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Abstract The aim of the gimballed stabilization system is to 

stabilize the sensor’s line of sight towards a target by 

isolating the sensor from the disturbance induced by the 

operating environment, such as various disturbance 

torques and body motions. This paper presents a two axes 

gimbal assembly. The torque relationships are derived 

considering the angular motion of the base body and the 

dynamic unbalance. The stabilization loops for the two 

axes gimbal system are constructed and related to each 

other with a cross-coupling unit. Next, the overall model is 

simulated using two approaches and the obtained results 

are compared to show the correction of the model 

proposed. Finally, numerous tests are applied to evaluate 

the model’s performance and investigate the effects of 

torque disturbance considered in this research. 
 

Keywords Gimbal System, Line of Sight, Rate Gyro, 

Inertia Stabilization System, Stabilization Loop 

 
1. Introduction 
 

Optical equipment (such as IR, radar, laser, and 

television) has seen wide use in many important 

applications, such as image processing, guided missiles, 

tracking systems and navigation systems. In such 

systems, the optical sensor axis must be accurately 

pointed from a movable base to a fixed or moving target. 

Therefore, the sensor’s line of sight (LOS) must be strictly 

controlled. In such an environment, where the equipment 

is typically mounted on a movable platform, maintaining 

sensor orientation towards a target is a serious challenge. 

An inertial stabilization platform (ISP) is an appropriate 

way of solving this challenge [1]. Usually, a two axes 

gimbal system is used to provide stabilization to the 

sensor while different disturbances affect it. The most 

important disturbance sources are the base’s angular 

motion, the dynamics of the gimballed system and the 

gimbal mass unbalance. It is therefore necessary to 

capture all the dynamics of the plant and express it in 

analytical form before the design of the gimbal assembly 

is taken up [2]. The performance of a system depends 

heavily on the accuracy of plant modelling. A typical 

plant for such problems consists of an electro-mechanical 

gimbal assembly with angular freedom in one, two or 

three axes and one or more EO sensors [3]. The two axes 

gimbal model has been discussed in many studies using 
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different assumptions and methods. In [4], the kinematics 

and geometrical coupling relationships for the two 

degrees of freedom gimbal assembly have been obtained 

for a simplified case when each gimbal is balanced and 

the gimballed elements bodies are suspended about their 

principal axes. Equations of motion for the two axes 

gimbal configuration have been discussed on the 

assumption that the gimbals are rigid bodies and have no 

mass unbalance [5]. Extrand has shown that inertia 

disturbances can be eliminated by certain inertia 

symmetry conditions, and that certain choices of inertia 

parameters can eliminate the inertia cross-couplings 

between the channels of the gimbal system [5]. Neither of 

the studies [4, 5] mentioned above have been simulated. 

A single degree of freedom (SDOF) gimbal operating in a 

complex vibration environment has been presented by 

Daniel in [6]. It has been illustrated how the vibrations 

excite both static and dynamic unbalance disturbance 

torques, which can be eliminated by statically and 

dynamically balancing the gimbal, though it is regarded 

costly and time consuming [6]. A novel method to 

measure unbalanced moments in a two axes gimballed 

seeker has been presented by Yu and Zhao in [7], but this 

method was inadequate for the better performance of a 

seeker owing to the limited sensor’s own accuracy. In [8], 

a proxy-based sliding mode was applied on a two axes 

gimbal system, where its motion equations were derived 

on the assumptions that gimbals have no dynamic mass 

imbalance and that the mass distribution of the gimbals is 

symmetrical with respect to the frame axes under 

consideration. In addition, the effects of the base angular 

velocities were not highlighted. In [9], a two axes gimbal 

mechanism was introduced with just the modelling of the 

azimuth axis focused upon - the elevation angle was kept 

fixed and the cross moments of inertia were taken to be 

zero. In both [5] and [10], the dynamical model of the 

elevation and azimuth gimbals was derived on the 

assumption that the gimbals’ mass distribution was 

symmetrical with respect to their frame axes. Therefore, 

the products of inertia were neglected and the model was 

simplified. It is clear that two axes gimbal systems have 

been studied in many papers and that the gimbal system 

model has been obtained utilizing different approaches. 

However, most of these studies have considered that the 

elevation and azimuth channels are identical such that 

one axis was simulated and tested. Thus, the cross-

coupling - which is caused by the base angular motion 

and the properties of gimbal system dynamics – has been 

ignored. Moreover, it has been supposed that the 

gimbals’ mass distribution is symmetrical such that the 

gimbals have no dynamic mass unbalance. Therefore, this 

article is devoted to the presentation of a model of a two 

axes gimbal system in order to simplify the picture of the 

gimbal systems and further investigate the properties of 

this configuration by taking into account the most 

important disturbance sources, such as the base rotations, 

the gimbal system imperfections and the gimbal system 

properties. In another words, the motivation and 

importance of this research results from deriving the 

torque relationships by considering the angular motion of 

the base body and the dynamic mass unbalance, and then 

introducing the overall control system with cross-coupling. 

This is what can provide more understanding of the 

activity of such systems wherever they are designed 

considering the most important work conditions. The 

remainder of this paper is organized as follows. The 

equations of the gimbals motion are derived using 

Newton’s second law, considering the angular motion of 

the base body, the cross-coupling between gimbals, and the 

unsymmetrical gimbals mass’ distribution. Afterwards, the 

stabilization loop is investigated and constructed. The 

system is modelled using MATLAB/Simulink and 

MATLAB/SimMechanics, and their results are compared 

to verify the present model. The obtained model is tested 

for many different scenarios to demonstrate the effects of 

disturbance torques caused by the base angular motion 

and the dynamic mass unbalance. Finally, the results are 

discussed, concluding remarks are made, and some future 

works are suggested so as to develop this research.  

2. Problem formulation 

The stabilization is usually provided to the sensor by 

suspending it on the inner gimbal of a two axes gimbal 

system, as is shown in figure 1.  

 

ε

ε

η
η

 

Figure 1. The two axes gimbal system. 

 

Furthermore, a rate gyro located on the inner gimbal is 

utilized to measure the angular rates in the two planes of 

interest. The gyro outputs are used as feedback to torque 

motors related to the gimbals. The overall control system 

is constructed utilizing two identical stabilization loops 

(figure 2) for the inner (elevation) and outer (azimuth) 

gimbals. This system aims to isolate the stabilized object 

(sensor) from the base rotation. Therefore, the elevation 

gimbal’s angular velocities, which are the outputs of the 

control system, must be made zero. In other words, the 

sensor optical axis must be maintained as non-rotating in 

an inertial space despite torque disturbances. 
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Figure 2. The one axis gimbal stabilization loop. 

 

The two control loops in the elevation and azimuth 

channels are related to each other by the cross-coupling 

unit, which is built based on the relationships of the 

torques affected on the two gimbals. The cross-coupling 

expresses the properties of the gimbal system dynamics. It 

reflects the fact that the azimuth gimbal can affect the 

elevation gimbal even when the base body is non-rotating. 

In addition, there is similar impact on the part of the 

elevation gimbal on the azimuth gimbal. As a result, the 

cross-coupling may be defined as the effect on one axis by 

the rotation of another [6]. It is worth mentioning that this 

paper is based on the following assumptions: 

1. The gimbals are rigid bodies. Moreover, the gimbal 

rotation centre and the frame origin are identical. 

2. The gimbal mass centre is supposed to be in the 

common centre of rotation, which means that the 

gimbals have no static mass unbalance. 

3. The gimbal mass distribution is not symmetrical with 

respect to the gimbal frame axes, which means that 

the gimbals have dynamic mass unbalance 

3. Dynamic mass unbalance and kinematic coupling 

The dynamic mass unbalance is the result of a non-

symmetrical mass distribution called the ‘product of 

inertia’ (POI) [6]. The dynamic unbalance concept can be 

indicated by the inertia matrix. Therefore, if the 

considered gimbal has a symmetrical mass distribution 

with respect to its frame axes, then the gimbal has no 

dynamic unbalance and its inertia matrix is diagonal. In 

addition, and on the one hand, if the gimbal has a non-

symmetrical mass distribution with respect to its frame 

axes, then the gimbal has dynamic unbalance and its 

inertia matrix is not diagonal. On the other hand, the 

gimbal assembly provides the connection between the 

system base and the line of sight (LOS). Therefore, to 

practically estimate the system performance, the 

mechanisms that couple the base motion and the LOS 

angular motion must be completely evaluated. Next, it 

will be shown that the angular rate coupling is caused by 

the kinematic relationships between the gimbal assembly 

parameters and the base motions.   

4. Reference frames and notations 

In this paper, a two axes gimbal system depicted in figure 

1 is considered. Three reference frames are identified as 

follows. Frame P fixed to the fuselage body with axes 

( ), ,i j k , frame B fixed to the azimuth (outer) gimbal with 

axes ( ), ,n e k , and frame A fixed to the elevation (inner) 

gimbal with axes ( ), ,r e d . The r-axis coincides with the 

sensor optical axis. The k axis points "downwards". The 

centre of rotation is at the frame origin, which is assumed 

to be the same point for the three frames. The 

transformation matrices are based on the angles of 

rotation ε and η: 

        


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










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0cossin
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(2) 

B

PC is the transformation from frame P to frame B. 

Similarly, A

BC  is the transformation from frame B to 

frame A. The inertial angular velocity vectors of frames P, 

B and A, respectively, are: 

       

, ,

pi Bn Ar

p B A

P I pj B I Be A I Ae

BK Adpk

ω ω ω

ω ω ω ω ω ω

ω ωω
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   (3) 

where , ,
i j kp p pω ω ω are the body angular velocities of 

frame P in relation to the inertial space about the i, j and k 

axes respectively, , ,
n e kB B Bω ω ω are the azimuth gimbal’s 

angular velocities in relation to the inertial space about 

the n, e and k axes respectively, and , ,
r e dA A Aω ω ω are the

elevation gimbal’s angular velocities in relation to the 

inertial space about the r, e and d axes respectively. The 

inertia matrices of the elevation and azimuth gimbals are: 
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=
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Where , ,r e dA A A  are the elevation gimbal moments of 

inertia about the r, e and d axes, , ,re rd deA A A  are the 

elevation gimbal moments products of inertia, , ,n e kB B B   

are the azimuth gimbal moments of inertia about the n, e 

and k axes, and , ,ne nk keB B B  are  the azimuth gimbal 

moments’ products of inertia. Additionally, ELT  is 

introduced as the total external torque about the elevation 

gimbal e-axis, and AZT  as the total external torque about 

the azimuth gimbal k-axis. As mentioned above, the aim is 

to stabilize the gimbal system LOS (r-axis), which means 

that the angular velocities Aeω  and Adω  must be equal to 
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zero. Aeω  and Adω  can be measured by a rate gyro placed 

on the elevation gimbal. In general, Euler angles define the 

position between two related reference frames [7]. For the 

body’s fixed frame P and the azimuth gimbal frame B with 

one angle, η , utilizing this principle, the following relation 

can be obtained: 

        

cos sin ( )

sin cos ( )

( )

Bn Pi Pj

Be Pi Pj

BK Pk

a

b

c

ω ω η ω η

ω ω η ω η

ω ω η

= +

= − +

= + 
 (6) 

Similarly, between the azimuth gimbal frame B and the 

elevation gimbal frame A, we have:  

         

cos sin ( )

( )

sin cos ( )

Ar Bn BK

Ae Be

Ad Bn Bk

a

b

c

ω ω ε ω ε

ω ω ε

ω ω ε ω ε

= −

= +

= +

 (7) 

5. Equations for the gimbals’ motion using Newton’s 

second law (without dynamic unbalance) 

Newton’s first law applied to rotational motion asserts 

that a body does not accelerate with respect to an inertial 

frame unless a torque is applied. Furthermore, Newton’s 

second law establishes that if a net torque T is applied to 

a homogenous rigid mass with a moment of inertia J, then 

the body develops an angular acceleration α [11] 

according to:  

                 
.T J α= (8) 

Therefore, in principle, all that is required to prevent an 

object from rotating with respect to an inertial space is to 

ensure that the applied torque is zero [11]. However, 

despite careful electromechanical design, numerous 

sources of torque disturbances can act on a real 

mechanism causing the excessive motion or jitter of the 

LOS [11]. The basic equations of motion for the azimuth 

and elevation gimbals are directly obtained if the gimbals 

are considered as rigid bodies. Therefore, the external 

torques applied to the gimbal are: 

               
; .

d
T H H H J

dt
ω ω= + × =

    
 (9) 

where J is the inertia matrix, ω


 is the angular velocity of 

the gimbal, and H


 is the angular momentum [5]. From 

these relationships, the y and z components of the 

gimbal’s motion are obtained. 

5.1 Elevation channel relationships  

The angular momentum for the elevation gimbal, which 

is considered as a rigid body, is: 

r Ar re Ae rd Ad r

A A

inner inner A I re Ar e Ae de Ad e

rd Ar de Ae d Ad d

A A A H

H J A A A H

A A A H

ω ω ω
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The moment equation for a rotating frame is: 

             

inner
A inner

A

dH
T H

dt
ω= + ×

 
 (11) 

       

r Ae d Ad e
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
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The total external torque about the elevation gimbal e-

axis is: 

EL e Ad r Ar dT H H Hω ω= + − (13) 

This equation can be obtained as a differential equation 

for the elevation angular velocity: 

        
2 2

( ) ( )

( ) ( )

e Ae EL D EL

D EL d r Ar Ad re Ar Ae Ad

rd Ar Ad de Ad Ae Ar
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ω
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−

−
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 (14) 

All the inertia terms on the right-hand side of (14), which 

are denoted by D ELT
− , constitute unwanted disturbances 

that enter the control system as external torque 

disturbances. Using (7), this disturbance term D ELT
−  can 

be written as D EL B EL C ELT T T
− − −

= + , whereas: 

      

2

( sin cos )( )

( cos sin )

[( )cos(2 ) 2 sin(2 )]

1
[( )sin(2 ) 2 cos(2 )]
2

B EL de re Bn Be Bk
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T A A
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ε ε ω ω
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−
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+ − +
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2

( sin cos )

1
[( )sin(2 ) 2 cos(2 )]
2

C EL re de Bk

d r rd Bk

T A A

A A A

ε ε ω

ε ε ω

−
= −

− − +


 (16) 

To highlight the concept of cross-coupling, it is assumed 

that the base is non-rotating, 0pi pj pkω ω ω= = = . Thus, 

from (6) we obtain 0Bn Beω ω= =  and, by that, 0BT = . 

However, Bkω  and, consequently, C ELT
− , are not 

necessarily zero for this case; the azimuth gimbal’s 

motion may influence the elevation gimbal via C ELT
−  

even for a non-rotating body. Therefore, C ELT
−  is labelled 

as the cross-coupling term. When it is supposed that the 

elevation gimbal has no dynamic unbalance (i.e.,

0re rd deA A A= = = ) equation (14) becomes: 

( )e Ae EL d r Ar Ad EL D ELA T A A T Tω ω ω
−

= + − = + (17)

 

Inserting equations (7-a) and (7-c) in (17) gives: 

( )

( )

1 2

2

1

2

;

tan( )

1
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e Ae EL D EL D EL

D EL d r Ad

D EL Bn Ad d r
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ω
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ε
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(18) 
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The equation for the elevation gimbal’s motion (18) can be 

expressed in block diagram form, as shown in figure 3. 

 

1D ELT − 2D ELT −

ELT Aeω

ε

+
+

+
+

1

eA S

+

−Beω

Figure 3. Equation for the elevation gimbal’s motion without 

dynamic unbalance.  

5.2 Azimuth channel relationships  

The angular momentum of the total gimbal system 

(expressed in frame B) is the sum of the angular 

momentum of the elevation and azimuth gimbals:  

      

i

B A T A

j outer B I B inner A I

k

H

H H J C J

H

ω ω

 
 

= = + 
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 (19) 

The moment equation applied to frame B is: 

        
B I

B

d
T H H

dt
ω= + ×

   (20) 

The rotation of the outer (azimuth) gimbal occurs around 

the k axis. Therefore, the motion equation for the azimuth 

gimbal is the k-component of the moment equation (20). 

Thus, the k-component for the two terms in equation 

(20)’s right-hand side must be computed as follows:  
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Based on equations (21), (22) and (7) the equation for the 

azimuth gimbal’s motion is: 

       1 2 3eq Bk Az d d dJ T T T Tω = + + + (23) 

The resulting equation is a differential equation for the 

azimuth gimbal’s angular velocity. Where 

1 2 3d d d dT T T T= + +  are a different gimbal inertia 

disturbances, 
eqJ  is the instantaneous moment of inertia 

about the k-axis. These terms are expressed as follows:  
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Using Ae Beε ω ω= − , the disturbance dT  can be written as 

d b AZ c AZT T T− −= +  whereas 
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Similarly to the elevation gimbal, for a non-rotating body, 

we have 0Bn Beω ω= =  and by that 0b AZT − = . However, 

irrespective of the base motion, we also have a cross-

coupling term c AZT −  influencing the azimuth gimbal from 

elevation gimbal’s motions. In order to convert equation 

(23) into a differential equation for the elevation angular 

velocity Adω we use equations (7) to obtain Bkω and its 

derivative Bkω as follows: 
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Equation (21) becomes: 
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Figure 4. Equation for the azimuth gimbal’s motion without dynamic unbalance. 
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Figure 5. The two axes gimbal torque relationships when the elevation and azimuth gimbals have no dynamic unbalance. 

 

We denote: 

       
cosD AZ d dT T Tε−

′= + (33) 

From equation (6-a), we have: 

  
( ) ( )cos sinBn Pi Pj Be Bk Pkω ω η ω η ω ω ω= + + −   (34) 

Inserting equations (34) and (7-c) in (31), and supposing 

that gimbals A and B have no dynamic unbalance (i.e., 

0 &re rd de ne nk keA A A B B B= = = = = ) we get: 

       
coseq Ad Az D AZJ T Tω ε −= + (35) 

where D AZT −  is the sum of the next torques: 

    

( )
( )

2 2

2

1

1 sin 2 sin

cos

cos

k r

Bn Be

e n

D Az

B A

B B
T

ε ε
ω ω

ε

ε
−

 + +
 −
 + − = 

(36) 

( ) 2

2 cos tan( )D AZ Ad Ae r k r dT A B A Aω ω ε ε−
 = − + + −  (37) 

   
( )[ ]3 cos sin sinD AZ Pi Pj k rT B Aω η ω η ε− = + +  (38) 

  
[ ]4 sinD AZ Be Pk k rT B Aω ω ε− = − + (39) 

 

2

5

cos

cos

Bn Ae r k e

D AZ

A B A
T

ω ω ε

ε
−

 + − = (40) 

  
[ ]6 2 tan( )D AZ Ad Be k rT B Aω ω ε− = + 

(41) 

The equation for the azimuth gimbal’s motion (35) can be 

expressed by a block diagram, as shown in figure 4. Now, 

utilizing (18) and (35), the global torque relationships of 

the two axes gimbal system introduced on the 

assumption that gimbals have no dynamic unbalance can 

be clarified by a block diagram, as indicated in figure 5. 

 

6. Equations of the gimbals’ motion when  

the gimbals have dynamic unbalance  

In this paper, the effects of dynamic unbalance are 

considered and investigated. Therefore, the equations for 

the gimbals motion (14, 31) are introduced considering all 

elements of the elevation and azimuth gimbals’ matrices

0, 0, 0& 0, 0, 0re rd de ne nk keA A A B B B≠ ≠ ≠ ≠ ≠ ≠ . Utilizing the 

equations of the gimbals inertial rates (6, 7), the terms of 

the disturbance torque are divided into their separate 

components. 
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6.1 Elevation channel relationships 

The equation for the motion of the elevation gimbal was 

obtained above in (14). It can be seen that the elements of 

the inertia matrix form the disturbance term D ELT − . Using 

(7), the disturbance term D ELT −  is converted to: 

      

( )

( )( )

( ) ( )

( )

( ) ( ) ( )

( ) ( )
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2 sin sin
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ε

ω ω ω ε ω ε

ε
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× 
 

 (42) 

 

From equation (6), we have: 

     

( )
[ ]

cos sin

sin

cos

Bn Pi Pj

Be Ad Bn

Be Pk

ω ω η ω η

ω ω ω ε
ω ω

ε

= +

−
+ −

  
 (43) 

    Bk Pkω ω η= +   (44) 

Inserting equations (43) and (44) in (42), the disturbance 

term can be formulated as follows: 

1 2 3

4 5 6 7

8 9 10

D EL D EL D EL D EL

D EL D EL D EL D EL

D EL D EL D EL

T T T T

T T T T

T T T

− − − −

− − − −

− − −

= + +

+ + + +

+ + +

 (45) 
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 (46) 

    
( )2 cos sinD EL Be Bn de reT A Aω ω ε ε− = − (47) 
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 (48) 

    4 4 sinD EL rd Bn AdT A ω ω ε− = − (49) 

    
2

5 2 tan ( )D EL rd Bn AdT A ω ω ε− = (50) 

    

2

6 2
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 (51) 

( )[ ]7 sin cos
kD EL p re deT A Aω η ε ε− = + −  (52) 

2 2 2

8 2sin tan ( )D EL rd BnT A ω ε ε−
 = − +  (53) 

( ) 2

9 sin cos 2D EL d r rd BnT A A Aε ε ω− = − + (54) 
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T A A
ω ω ε

ε
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− − 
 (55) 

The equation for the elevation gimbal’s motion based on 

the assumption that it has dynamic unbalance can be 

expressed in block diagram form, as shown in figure 6. 

6.2 Azimuth channel relationships 

The total external torque about the azimuth gimbal k- 

axis was denoted by D AZT − in equation (33). It consists of 

four components ( )1 2 3, , ,d d d dT T T T ′ . The term 1dT will be 

denoted as 1D AZT − . Using Bkω  from (7-c), Bnω  from (43) 

and Beω  from (6-b), the term 2dT  becomes: 

( )

( )

2
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 (56) 

Next, using equations (7-b) and (7-c), the term 3dT  can be 

given as follows: 

( ) ( )
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3
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 (57) 

From equation (7-a), we have: 

tan( )
cos

Bn
Ar Ad

ω
ω ω ε

ε
= − + (58) 

In addition, using Bkω  from (7-c), Bnω  from (43) and 

Arω  from (58), the term dT ′  becomes: 

( )

2

4

1 sin
[ tan( )

cos

cos sin sin

sin 2 tan( )]
cos

i j

k

D AZ eq Be Bn Ad Ae

p p
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ω ω
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ε

−

 +
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+ +

− + +

  (59) 

The equation for the azimuth gimbal’s motion based on 

the assumption that it has dynamic unbalance is shown in 

figure 7. Utilizing equations (45, 56, 57, 59), the torque 

relationships of the two axes gimbal system introduced 

on the assumption that the gimbals have dynamic 

unbalance can be represented in figure 8. 
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Figure 7. Equation for the azimuth gimbal’s motion with dynamic unbalance. 
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Figure 8. The two axes gimbal torque relationships when the elevation and azimuth gimbals have dynamic unbalance.
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Figure 9. The elevation and azimuth stabilization loops.  

7. Simulation and results 

The control system of the two axes gimbal assembly 

consists of two stabilization loops with a cross-coupling 

unit relating them. Every loop is constructed using a PI 

controller, a DC motor and a rate gyro in the feedback. 

The overall simulation model of the gimbal system is 

prepared in the MATLAB/Simulink environment, as 

depicted in figure 9. 
 

Although, the researchers tried to utilize and apply many 

different modern techniques to control the gimbal 

systems, the conventional PID and its constructors are 

still the most used approach due to their simple structure, 

cheap cost, simple design and high performance [12]. 

Therefore, a PI controller has been utilized in each 

channel, as follows:  
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12.5 12.5

( ) 0.09 , ( ) 0.5EL AZK s K s
s s

= + = + (60) 

The direct current (DC) motor is one of the simplest 

motor types. It is widely preferred for high performance 

systems requiring minimum torque ripple, rapid dynamic 

torque, speed responses, high efficiency and good inertia 

[13]. The specifications of the DC motor that was used are 

displayed in table 1. 

 

Parameter Value 

Nominal voltage au  27 V 

No load speed nLω  303 rpm 

Terminal resistance    aR  4.5 Ω 

Terminal inductance  aL  0.003 H 

Torque constant
TMK  0.85 Nm/A 

Back EMF eK  0.85 V/rad/sec 

Rotor inertia mJ  0.0017 Kgm2 

Damping ratio ma  0 

Table 1. The DC motor’s specifications. 
 

The transfer function of the DC motor is given by: 

( ) ( ) 2* *

24637.68
( )

1500 20942

TM
m

a a m m e TM

K
G s

s sL s R J s a K K
= =

+ ++ ⋅ + +
 (61) 

The angular rates of the inner gimbal are measured by a 

tow axes rate gyro. Table 2 indicates the utilized gyro 

specifications. The rate gyro can typically be modelled in 

the second-order system. It is assumed that the gyro’s 

natural frequency 50n Hzω = , and that the damping ratio 

0.7ζ = . 

 

Input rate From ± 40 to ±1000 o/sec 

Output AC or DC 

Scale factor  Customer specification 

Natural frequency 20 to 140 Hz 

Damping ratio 0.4 to 1.0 

Table 2. The gyroscope’s characteristics. 

 

Thus, the transfer function of the gyro is:  

2

2 2 2

2500
( )

( 2 ) ( 70 2500)

n
Gyro

n n

G s
s s s s

ω

ζω ω
= =

+ + + +
 (62) 

 

The values of the inertia matrices for the elevation and 

azimuth gimbals are: 
 

0.001 0.002 0.004

0.002 0.0008 0.001

0.004 0.001 0.006

A

innerJ

− − 
 = − − 
 − − 

 (63) 

0.003 0.002 0.004

0.002 0.0004 0.001

0.004 0.001 0.0003

B

outerJ

− − 
 = − − 
 − − 

 (64) 

7.1 Test 1 (verification) 

The gimbal body is considered as the load of the DC 

motor. In MATLAB/Simulink, the gimbal body is 

expressed by its inertia moments. Meanwhile, 

MATLAB/SimMechanics’s tools permit us to represent 

the gimbal using a different approach. The created gimbal 

system shown in figure 9 is simulated again using 

MATLAB/SimMechanics, as shown in figure 10 which 

clarifies that the base, the outer gimbal and the inner 

gimbal are represented using the SimMechanics tool. The 

torques generated in the elevation and azimuth 

stabilization loops are applied on the inner (elevation) 

gimbal and the outer (azimuth) gimbal, respectively. Next, 

the LOS rates are obtained from the gimbals’ outputs. The 

two axes gimbal system responses obtained using both 

simulations (Simulink and SimMechanics) for the azimuth 

and elevation channels are displayed in figures 11 and 12, 

respectively. 

 

It is clear that the responses - obtained using the two 

simulation approaches - are completely identical in both 

the elevation and azimuth channels. Therefore, this 

conformity confirms the model correction and verifies the 

two axes gimbal system introduced by this research.  

 
 

 

Figure 10. The gimbal modelled by SimMechanics. 

 
 

 

Figure 11. Elevation channel comparison. 
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Figure 12. Azimuth channel comparison. 

7.2 Test 2 (cross-coupling effect) 

It has been explained above that when the base body is 

non-rotating ( )0Pi Pj Pkω ω ω= = = , the elevation channel 

(equation 14) is affected by a non-zero disturbance, 

denoted by:   

( ) 2

( sin cos )

1
sin(2 ) 2 cos(2 )

2

C EL re de Bk

d r rd Bk

T A A

A A A

ε ε ω

ε ε ω

−
= −

−  − +  


 (65) 

Similarly, the azimuth channel (equation 23) is affected 

by a non-zero disturbance, denoted by: 

( )

2

( sin cos )

( cos sin )

sin(2 ) 2 cos(2 )

c Az re de Ae

re de Ae

d r rd Ae Bk

T A A

A A

A A A

ε ε ω

ε ε ω

ε ε ω ω

−
= −

+ +

+  − +  


 (66)

The disturbance terms (65, 66) have been called ‘cross-

coupling terms’. It is clear that they are independent of 

the azimuth gimbal’s inertia parameters and that they can 

be eliminated when the next condition is satisfied:  

( )0&re de rd r dA A A A A= = = = (67) 

On the other hand, when (67) is applied on the elevation 

motion equation (14), all the disturbance terms caused by 

the gimbals’ inertia parameters and base angular motions 

are cancelled irrespective of the base motions, such that 

equation (14) becomes: 

e Ae ELA Tω = (68) 

Equation (68) indicates that only the torque ELT generated 

by the DC motor will affect the elevation gimbal. 

Meanwhile, inserting (67) into the azimuth motion 

equation (23) is not enough to cancel the whole 

disturbance terms, as is shown in the resulting equation: 

 1 2eq Bk Az d dJ T T Tω = + + (69) 

It is realized that the azimuth motion is still affected by 

the azimuth gimbal’s inertia parameters and the base 

angular motions included in terms 1 2,d dT T , which were 

previously indicated in (25) and (26), respectively. 

Therefore, these remaining disturbances cannot be 

cancelled unless the base is non-rotating. If it is supposed 

that ( )0Pi Pj Pkω ω ω= = = , the equation for the azimuth 

motion (69) becomes:     

eq Bk AzJ Tω = (70) 

In this case, it can be said that only the torque AZT generated 

by the DC motor will affect the azimuth gimbal.  

 

The gimbal system model is tested considering scenarios 

indicated in table 3 to display the effects of cross-coupling 

when 30deg secEL AZω ω= = . The system response for 

scenario S1 is shown in figures 13 and 14. The other 

results are included in tables 4 and 5, which show that 

although illuminating the cross-coupling improves the 

elevation response from the overshoot viewpoint, the 

overshoot dramatically increases in the azimuth channel. 

This phenomenon can be explained as follows. When 

cross-coupling is ignored utilizing (67), all the 

disturbances in the elevation channel are cancelled (68); 

meanwhile, the azimuth gimbal is still affected with 

torque disturbances due to the gimbals’ inertial 

parameters and base angular motions (69). 

      

 

Scenario 
Base angular velocities (deg/sec) 

Piω  Pjω  
Pkω  

S1 0 0 0 

S2 5 5 5 

S3 10 15 10 

S4 15 30 20 

S5 20 40 30 

S6 25 50 40 

S7 30 60 50 

S8 35 70 60 

S9 40 80 120 

Table 3. Tests scenarios. 

 
 

 

Figure 13. Step response for S1 in the elevation channel.  
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Figure 14. Step response for S1 in the azimuth channel. 

 

Scenario 

Response with cross-coupling

Elevation Azimuth

(sec)st  
Overshoot 

(%) 
(sec)st  

Overshoot 

(%) 

S1 0.225 7.76 0.18 1.89 

S2 0.33 8.78 0.25 6.46 

S3 0.35 18.76 0.35 11.01 

S4 0.3 50.75 0.33 23.63 

S5 0.3 77.25 0.3 39.56 

S6 0.38 105.74 0.3 56.27 

S7 0.45 135.95 0.3 73.15 

S8 0.45 167.69 0.45 91.2 

S9 0.45 218.74 0.45 203.25 

Table 4. Response parameters with cross-coupling. 

 

Scenario 

Response without cross-coupling

Elevation Azimuth

(sec)st  
Overshoot 

(%) 
(sec)st  

Overshoot 

(%) 

S1 0.225 7.76 0.33 0 

S2 0.33 8.78 0.3 0 

S3 0.35 18.76 0.2 9.25 

S4 0.3 49.62 0.25 31.2 

S5 0.3 74.88 0.25 54.3 

S6 0.38 101.91 0.3 77.74 

S7 0.45 129.64 0.3 101.15 

S8 0.45 157.93 0.45 124.66 

S9 0.45 188.53 0.45 270.36 

Table 5. Response parameters without cross-coupling. 

7.3 Test 3 (angular base motion effect) 

It was proven that the disturbances in both channels are 

caused by the base rotations and the gimbals’ inertial 

parameters. Thus, it is useful to study how the angular 

base motion affects the system response considering the 

gimbals’ mass distribution. Therefore, the gimbal system 

has been tested for two cases under different rates. First, 

when the gimbals have no dynamic unbalance, and 

second when the gimbals have dynamic unbalance. The 

results of this investigation are shown in table 6 when 

60deg secEL AZω ω= = . To clarify, figures 15 and 16 show 

the gimbal system response for S9.  

 

Scenario

Response overshoot (%) 

Without dynamic 

unbalance 

With dynamic 

unbalance 

Elevation Azimuth Elevation Azimuth

S1 7.4 5.25 7.4 0.76 

S2 7.64 7.35 7.64 3.05 

S3 10.32 9.84 10.22 5.06 

S4 19.29 15.28 19.29 9.84 

S5 29.9 22.06 29.9 16.14 

S6 39.54 29.51 39.54 22.92 

S7 51.76 37.63 51.76 30.09 

S8 65.62 46.42 65.62 38.11 

S9 80.61 101.05 90.44 89.39 

Table 6. Effects of the dynamic unbalance and base rates. 
 

 

 
Figure 15. Elevation gimbal response in S9.  
 

 

 
Figure 16. Azimuth gimbal response in S9. 
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Based on the geometrical properties of the gimbal system 
shown in figure 1, it can be concluded that the base 
angular velocities ,Pj Pkω ω  are the most dominant rates 

that basically affect the gimbal system performance. The 
gimbal system was tested for a wide range of rates and 
the results indicated in table 6 show that whenever these 
rates increase the response overshoot dramatically 
increases. Therefore, it is perhaps necessary to develop 
the PI controller in such a way as to give better 
performance with acceptable overshoot under the high 
values of the base angular velocities. Naturally, the 
permissible overshoot is defined according to the 
application for which the gimbal system is used.  

8. Conclusion 

In this paper, a two axes gimbal system was proposed and 
formulated utilizing Newton’s second law. The 
construction of the stabilization loop was introduced and 
the concepts of cross-coupling and dynamic unbalance 
were accomplished. The equations for the gimbals’ motion 
were derived and introduced in two formulations 
according to the dynamic mass unbalance. Afterwards, 
three tests were carried out. At first, the gimbal system was 
simulated using MATLAB/Simulink and 
MATLAB/SimMechanics. A comparison between the 
system responses in the two simulations was made and the 
comparison results verified the proposed model. Second, 
the cross-coupling terms in the elevation and azimuth 
channels were obtained. An investigation was made to 
show how the cross-coupling affects the system response 
according to different base rates. The third test was carried 
out to study the effects of the base rotations on the system 
response by taking into account the properties of the 
gimbals’ mass distribution. Based on the parametric study 
made in tests 2 and 3, the following conclusions can be 
drawn: 
1. The overshoot of the gimbal system response with 

cross-coupling increases in both the elevation and 
azimuth channels whenever the base rates increase 
(table 4). 

2. When condition (63) is satisfied, the response 
overshoot in the elevation channel decreased, while 
the overshoot in the azimuth channel dramatically 
increased (table 5). 

3. The cross-coupling between the elevation and 
azimuth gimbals is the result of the gimbal geometry, 
the gimbal assembly parameters and the base 
motions. Therefore, the cross-coupling relationships 
are crucial to consider when a two axes gimbal 
system is designed. 

4. The system overshoot largely increases against the 
high base rates (table 6).   

 

For further future research works, there are two 
directions. The first direction is to expand the 
mathematical model of the gimbal system assuming that 

the gimbals have static mass unbalance, which results 
from the offset between the origin of the gimbal 
coordinate system (the gimbal pivot or gimbal rotation 
axis) and the gimbal mass centre. In addition, the 
mathematical model can be expanded by taking into 
account the gimbals’ friction. Another interesting future 
direction is to utilize modern control approaches such as 
fuzzy logic and neural networks, or a combination of 
them, to design the control system of a two axes gimbal 
mechanism. Furthermore, it would be useful and 
important to develop the controller into an adaptive form 
so as to overcome the changing of the rates and achieve 
high performance with acceptable overshoot, making the 
gimbal system susceptible to be utilized in a dynamic 
environment which usually imposes variable rates on the 
base to which the gimbal system is fixed.   
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