Figure 5(c), the SLFCS of GMDR decreases the fastest in 
the early stage, but it is opposite in the later stage. 
According to Figure 5(d), the average path length of 
GMDR model grows the slowest, and the inflection point 
of GMDR model appears the latest. Therefore, GMDR 
model performs best in this case. Similarly, we can know 
that ER model is better than ASCN model, and ASCN 
model is better than BA model. Figures 5(e) and 5(f) show 
the result s  that  nodes and edges are  disrupted 
simultaneously. Their curve shapes are similar to those in 
Figures 5(a) and 5(b), respectively. Thus, the same results 
can be obtained as shown in Figures 5(a) and 5(b). In 
general, GMDR model performs best when only edges are 
disrupted in mixed disruptions, ER model performs better 
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(a) SLFCS when nodes are disrupted       (b) The ratio of LLFCS to L0 when nodes are disrupted 

 
(c) SLFCS when edges are disrupted       (d) The ratio of LLFCS to L0 when edges are disrupted 

 
(e) SLFCS when nodes and edges are disrupted     (f) The ratio of LLFCS to L0 when nodes and edges are disrupted 

FIGURE 4.  Responses of BA, ER, ASCN, and GMDR models to targeted disruptions. (a) is the SLFCS when nodes are disrupted, (b) is the ratio of LLFCS 
to L0 when nodes are disrupted, (c) is the SLFCS when edges are disrupted, (d) is the ratio of LLFCS to L0 when edges are disrupted, (e) is the SLFCS 
when nodes and edges are disrupted, and (f) is the ratio of LLFCS to L0 when nodes and edges are disrupted. 

 
than ASCN model, and ASCN model performs better than 
BA model. In the other two cases, GMDR model is the 
worst while ER model is the best, and ASCN model is 
better than BA model. 

E. INFLUENCE OF PARAMETERS OF GMDR ON 

SUPPLY CHAIN NETWORK RESILIENCE  

The parameters of GMDR model are shown in Table 4. As 
demonstrated in [5], the more even the distribution of 
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(a) SLFCS when nodes are disrupted       (b) The ratio of LLFCS to L0 when nodes are disrupted 

 
(c) SLFCS when edges are disrupted       (d) The ratio of LLFCS to L0 when edges are disrupted 

 
(e) SLFCS when nodes and edges are disrupted     (f) The ratio of LLFCS to L0 when nodes and edges are disrupted 

FIGURE 5.  Responses of BA, ER, ASCN, and GMDR models to mixed disruptions. (a) is the SLFCS when nodes are disrupted, (b) is the ratio of LLFCS to 
L0 when nodes are disrupted, (c) is the SLFCS when edges are disrupted, (d) is the ratio of LLFCS to L0 when edges are disrupted, (e) is the SLFCS when 
nodes and edges are disrupted, and (f) is the ratio of LLFCS to L0 when nodes and edges are disrupted. 

 
enterprises with different roles, the better the resilience of 
an SCN, i.e., an SCN performs well when s: m: d: r = 1: 1: 
1: 1. In addition, the influence of parameters N, G, and W 
on SCN resilience can be ignored [5]. As described in 

GMDR model, the parameter Z acts on the maturity and 
decline stages of an SCN. In the maturity stage, the number 
of nodes entering and exiting is equal, an SCN will keep a 
certain balance. Thus, the influence of parameter Z is slight  
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TABLE 4.  Parameters of GMDR model 

 

Parameters Description 

s: m: d: r Proportion of suppliers, manufacturers, distributors and 
retailers in an SCN. 
 

N The total number of nodes in an SCN. 
 

N0 The initial number of nodes. 
 

G The number of new nodes per entry. 
 

W The number of old nodes connected to a new node. 
 

Z Number of repetitions. 
 

α An adjustable priority parameter of degree and fitness. 
 

β An adjustable priority parameter of distance. 

 
f Node fitness. 

 
and can be ignored. In the decline stage, there are more 
nodes exiting an SCN, so the performance of an SCN will 
decrease with the increase of Z [5]. Zhao et al. [1] pointed 
out that the parameter N0 has a slight impact on SCN 
resilience. Therefore, this paper mainly studies the 
influence of parameters α, β, and f on SCN resilience. 
According to the results of front experiments, GMDR 
model is very sensitive to targeted disruptions, especially 
when nodes are disrupted. Moreover, the GMDR-G, 
GMDR-M, and GMDR-D models have similar resilience. 
Therefore, we use GMDR-G model to generate an SCN and 
study the influence of parameters α, β, and f on SCN 
resilience when nodes are disrupted in targeted disruptions. 
The settings of other parameters remain unchanged. Every 
situation runs 20 times independently and takes the average 
value. 

First, we study the influence of parameters α and β on 
SCN resilience. Keep β = 1, and α changes from 0.5 to 3 
with a step size of 0.5; then keep α = 1, and β changes from 
0.5 to 3 with a step size of 0.5. Figures 6 and 7 show the 
results. Figure 6(a) shows that the larger the value of α, the 
faster the SLFCS drops. For example, when 5% of nodes 
are removed, about 95% of nodes remain connected when α 

= 0.5, and about 17% of nodes remain connected when α = 
3. Therefore, we can know that α has a significant effect on 
SCN resilience. The larger the value of α, the worse the 
SCN resilience. Figure 6(b) shows that the larger the value 
of α, the earlier the inflection point appears. Thus, the same 
result can be obtained as in Figure 6(a). As can be seen 
from Figure 7, with the increase of β, the SLFCS decreases 
slightly, the average path length of the network increases 
slightly, and the inflection point appears earlier. This means 
that β has a slight impact on SCN resilience. As the value of 
β increases, the resilience of the SCN will slightly decline. 

As mentioned in [58] and [73]–[74], node fitness obeys a 

certain probability distribution. In this section, we study the 
influence of fitness on SCN resilience in different 
probability distribution functions. In addition to the normal 
distribution used in front experiments, the classical Poisson 
distribution, discrete uniform distribution, and exponential 
distribution are also used. The mean value of fitness is the 
same in different distribution functions. The results are 
shown in Figure 8. Figure 8(a) shows that SLFCS decreases 
the fastest under exponential distribution and the slowest 
under normal and Poisson distributions. Figure 8(b) shows 
that the inflection points appear in the order of exponential 
distribution, discrete uniform distribution, normal 
distribution, and Poisson distribution. This means that node 
fitness obeys different probability distribution functions 
will have a significant impact on SCN resilience. Among 
the distribution functions used, the resilience of the SCN is 
the best when node fitness follows normal distribution and 
Poisson distribution, followed by discrete uniform 
distribution, and the worst is exponential distribution. 

V. RESULT ANALYSIS AND DISCUSSION 

According to the above simulation results, ER model is 
resilient to both targeted and random disruptions, which 
also verifies the results of previous studies [1] and [5]. 
Because the degree distribution of nodes in ER model 
follows a Poisson distribution, i.e., the distribution of 
degrees is quite uniform. Node disruptions, whether 
random or targeted, usually have an impact on a local scope. 
Thus, it is also not surprising that ER model can also 
perform well in mixed disruptions. Moreover, the impact of 
a node being disrupted is greater than that of an edge being 
disrupted. This is because a node may have multiple edges, 
and the failure of a node will cause the failures of the edges 
connected with the node. On the contrary, the failure of one 
edge does not necessarily lead to the failure of one node. 
ER model corresponds to the random connection rule, but 
in a real SCN, enterprises do not select partners completely 
at random [5]. Previous studies have found that most SCNs 
are scale-free networks [47], [75]. 
  Different from ER model, BA model corresponds to the 
degree-based priority connection rule, and the degree 
distribution of its nodes follows a power-law distribution, 
which is exactly the structural feature of a scale-free 
network. This means that a small number of nodes are 
connected with most nodes in the SCN generated by BA 
model, so most nodes have very small degrees. Therefore, 
even if the nodes with small degrees are disrupted, the 
impact on the whole SCN is not great, but once the nodes 
with large degrees are disrupted, the whole SCN will 
collapse rapidly. Because of this characteristic, BA model is 
resilient to random disruptions, but vulnerable to targeted 
disruptions. In addition, we observe that removing a few 
important edges does not have a great impact on SCN 
resilience. This is because a node with large degree has 
many edges, which are considered to be important. Even if 
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(a) SLFCS when nodes are disrupted       (b) The ratio of LLFCS to L0 when nodes are disrupted 

FIGURE 6.  The influence of parameter α on SCN resilience when nodes are disrupted in targeted disruptions. (a) is the SLFCS and (b) is the ratio of 
LLFCS to L0. 

 
(a) SLFCS when nodes are disrupted       (b) The ratio of LLFCS to L0 when nodes are disrupted 

FIGURE 7.  The influence of parameter β on SCN resilience when nodes are disrupted in targeted disruptions. (a) is the SLFCS and (b) is the ratio of 
LLFCS to L0. 

  
(a) SLFCS when nodes are disrupted       (b) The ratio of LLFCS to L0 when nodes are disrupted 

FIGURE 8.  The influence of parameter f on SCN resilience when nodes are disrupted in targeted disruptions. (a) is the SLFCS and (b) is the ratio of 
LLFCS to L0. 
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some of these edges are removed, a network can still 
maintain good connectivity. However, the function of the 
whole SCN will suffer a great loss when most of these 
edges are removed. In BA model, the node with larger 
degree is more likely to connect with more new nodes. This 
reflects the phenomenon that the rich are getting richer in 
reality. However, as aforementioned, the degree of an old 
node increases over time. If an old enterprise cannot adapt 
to the development of society, it will eventually be 
eliminated. On the contrary, if a young enterprise has good 
development potential and can provide good products, it 
may also develop very well. Therefore, not only degree but 
also fitness should be considered in the model of generating 
an SCN. 

ASCN model is an agile SCN model, which is similar to 
BA model. The connection rule of ASCN model is the 
priority connection based on node strength and distance. 
This means that enterprises will give priority to enterprises 
with high strength and close distance when choosing 
partners. Compared with BA model, the connections of 
nodes in an SCN generated by ASCN model are relatively 
more uniform. Even if important nodes with a large number 
of connections are disrupted, the number of nodes that 
remain connected is relatively large. Therefore, the SCN 
generated by ASCN model is slightly more resilient to 
targeted disruptions and slightly more vulnerable to random 
disruptions than the SCN generated by BA model. However, 
ASCN model also does not consider the exit and reselection 
of enterprises. 

The SCN generated by GMDR model is also a scale-free 
network. Therefore, GMDR model is also resilient to 
random disruptions, but vulnerable to targeted disruptions. 
Unlike BA model, GMDR model takes into account both 
degree and fitness, so even a young node may get a lot of 
connections. The priority connection rule based on degree 
and fitness corresponds to the phenomenon that 
high-quality enterprises with more partners can obtain more 
cooperation in reality. The distance-based connection rule 
of GMDR model corresponds to the localization of 
enterprise cooperation, which means the convenience of 
cooperation. In addition, GMDR model considers the exit 
and reselection of enterprises, and in the reselection, 
enterprises are more inclined to cooperate with local 
high-quality enterprises with more partners. This will lead 
to the emergence of a strong-strong alliance, which is also a 
very important phenomenon in an SCN. Once the alliance 
is destroyed, the resilience of an SCN will be seriously 
affected. Therefore, the resilience of GMDR model will 
rapidly degrade when the important nodes and/or edges are 
disrupted in targeted disruptions. The priority connection 
rule based on degree corresponds to the concern of an 
enterprise on the cost and efficiency of cooperation [1], [5]. 
Then the priority connection rule based on degree and 
fitness corresponds to the concerns of cost, efficiency, and 
quality. Cooperating with high-quality enterprises with 

more partners will help enterprises to expand cooperative 
business and obtain greater benefits. However, if only 
paying attention to these factors, the final result may be the 
vulnerability to targeted disruptions [1]. Therefore, an 
enterprise should not only focus on the enterprise with large 
degree, large fitness and close distance when choosing a 
partner. Meanwhile, if we want to design a SCN that is 
resilient to mixed disruptions, we should not only consider 
the priority connection, but also consider other strategies to 
make up for the shortcomings of priority connection, such 
as the random connection of ER model. In particular, we 
should identify and protect the important nodes and the 
cooperation between them in an SCN. 

Through the study of the influence of parameters α, β, 
and f on SCN resilience, we find that α has a significant 
impact on SCN resilience. The larger the value of α, the 
worse the SCN resilience. This is because the larger the 
value of α, the more enterprises tend to cooperate with the 
enterprise with large degree and fitness. When α > 1, there 
will be a hub connected to almost all nodes in the network. 
Once the hub is removed, the entire network will quickly 
collapse. When α > 2, the resilience of the corresponding 
SCN changes slightly as α increases, because a hub is fully 
connected to other nodes in the network. Even if α 

increases, the structure of corresponding SCN will not 
change much. Compared with α, β has a slight impact on 
SCN resilience. As β increases, the resilience of the 
corresponding SCN decreases slightly. This is because 
when a node is connected with a node with large degree 
and fitness, the node can access other nodes more 
conveniently. Although the probability of choosing a closer 
enterprise will increase when the value of β becomes larger, 
it will not change greatly. In addition, an SCN is very 
vulnerable when the fitness f follows the exponential 
distribution. In contrast, it performs well when f follows the 
Poisson distribution. In the exponential distribution, the 
distribution of f in the network is very uneven, while it is 
the opposite in the Poisson distribution. The node with 
large f is connected to most nodes in the network. If the 
difference of f in a network is particularly large, there will 
be a winner-takes-all phenomenon [58], [74]. Once the 
node with large f is removed, the whole network will be 
greatly affected. Therefore, the more uniform the 
distribution of f in an SCN, the better the SCN resilience. 

In our model, we consider the exit and reselection 
processes of enterprises. When enterprises make reselection, 
they will be attracted by dominant enterprises again, so that 
dominant enterprises can accumulate lager degrees. This 
will lead to the increasing importance of dominant 
enterprises in an SCN. Once these enterprises are at risk, 
the resilience of the entire network will be severely affected. 
Moreover, the reselection of enterprises may form an 
alliance between dominant enterprises, which can bring 
great benefits to the enterprises within the alliance. 
Similarly, once this relationship is destroyed, the resilience 
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of the network will also be affected. Therefore, the SCN 
generated by our model is very vulnerable to targeted 
disruptions. Compared with other models, it better reflects 
the impact of the enterprise's reselection process on SCN 
resilience. 

In summary, the following important inspirations for 
managers can be obtained through the research of this paper. 
First, managers should understand the supply chain system 
from a macro perspective. In an SCN, the micro behaviors 
of enterprises will bring about changes in the network 
structure, thus affecting the performance of the network. 
Therefore, in order to better respond to disruptions and 
implement management, managers should have an 
understanding of SCN structures. Second, it is necessary to 
discover and protect the important enterprises in an SCN. 
Generally, the enterprise that plays a pivotal role in an SCN 
is very important. It usually has cooperative relationships 
with most enterprises in the network. Once it is attacked, 
the entire SCN will be greatly affected. Therefore, it often 
becomes the primary target of malicious attacks. Third, it is 
necessary to protect the alliance relationship between 
important enterprises. An important enterprise is often 
attached by many other enterprises, thus these enterprises 
will form a group. Therefore, the alliance between two 
important enterprises often brings huge benefits to these 
two groups. Once this alliance is destroyed, it will have a 
huge impact on the entire SCN. Fourth, it is necessary to 
reduce the centrality of an SCN. Although the high 
centrality of the network helps to improve the operational 
efficiency of the network, it also increases the vulnerability 
of the network. Therefore, in order to prevent the serious 
impact of the disruption of important enterprises, managers 
can reduce the centrality of the network by cooperating 
with more other enterprises. Meanwhile, reducing the 
centrality of an SCN can also promote the diversification of 
cooperation and prevent monopoly. 

VI. CONCLUSION 

This paper studied the influence of the structure of an SCN 
on SCN resilience from the perspective of complex 
networks, so as to provide insights for the design of a 
resilient SCN. First, we propose a new SCN model called 
GMDR, which takes into account the exit and reselection of 
enterprises. Compared with the previous models, the 
connection rules of this model consider degree, fitness and 
distance, which can better reflect a real SCN. Then, 
different disruption scenarios are simulated, and the 
resilience of SCNs generated by BA, ER, ASCN, and 
GMDR models is compared. Finally, the influence of the 
parameters of GMDR model on SCN resilience is studied. 

The simulation results show that GMDR model is 
resilient to random disruptions, but very vulnerable to 
targeted disruptions, especially when the strong-strong 
alliance is destroyed, it will have a great impact on the 
whole SCN. In addition, the effect of α on SCN resilience is 

significant. The larger the value of α, the worse the SCN 
resilience. The parameter β has a slight effect on SCN 
resilience. As the value of β increases, the SCN resilience 
will decrease slightly. Meanwhile, the more uniform the 
distribution of f in an SCN, the better the SCN resilience.  

The main contributions of this study are as follows. In 
terms of theory, this study considers the exit and reselection 
of enterprises that have been overlooked in previous studies, 
and constructs an SCN model based on node degree, fitness, 
and distance. Moreover, this study fully considers different 
disruption types and objects, and uses computer simulations 
to measure the resilience of SCN under different disruption 
scenarios. Therefore, this study enriches the SCN theory 
and expands the research on SCN resilience. In terms of 
practice, this study provides some insights for the 
construction of SCNs and disruption management. 
Managers should have an understanding of SCN structures, 
and strengthen the protection of important enterprises and 
their alliance relationships in an SCN. Meanwhile, 
enterprises should enhance the diversification of 
cooperation and avoid excessive dependence on important 
enterprises, so as to prevent the SCN resilience from being 
seriously affected when important enterprises have risks. 

There are also some limitations that can be resolved to 
extend this research. First, this study does not consider the 
risk propagation in an SCN. In fact, due to the interaction 
between enterprises, the disruption of any enterprise will 
have an impact on the enterprises associated with it, thus 
the whole SCN will be affected. Therefore, capturing the 
risk propagation can help enterprises better deal with 
disruptions. In particular, understanding how risks are 
spread in SCNs will facilitate the construction of resilient 
SCNs. Second, some important factors are not considered, 
such as the capacity of a node and the weight of an edge. In 
reality, the capacity of an enterprise is limited and cannot 
expand indefinitely. Moreover, the strength of cooperation 
between enterprises is different. Some partnerships are 
strong, while others are not. Considering these factors can 
help us to depict SCNs more realistically. In addition, the 
exploration of the relationship between the resilience of 
individual enterprises and that of the whole network will 
also be beneficial to supply chain management. Future 
research can also try to study the collaboration and 
competition [76]–[78] between enterprises in SCNs from 
the perspective of cost and resilience. Usually, the pursuit 
of resilience often leads to increased costs. Therefore, how 
to ensure the SCN resilience at a relatively low cost is also 
an interesting direction. 
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