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Abstract: In HV cable fault location technology, line parameter uncertainty has an impact on the
location criterion and affects the fault location result. Therefore, it is of great significance to study
the uncertainty quantification of line parameters. In this paper, an impedance-based fault location
criterion was used for an uncertainty study. Three kinds of uncertainty factors, namely the sheath
resistivity per unit length, the equivalent grounding resistance on both sides, and the length of the
cable section, were taken as random input variables without interaction. They were subject to random
uniform distribution within a 50% amplitude variation. The relevant statistical information, such
as the mean value, standard deviation and probability distribution, of the normal operation and
fault state were calculated using the Monte Carlo simulation (MCS) method, the polynomial chaos
expansion (PCE) method, and the univariate dimension reduction method (UDRM), respectively.
Thus, the influence of uncertain factors on fault location was analyzed, and the calculation results of
the three uncertainty quantification methods compared. The results indicate that: (1) UQ methods
are effective for simulation analysis of fault locations, and UDRM has certain application prospects
for HV fault location in practice; (2) the quantification results of the MCS, PCE, and UDRM were very
close, while the mean convergence rate was significantly higher for the UDRM; (3) compared with
the MCS, PCE, and UDRM, the PCE and UDRM had higher accuracy, and MCS and UDRM required
less running time.

Keywords: high-voltage cable; fault location; uncertainty quantification; Monte Carlo simulation
(MCS); polynomial chaos expansion (PCE); univariate dimension reduction method (UDRM)

1. Introduction

With the rapid development of the economy and the rapid expansion of the scale of
the power grid, the number of power cables has greatly increased in the past 20 years due
to their low footprint and high reliability [1–3]. At the same time, the cables were laid in
various modes, and the operating conditions and environments were also quite different,
resulting in different aging rates of cables in different laying sections, which in turn leads
to different changes in the electrical parameters of the cables. In addition, in the event
of a cable failure, when replacing the cable, the method often used is to remove the fault
segment and use a cable joint at each end to connect the new cable to the original. Thus,
the distributed electrical parameters of the cable become more uneven.

At present, HV cable fault location of is mainly based on two principles. One is the
distance protection principle based on impedance measurement [4–6], and the other is the
traveling wave ranging principle based on traveling wave measurement [7–9]. The basic
principle of distance protection is mainly to identify the impedance parameters of the line,
because once the line fails, its impedance parameters change. However, since there is not
necessarily a linear relationship between the measured impedance and the distance to the
fault point, it is difficult to accurately locate the fault through the relationship between
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impedance and distance. Traveling wave ranging is mainly realized by analyzing the
transient traveling wave arrival time of the fault voltage or current. The main difficulty of
traveling wave ranging lies in the elimination of noise and the extraction of the wave head.

In order to improve fault location accuracy and the application scope of the impedance-
based method, there has been continuous research in recent years. In [10], the impedance-
based method was improved by considering the mutual inductance effect of double-
circuit lines, making it suitable for fault location of medium-voltage distribution networks
in double-circuit scenarios. In [11], the electrical characteristics of nodes in distributed
networks under fault conditions were considered, and fault location criteria for different
fault sections of distributed networks were proposed. In [12], a fault line selection method
was proposed for distributed networks according to the directional vector characteristics of
fault currents under fault conditions. The improvement of the impedance method in these
studies mainly focused on the applicability of different application scenarios. These studies
have different emphases, but the formulas of the fault location criteria are not unified and
cannot be mutually applied in different application scenarios.

In order to improve the fault location effect of the traveling wave method, in recent
years continuous research on denoising, head wave extraction, and traveling wave arrival
time identification has been conducted. In [13], a fault position search algorithm was
proposed based on the midpoint of time and the reflection law of voltage, and current
traveling waves were analyzed at the end of the line. In [14], the continuous wavelet
transform method was used to analyze the time–frequency of the fault’s traveling wave,
and the experiment verified that the method can identify the arrival time of the traveling
wave according to the characteristic frequency of the fault’s traveling wave. In [15], a
multilayer neural network method was used to improve the recognition accuracy of the
high-frequency part of the fault’s traveling wave. With the improvement of computing
power and signal synchronization accuracy, many applications of intelligent algorithms
have emerged in recent years, but these improvements and applications are limited to a
single type of line or specific application scenarios, and it is difficult to form a unified fault
location criterion. These improved methods have not fundamentally solved the inherent
problems of traveling wave attenuation and noise.

Uncertainty quantification (UQ) is a quantitative solution technology that models
the input uncertainty parameters of the model with random variables, and then converts
them into corresponding random problems, and performs statistical analysis on the output
changes [16]. With the development of big data, UQ has been widely studied in the fields
of statistics and computer science in recent years [17]. However, to the best of the authors’
knowledge, few practical applications of UQ methods in HV cable fault location have been
reported. In order to solve the problem of uncertainty analysis in fault location, this paper
introduces theory and UQ methods to explore the influence of uncertainty factors on fault
location. Three UQ methods, MCS, PCE, and UDRM, are compared and analyzed to verify
the effectiveness of each method. The results obtained will help guide the design of the
fault location algorithm.

2. Theoretical Basis of the UQ methods

Unlike conventional model calculations, the input parameters of UQ are its possible
probability distributions. Through the propagation of model uncertainty, a certain distribu-
tion UQ method that finally obtains the output is roughly divided into two categories: a
probabilistic framework and a non-probabilistic framework. UQ under the probabilistic
framework models the input parameters of the computational model as random variables
and gives their variable types, the probability distribution’s types of model parameters are
fitted by statistical methods, and finally the distribution probability of the model output in
a certain interval is determined by statistical analysis. Commonly used probabilistic UQ
methods mainly include the MCS method [18], the PCE method [19], the surrogate model
method, and the dimensionality reduction method.
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2.1. MCS Method

The MCS method is the simplest method based on sample calculation. When solving
uncertain problems, multiple samples are required to repeat the calculation, and the sample
dependence is strong [20]. The MCS uncertainty analysis method is simple in principle and
focuses on how to generate samples.

First, according to the distribution type of the random input variable X = [X1, X2, . . . , Xd],
generate N samples xi = {xi1, xi2, . . . , xid}(i = 1, . . . , N); then substitute xi into Y = g(X)
in turn to solve yi(i = 1, . . . , N); finally, calculate its related statistical information for
N outputs, such as mean value, standard deviation, probability function distribution, etc.

The mean convergence rate of MCS is 1/N, that is, accurate results can be obtained
only when the number of samples is large enough. Therefore, the MCS method is generally
only used as a benchmark in uncertainty quantification. The large amount of calculation
and long running time limit its development.

2.2. PCE Method

The PCE method is a popular uncertainty quantification method in recent years. It
performs finite-order truncation expansion on stochastic problems, uses a series of deter-
ministic coefficient polynomial equations to represent the original uncertainty problem,
and obtains the exact solution of the stochastic problem by solving the coefficients of
the polynomial equations [21]. For the chaotic polynomial model, the output Y = g(X) is
expressed as in (1).

Y = c0H0 +
p

∑
q1=1

cq1 H1
(
ξq1

)
+

p

∑
q1=1

q1

∑
q2=1

cq1q2 H2
(
ξq1 , ξq2

)
+ . . .+

p

∑
q1=1

q1

∑
q2=1

. . .
qd−1

∑
qd=1

cq1q2 ...qd Hp
(
ξq1 , ξq2 , . . . , , ξqd

)
(1)

In (1), p is the order of the polynomial model; c0 is a constant coefficient; cq1q2 . . . qd =cq
is the q-th order polynomial coefficient to be determined; x = (xq1, xq2, . . . , xqd) dimension
standard random variable; Hp(x) is a Hermite orthogonal polynomial of order p. The PCE
method has high precision and fast convergence speed, but for complex model calculation
problems, the solution process of cq becomes cumbersome.

2.3. UDRM Method

UDRM decomposes the original function with the mean point as the reference point
of the single variable [22]. UDRM is mainly realized through the following three steps.

First, find a set of reference points, and decompose the original function g(X) at the
mean point mi of each single variable to approximately decompose it into the form of
summation of multiple single variable functions, as presented in (2).

g(X) ≈ ĝ(X) = ĝ(X1, . . . , Xd) =
d

∑
i=1

g(µ1, . . . , µi−1, Xi, µi+1, . . . , µd)− (d− 1)g(µ1, . . . , µd) (2)

In (2), d is the variable dimension; mi is the mean value corresponding to the i-th
dimension variable; Xi is the only variable; g(µ1, . . . , µi−1, Xi, µi+1, . . . , µd) is the function
value of the variable Xi; g(µ1, . . . , µd) is the function value of g(X) at mX. It can be seen
from (2) that the d summation terms on the right-hand side of the equal sign minus d−1
constant terms are equal to the left-hand end term of the equal sign.

After decomposing the single variable of g(X), the second step of UDRM is to solve
the r-th order statistical moment of ĝ(X), that is, to directly integrate (2) to obtain (3).

mr ≈ E[ĝr(X)] (3)

In (3), E(·) is the mathematical expectation operator.
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Based on the expansion of the binomial theorem, the r-order statistical moment of g(X)
is obtained as shown in (4) and (5), where i = 1, . . . , r.

mr ≈
r

∑
i=0

(
r
i

)
Si

d[−(d− 1)g(µ1, . . . , µd)]
r−i (4)

Si
d =

i

∑
k=0

(
i
k

)
Sk

d−1E
[

gi−k(µ1, . . . , µd−1, Xd)
]

(5)

The third step of UDRM is to specifically solve the d one-dimensional integrals. Select
a Gaussian interpolation product formula for calculating higher-order integrals, as shown
in (6).

E
[

gh(µ1, . . . , µj−1, Xj, µj+1, . . . , µd
)]

=
∫

gh(µ1, . . . , µj−1, Xj, µj+1, . . . , µd
)

fXj

(
xj
)
dxj ≈

m

∑
i=1

ωji
[
g
(
µ1, . . . , µj−1, Xj, µj+1, . . . , µd

)]h (6)

In (6), h = i−k; fXj(xj) is the marginal probability density function of the j-th dimension
variable Xj, which can be calculated or given according to the given random variable type;
g(m1, . . . , mj−1, lji, mj+1, . . . , md) is the single variable function value corresponding to the
j-th dimension variable.

3. HV Cable Fault Location Model
3.1. HV Cable Fault Location Model

In [23], based on the calculation of the phase angle of the sheath circulation, a fault
location criterion for high-voltage cross-connected cables is proposed. The model and cable
structure parameters are used in this paper, as shown in Figure 1.
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insulation, and the fault location is mainly realized by analyzing the grounding current of 

Figure 1. The schematic diagram of the structure and sheath current of HV cable. In the equivalent
circuit, Zc represents the equivalent impedance of the core conductor, Ri represents the equivalent
resistance of the main insulation, Ci represents the equivalent capacitor of the main insulation,
ZmL represents the equivalent impedance of the left half of the metal sheath, ZmR represents the
equivalent impedance of the right half of the metal sheath, ZmLk represents the equivalent ground
impedance of the metal sheath on the left side, ZmRk represents the equivalent ground impedance of
the metal sheath on the right side.

A typical HV cable consists of at least 5 layers, as shown in Figure 1. The core conductor
carries the load current, and the metal sheath is grounded. Cables with a length of more
than 1.2 km are mostly grounded by cross-bonded, as shown in Figure 2. The fault studied
in this paper is mainly a short-circuit fault caused by the breakdown of the main insulation,
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and the fault location is mainly realized by analyzing the grounding current of the sheath,
because the monitoring of the sheath current is relatively safer and easier to obtain.
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Figure 2. The schematic diagram of a cross-bonded HV cable.

In a major section, under normal operating conditions, the equivalent circuit model of
the sheath current of the A1-B2-C3 section is shown in Figure 3. The calculation expression
of the sheath current is shown in (7), where Im1 represents the sheath current of the A1-
B2-C3 section, Ua1 represents the induced electromotive force of the sheath section A1,
and Ub2 represents the induced electromotive force of the sheath section B2, Uc3 is the
induced electromotive force of the sheath section C3, Zma1 is the equivalent impedance of
the sheath section A1, Zmb2 is the equivalent impedance of the sheath section B2, Zmc3 is the
equivalent impedance of the sheath section C3, Rg1 Indicates the grounding resistance of
the G1 end, and Rg2 indicates the grounding resistance of the G2 end. Ua1, Ub2, Uc3 contain
the equivalent induced electromotive force of adjacent lines.
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Figure 3. The equivalent circuit of sheath current in A1–B2–C3 section under normal operation.

Since half of the leakage current flows in the same direction as the sheath circulating
current and the other half is opposite to the sheath circulating current, it can be ignored
in the calculation of the sheath grounding current under normal operation. When the
short-circuit fault occurs, the equivalent circuit of the sheath current is changed, and the
calculation method of the elements in the corresponding transmission line equation is also
changed. During the short-circuit fault, the fault current flows from the core conductor into
the metal sheath, and then flows to the ground through the metal sheath. A new current
loop is formed between the core conductor and the metal sheath, and this current loop
contains its own loop self-inductance and mutual inductance with other current loops.
Taking the short-circuit fault in section A1 as an example, the equivalent circuit of the fault
is shown in Figure 4, where Ua represents the equivalent voltage source of the A-phase line,
UA1S represents the induced electromotive force of the metal sheath section from G1 to the
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fault location, UA1R represents the induced electromotive force of the metal sheath section
from the fault location to J1, Rf represents the fault resistance, If represents the fault current
of the power supply terminal, IS represents the fault current flowing to G1 terminal, and IR
represents the fault current flowing to the G2 terminal.
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The expressions of IS and IR are shown in (7) and (8), where ZA1S represents the
equivalent impedance of the metal sheath section from G1 to the fault position, and ZA1R
represents the equivalent impedance of the metal sheath section from the fault position to
J1. For the specific solution method of each parameter, see reference [23], and the position
of the fault point can be calculated by the phase difference P(section) between IS and IR.
For example, P(A1) represents the phase difference between IS and IR of A1 section, the
sheath currents are measured at G1 and J1.

IS =
Ua + UA1S

ZA1S + R f + Rg1
(7)

IR =
Ua + UA1R + UB2 + UC3

ZA1R + ZB2 + ZC3 + R f + Rg2
(8)

3.2. Case Study of the Fault Location of HV Cable

In a simple power system consisting of a voltage source, a transformer, a complete
cross-connected section of high-voltage cables, and three-phase balanced loads, the high-
voltage cables were laid in three-phase tunnels in a zigzag pattern with a phase spacing of
0.3 m and a height of 0.5 m above the ground. The complete cross-connection section had a
total length of 1500 m, each small section was 500 m long, and the grounding resistance
of the direct grounding point of the metal sheath was 0.1 Ω. The soil resistivity was
100 Ωm. The cross-section of the core conductor was 800 mm2, and the rated current
carrying capacity was 976 A. The structural parameters are shown in Table 1.

Table 1. Parameters of cross-sectional structure of the cable 1.

Serial Number Structure Outer Radius/mm

1 Core conductor (copper) 17.0
2 Inner semi-conductive shield 18.4
3 Main insulation (cross-linked polyethylene, XLPE) 34.4
4 Outer semi-conductive shield 35.4
5 Water-blocking layer (semiconductor material) 39.4
6 Metal sheath (aluminum) 43.9
7 Jacket (Polyvinyl chloride, PVC) 48.6

(1 The designation of the cable is YJLW03).
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The three-phase voltage source of 110 kV was set to Ua = 63.51∠0◦ kV, Ub = 63.51∠−120◦ kV,
Uc = 63.51∠120◦ kV, the three-phase balanced load ran at full load, and the short-circuit
fault was set in the A1 section. According to the research on the breakdown characteristics
of cross-linked polyethylene materials in [24], the conductivity of the penetrating main
breakdown channel was about 10−3 Ω·cm. According to this calculation, the resistance
of the breakdown channel of the main insulation of the cable was only a few milliohms,
depending on the equivalent cross-sectional size of the breakdown channel. In addition,
considering that there may have been a small contact resistance at the cross-bonded point,
based on the above analysis, in this case, the transition resistance Rf was set to 0.01 Ω, and
the fault point distance Lx was set as an independent variable. Since the length of the cable
section A1 was 500 m, the variation range of Lx was (0, 500), so that the fault point can
traverse any point in the section, the calculated phase difference P(A1) of the sheath current
at both ends of the section A1 is shown in Figure 5.
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4. Fault Location Simulation Analysis Based on UQ Method
4.1. The Simulation Based on the Three UQ Methods

At present, the accuracy of fault location is limited by the uncertainty factors of
the actual fault scene. This paper mainly studies three common uncertainty factors: the
resistivity of the sheath per unit length, the uneven distribution of the capacitance, and the
length of the line section.

Three UQ methods such as MCS method, PCE method, and UDRM were respectively
used to quantitatively analyze the uncertainty in HV cable fault location. Taking the
parameters in the calculation example in Section 3.2 as the reference value, the change
rate of the studied uncertainty factors was 50% random and uniform distribution, and
the output changes of the sheath current and the fault location criterion were calculated
and analyzed.

(1) MCS method. The MCS method is generally used as a benchmark for methods in
the field of uncertainty quantification. When using the MCS method to calculate the
uncertainty of the resistivity per unit length of the HV cable fault location problem, it
mainly includes the following steps: (a) according to the given distribution type, N
samples are randomly generated; (b) substitute the N samples into the HV cable fault
location calculation model in turn, and repeat the calculation to obtain the correspond-
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ing N sample output values; (c) calculate the relevant statistical characteristics of the
sheath current, such as mean, standard deviation, probability density distribution, etc.

First, the relationship between the MCS mean convergence rate and N under normal
operating conditions was calculated as shown in Figure 6a. When the number of samples
reaches 300, the result tends to converge. Under the condition of short-circuit fault, the
mean convergence rate of the fault location criterion was calculated respectively when the
short-circuit point was 50–500 m, as shown in Figure 6b, when the number of samples
reaches 300, the result tends to converge. Therefore, in the follow-up study, the sample size
was chosen to be 500.
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(2) PCE method. The focus of the PCE method is the construction of a polynomial model,
and then quantitative analysis is performed on its model. The fault location model of
high-voltage cables is expressed as a polynomial model shown in (1), and N sampling
points are selected in the standard random space and transformed into the original
random space. Next, select an appropriate method to obtain the PCE coefficient, and
calculate the probability and statistical characteristics of the sheath current value.
Considering that the truncation order of the PCE method may have an influence
on the calculation results, the PCE methods of the second-order expansion (p = 2),
the third-order expansion (p = 3), and the fourth-order expansion (p = 4) were used
for simulation.

(3) UDRM. When using the UDRM method, the parameters in the calculation example
in Section 3.2 are used as reference values, and the fault location model of the HV
cable is expressed as the type shown in (2). Then, the number of integration nodes
m corresponding to the random input variables of each dimension is determined.
Calculate the corresponding 1-dimensional Gaussian nodes and weights according
to the random input variable type, and substitute the given uncertainty factor range
into the single-variable element calculation of (6). Thus, the statistical moment of the
output voltage of the model can be calculated.

4.2. Quantitative Analysis of the Results

In order to quantitatively evaluate the uncertainty quantification results, parameters
such as mean and standard deviation are usually used to describe the output uncertainty
information. When there are a large number of samples, m is the arithmetic mean of the
samples, as shown in (9).

µ =
∫
Ω

X fX(X)dX (9)
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The standard deviation s indicates the degree of deviation of the random variable
distribution X from its mean. The smaller the standard deviation, the more concentrated
the distribution of sample points.

σ =

√
E(X− µ)2 =

√∫
Ω

(X− µ)2 fX(X)dX (10)

Covariance (Cov) is used to describe the relationship between variables, as shown in
(11), where X and Y are the mean values of variables X and Y, respectively.

Cov =

N
∑

i=1

(
Xi − X

)(
Yi −Y

)
N − 1

(11)

The coefficient of variation (Cvar) measures the degree of dispersion of the predicted
values of the model, also known as the “dispersion coefficient”, which represents the
stability of the model. The expression of Cvar is shown in (12). Different Cvar values
represent different stability situations, and the model stability quantification table is shown
in Table 2.

Cvar =
∣∣∣∣σµ
∣∣∣∣ (12)

Table 2. Model stability quantization table.

Cvar Model Stability

≤0.2 The fluctuation is very small and very stable
>0.2, ≤0.4 Small fluctuations, basically stable
>0.4, ≤0.6 Generally volatile, less stable
>0.6, ≤0.8 High volatility, unstable

>0.8 Highly variable and random

The mean absolute error (Mape) is used to discriminate the prediction accuracy of the
model, and its expression is shown in (13), where N is the number of samples, u is the
actual value, and û is the model predicted value.

Mape =
1
N

N

∑
i=1

|u− û|
u

(13)

The probability distribution of the sheath current Im1 (under normal operation) and
the fault location criterion P(A1) at a distance of 50 m from the head end of the short-circuit
fault point were calculated respectively, under 50% amplitude variation range of three
uncertainty factors, the resistivity of the sheath per unit length, the equivalent grounding
resistance on both sides, and the length of the cable sections. The results of the statistical
parameters are shown in Tables 3–8 and the probability density distribution plot of the
results are shown in Figures 7–12.

Table 3. Evaluation table of different UQ methods under 50% uncertainty of sheath resistivity under
normal operation.

Methods m s Cov Cvar Mape t/s

MCS 0.1492 0.0025 0.0026 0.3386 0.2975 0.133
PCE_2 0.1393 0.0187 0.0004 0.1346 0.1023 0.554
PCE_3 0.1384 0.0180 0.0003 0.1304 0.1000 0.572
PCE_4 0.1373 0.0176 0.0003 0.1285 0.0990 0.651
UDRM 0.1498 0.0486 0.0024 0.3247 0.2891 0.438
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Table 4. Evaluation table of different UQ methods under 50% uncertainty of the grounding resistance
under normal operation.

Methods m s Cov Cvar Mape t/s

MCS 0.1363 5.39 × 10−6 2.91 × 10−11 3.96 × 10−5 3.46 × 10−5 0.183
PCE_2 0.1363 2.37 × 10−6 5.65 × 10−12 1.74 × 10−5 0 0.547
PCE_3 0.1363 2.30 × 10−6 5.31 × 10−12 1.69 × 10−5 0 0.629
PCE_4 0.1363 2.32 × 10−6 5.37 × 10−12 1.70 × 10−5 0 0.685
UDRM 0.1362 2.08 × 10−7 4.33 × 10−14 1.53 × 10−6 0.0004 0.429

Table 5. Evaluation table of different UQ methods under 50% uncertainty of the cable length under
normal operation.

Methods m s Cov Cvar Mape t/s

MCS 0.1488 0.0478 0.0023 0.3212 0.2819 0.121
PCE_2 0.1389 0.0178 3.16 × 10−4 0.1281 0.1009 0.541
PCE_3 0.1395 0.0192 3.70 × 10−4 0.1379 0.1110 0.553
PCE_4 0.1385 0.0178 3.18 × 10−4 0.1287 0.0991 0.688
UDRM 0.1306 0.0032 1.04 × 10−5 0.0248 0.0417 0.408

Table 6. Evaluation table of different UQ methods under 50% uncertainty of sheath resistivity under
short-circuit fault.

Methods m s Cov Cvar Mape t/s

MCS 177.95 0.1639 0.0269 9.21 × 10−4 7.79 × 10−4 12.78
PCE_2 178.07 0.0674 0.0045 3.79 × 10−4 1.07 × 10−4 13.12
PCE_3 178.08 0.0655 0.0043 3.68 × 10−4 1.22 × 10−4 13.14
PCE_4 178.16 0.0646 0.0042 3.62 × 10−4 3.98 × 10−4 13.45
UDRM 178.12 0.0102 1.04 × 10−4 5.72 × 10−5 1.94 × 10−4 13.33

Table 7. Evaluation table of different UQ methods under 50% uncertainty of sheath resistivity under
short-circuit fault.

Methods m s Cov Cvar Mape t/s

MCS 177.96 0.3282 0.1077 0.0018 7.06 × 10−4 12.89
PCE_2 178.07 0.1317 0.0174 7.40 × 10−4 1.13 × 10−4 13.27
PCE_3 178.07 0.1301 0.0169 7.31 × 10−4 8.08 × 10−5 13.28
PCE_4 178.06 0.1314 0.0173 7.38 × 10−4 1.70 × 10−4 13.42
UDRM 178.13 0.0253 6.40 × 10−4 1.42 × 10−4 2.51 × 10−4 13.32

Table 8. Evaluation table of different UQ methods under 50% uncertainty of the cable length under
short-circuit fault.

Methods m s Cov Cvar Mape t/s

MCS 177.96 0.0139 1.94 × 10−4 7.84 × 10−5 7.10 × 10−4 12.93
PCE_2 178.05 0.0055 3.06 × 10−4 3.11 × 10−5 2.34 × 10−4 13.53
PCE_3 178.12 0.0060 3.58 × 10−5 3.36 × 10−5 1.95 × 10−4 13.49
PCE_4 178.09 0.0056 3.11 × 10−5 3.13 × 10−5 1.90 × 10−5 13.43
UDRM 178.09 0.0011 1.22 × 10−6 6.19 × 10−6 3.30 × 10−5 13.37
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50% uncertainty of grounding resistance under normal operation.
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Figure 10. The probability density of the calculated data of P (A1) using the 5 different methods
under 50% uncertainty of sheath resistivity under short-circuit fault condition.
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It is to be noted that all the calculations presented in the paper were performed
using MATLAB, and the simulations were carried out on an AMD Ryzen Threadripper
3970X 32-Core, 64 GB RAM computer. As presented in Tables 3–8 and Figures 7–12, the
five UQ methods have good effects on the quantification of the uncertain factors when
the sample size is sufficient. The mean values of the results of these five methods are
relatively close, but the distributions are quite different. In general, the distribution of
results of UDRM is relatively concentrated, while the distribution of results of MCS is
relatively scattered. Specifically, under 50% amplitude variation range of three uncertainty
factors, the changes in sheath resistivity make the waveform flatter, while the changes
in cable length make the waveform more spread out by different methods, whether in
normal operation or short-circuit fault conditions. Under 50% amplitude variation range
of grounding resistance, all the distributions of results of these five methods are relatively
concentrated. The probability density of the calculated data of P(A1) using the five different
methods under 50% uncertainty of the cable length under short-circuit fault condition is
the most scattered. For the condition of normal operation or short-circuit fault condition,
the waveforms in normal operation are flatter.

5. Discussion

In order to study the feasibility and effectiveness of the UQ method in the problem
of HV cable fault location, MCS, PCE, and UDRM were studied and compared with each
other. It can be seen from the simulation results of the HV cable that when the MCS method
is used for the quantitative analysis of uncertainty, the sample mean convergence rate
is relatively low, and only when the number of N is large enough, a smooth probability
distribution curve can be obtained, which costs a lot of time. Especially for the fault location
in practice, it is almost impossible to withstand hundreds of tests to calculate the fault
position. The PCE method has higher accuracy, and with the increase of the polynomial
order p, the uncertainty calculation results are more accurate. However, the running time
of PCE is relatively long, and with the increase of uncertain factors, greater nonlinearity
may lead to an exponential increase in the computational scale of PCE, which in turn
makes it impossible to solve. The quantification results using UDRM are very close to
the results of the MCS and PCE, while the mean convergence rate is significantly higher,
and the distribution of the results is more concentrated, which is a great advantage for
practical applications.

However, the actual experiments and applications on the HV cables are still premature.
For example, the settings and verification problems of the uncertain factors in practice, and
the maximum number of tests and cost issues that can be accepted. These will be further
studied in the future.

6. Conclusions

The paper conducted a prospective study on the application of three UQ methods,
MCS, PCE, and UDRM, in HV cable fault location. The sheath resistivity per unit length,
the equivalent grounding resistance on both sides, and the length of the cable section were
taken as the uncertainty factors. The simulation results indicate that:

(1) The UQ methods are effective for the simulation analysis of the fault location, and
UDRM has certain application prospects for HV fault location in practice.

(2) The quantification results of MCS, PCE, and UDRM are very close, while the mean
convergence rate is significantly higher for UDRM.

(3) Compared with MCS, PCE, and UDRM, PCE and UDRM have higher accuracy, MCS
and UDRM require less running time.
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