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Abstract

Background: Brucellosis is a major public health problem that seriously affects developing countries and could

cause significant economic losses to the livestock industry and great harm to human health. Reasonable prediction

of the incidence is of great significance in controlling brucellosis and taking preventive measures.

Methods: Our human brucellosis incidence data were extracted from Shanxi Provincial Center for Disease Control

and Prevention. We used seasonal-trend decomposition using Loess (STL) and monthplot to analyse the seasonal

characteristics of human brucellosis in Shanxi Province from 2007 to 2017. The autoregressive integrated moving

average (ARIMA) model, a combined model of ARIMA and the back propagation neural network (ARIMA-BPNN), and

a combined model of ARIMA and the Elman recurrent neural network (ARIMA-ERNN) were established separately to

make predictions and identify the best model. Additionally, the mean squared error (MAE), mean absolute error

(MSE) and mean absolute percentage error (MAPE) were used to evaluate the performance of the model.

Results: We observed that the time series of human brucellosis in Shanxi Province increased from 2007 to 2014 but

decreased from 2015 to 2017. It had obvious seasonal characteristics, with the peak lasting from March to July

every year. The best fitting and prediction effect was the ARIMA-ERNN model. Compared with those of the ARIMA

model, the MAE, MSE and MAPE of the ARIMA-ERNN model decreased by 18.65, 31.48 and 64.35%, respectively, in

fitting performance; in terms of prediction performance, the MAE, MSE and MAPE decreased by 60.19, 75.30 and

64.35%, respectively. Second, compared with those of ARIMA-BPNN, the MAE, MSE and MAPE of ARIMA-ERNN

decreased by 9.60, 15.73 and 11.58%, respectively, in fitting performance; in terms of prediction performance, the

MAE, MSE and MAPE decreased by 31.63, 45.79 and 29.59%, respectively.
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Conclusions: The time series of human brucellosis in Shanxi Province from 2007 to 2017 showed obvious seasonal

characteristics. The fitting and prediction performances of the ARIMA-ERNN model were better than those of the

ARIMA-BPNN and ARIMA models. This will provide some theoretical support for the prediction of infectious diseases

and will be beneficial to public health decision making.

Keywords: Human brucellosis, ARIMA-ERNN model, ARIMA-BPNN model, Predictive effect

Background

Brucellosis is an anthropozoonosis caused by Brucella

bacteria [1] and is also known as “Malta fever” [2, 3].

The main clinical manifestations are fever, sweating,

muscle and joint pain, fatigue and other flu-like symp-

toms [4]. Because the early manifestations of human

brucellosis are similar to the symptoms of flu, thus lead-

ing to early misdiagnosis and a lack of attention from

patients, human brucellosis often develops into chronic

brucellosis with serious complications [4, 5]. These com-

plications impact human labour capacity to varying de-

grees, limit the development of farming and animal

husbandry, affect the economic and trade development

of countries and even the world, and cause serious dis-

ease burden and considerable economic losses [6–8],

which are the main public health problems that seriously

impact developing countries. Currently, there are ap-

proximately 170 countries or regions in the world af-

fected by human brucellosis, accounting for 1/6 to 1/5

of the global population. Additionally, there are approxi-

mately 500,000 emerging cases each year, which ser-

iously threatens people’s lives [9]. To date, there are

approximately 350 million people affected by human

brucellosis, and the incidence has exceeded the highest

level in China. Located on the Loess Plateau, Shanxi

Province is a mixed region of farming and animal hus-

bandry and a typical epidemic area in northern China.

The reported incidence ranked first for four consecutive

years from 2000 to 2003, and the reported cases from

2004 to 2007 ranked in the top five in the country [10].

Human brucellosis not only adversely affects human

health but also hinders the development of animal hus-

bandry. Therefore, reasonable prediction is important

for the prevention and control of human brucellosis.

At present, the time series prediction model is the

most common method for predicting the epidemic trend

of an infectious disease and is mainly divided into two

categories. One category is the traditional prediction

model, represented by the grey prediction model [11],

the Markov model [12], the exponential smoothing

method [13] and the autoregressive integrated moving

average (ARIMA) model [14]. They achieve modelling

and prediction by extracting linear information. Among

them, the ARIMA model is the most popular method

for infectious disease prediction and is used as a

benchmark to evaluate many new modelling methods

[15]. The other category is a prediction model based on

machine learning theory that the nonlinear mapping

performance is strong [16], such as Back Propagation

Neural Network (BPNN) [17], Multivariate Adaptive Re-

gression Splines (MARS) [18], Random Forest (RF) [19],

Multilayer Perceptron (MLP) networks [20], Support

Vector Machines (SVM) [20], and Radial Basis Function

(RBF) [21], and has been used to predict the incidence

of infectious diseases. Nevertheless, a major limitation of

models such as BPNN and SVR is that they are intrinsic-

ally static; that is, they do not account for the dynamic

nature of infectious disease sequences [22]. These static

models can learn information only about the current

time; they do not take advantage of historical informa-

tion. The Elman recurrent neural network (ERNN)

model obtains previous information through the receiv-

ing layer and can combine current information with his-

torical information [23]. This characteristic makes it one

of the most powerful tools for the prediction of nonlin-

ear time series [24]. Time series is considered to consist

of both linear and nonlinear components [25, 26]. Nei-

ther a single linear model nor a nonlinear model can

capture the different patterns in the time series [27].

Both types of prediction models have problems with in-

complete information extraction, and the prediction ac-

curacy needs to be further improved.

In 1969, Bates J M and Granger C W J elaborated on

the combined forecasting method, and their research re-

sults attracted great attention from researchers in related

fields [28]. The combined model used the unique advan-

tages of different models to analyse the characteristics of

time series and achieve accurate prediction. In 2011,

Khashei M et al. applied a combined model of ARIMA

and an artificial neural network to time series prediction.

The results showed that the combined model had better

prediction performance than the single model [29]. In

2019, Li S et al. established a combined model of

ARIMA and BPNN (ARIMA-BPNN) using coal con-

sumption data in India. The research showed that the

combined model had significantly higher prediction ac-

curacy than the single model [30]. Currently, a com-

bined model based on ARIMA and ERNN (ARIMA-

ERNN) is mainly applied to air pollution prediction [31],

spot price forecasting [32], error compensation [33] and
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other fields. Nevertheless, there have been no reports in

the use of the combined model to predict the epidemic

trend of human brucellosis. In this study, the ARIMA-

ERNN model was established based on the monthly inci-

dence data of human brucellosis from 2007 to 2017 in

Shanxi Province and compared with the ARIMA-BPNN

and ARIMA models to evaluate the fitting and predictive

effects of the three models. This study will provide cer-

tain theoretical support for the prevention and control

of human brucellosis in Shanxi Province and offer some

reference for the prediction of infectious diseases.

Methods

Data sources

In this study, the reported cases of human brucellosis

from January 2007 to December 2017 were obtained

from Shanxi Provincial Center for Disease Control and

Prevention. All cases were diagnosed under the ‘2007

Diagnostic Criteria of Brucellosis (WS269-2007)’ [34,

35]. Relevant demographic data were obtained from ‘the

Statistical Yearbook of Shanxi Province’. The human

brucellosis cases from January 2007 to December 2017

were assembled as monthly counts. The monthly inci-

dence data of human brucellosis from January 2007 to

December 2016 were used to build the ARIMA model.

The fitted data of the ARIMA model were used as the

input of neural networks and were split into two sec-

tions: a training set and a verification set. The training

set data from January 2007 to December 2015 were

employed to construct the neural network, and the veri-

fication set data from January 2016 to December 2016

were used to verify the neural network. The monthly in-

cidence data from January 2017 to December 2017 were

used as the test set to test the prediction performance of

the three models.

Analysis of seasonal characteristics

STL [36] can be used to decompose time series with sea-

sonal characteristics into long-term trends, seasonal

trends, and random effects as follows:

X t ¼ T t þ St þ I t ð1Þ

where Xt is the actual value of human brucellosis at time

t and Tt, St and It are the long-term trends, seasonal

trends and random effects, respectively. Since STL is

only suitable for the decomposition of the addition

model, logarithmic or Box-Cox transformation is re-

quired for the multiplication model, and then the

monthplot is used to identify the high-occurrence season

of human brucellosis.

ARIMA model

ARIMA [37], a classic model in many time series ana-

lyses, is usually constructed as ARIMA (p, d, q) (P, D,

Q) s as follows [23]:

ΘP Bsð Þθp Bð Þ 1 − Bsð ÞD 1 − Bð Þdxt
¼ ΦQ Bsð Þϕq Bð Þwt ð2Þ

where ΘP, θp, ΦQ and ϕq are polynomials of order P,

order p, order Q and order q, respectively. D and d rep-

resent the order of trend differencing and seasonal dif-

ferencing, which are determined when the original time

series is stable. p, q, P, Q and s represent the order of

the autoregressive, moving average, seasonal autoregres-

sive, seasonal moving average and seasonal periodicity,

respectively, which are determined by the autocorrel-

ation function (ACF) plot and the partial autocorrelation

function (PACF) plot of the adjusted series. In this study,

the monthly incidence of human brucellosis from Janu-

ary 2007 to December 2016 was used to build the

ARIMA model, and the process included the following

steps. First, the original series was smoothed with a dif-

ferential method, and the Augmented Dickey-fuller

(ADF) test was used to check the stationarity of the ad-

justed sequence. The white noise test method, also

known as the Ljung-Box test, was used to determine

whether the adjusted sequence was caused by random

effects. If the p value was less than the significance level,

the adjusted sequence was considered to be stationary

and was not a random sequence. Second, the plots of

the ACF and PACF of the adjusted sequence were used

to provide a rough guide for reasonable models. Then, a

test statistic was constructed to determine whether the

residuals of candidate models were random effects, and

maximum likelihood estimation (MLE) was used to per-

form the parameter test of the candidate models. At the

same time, the Akaike information criterion (AIC), the

Schwarz Bayesian information criterion (SBC) and the

coefficient of decision (R2) were used to select the opti-

mal model. When the AIC and SBC values of the models

are relatively close, the model with the largest R2 is se-

lected [38]. Finally, the incidence data from January

2017 to December 2017 were used to test the prediction

effect of the optimal model.

Artificial neural networks (ANNs)

ANNs [39] are nonlinear adaptive systems consisting of

a large number of neural units. They are mainly used to

establish an appropriate model by adjusting the connec-

tion weight between neurons to meet the requirements

to solve practical problems. According to the different

information flow directions of the neural network oper-

ation process, they can be divided into two basic forms:

feedforward (static) neural networks and feedback
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(dynamic) neural networks. Therefore, two representa-

tive models, BPNN [40] and ERNN [23], are respectively

used in this paper to establish the combined model.

BPNN is a classic multilayer feedforward neural net-

work based on the error backpropagation algorithm and

consists of an input layer, a hidden layer and an output

layer. The neurons in the three layers are fully connected

in order, while the neurons in the same layer are not

connected, and the multilayer design enables them to

mine more information and perform nonlinear mapping

well. The essence of BPNN learning is to minimize the

MSE between predicted and actual values by adjusting

the connection weight between the input layer, the hid-

den layer and the output layer. The learning process is

divided into two parts: forward propagation of informa-

tion and backward feedback of errors. The information

from the input layer through the hidden layer reaches

the output layer, and the predicted value is obtained.

When the error between the predicted and actual values

does not satisfy the requirements, the error back propa-

gation adjusts the connection weights of each layer and

iterates the process until the requirements are met. The

mathematical formulas of BPNN used in this study are

shown as follows.

S j tð Þ ¼ f 1

X

n

i¼1

X

h

j¼1

V ijX i tð Þ
 !

ð3Þ

Y k ¼ f 2

X

h

j¼1

X

o

k¼1

W jkS j tð Þ
 !

ð4Þ

where n, h and o are the neuron numbers of the input

layer, the hidden layer and the output layer, respectively.

Xi(t) is the input of the input layer at time t. Sj(t) and

Yk(t) are the outputs of the hidden and output layers, re-

spectively. Vij(i = 1, 2,⋯, n; j = 1, 2,⋯, h) and Wjk(k = 1,

2,⋯, o) represent the connection weights of the input

layer-the hidden layer and the hidden layer-the output

layer, respectively. f1, f2 are activation functions of

BPNN. With repeated learning, the model prediction ac-

curacy is maximized. To obtain the most effective

model, it is often necessary to define the model during

the training process. In this paper, the hidden layer of

BPNN selects the tan-sigmoid function, the output layer

selects the linear function, the training function is

trainlm, and the performance index is MSE. The param-

eters of the network are set to 10,000 iterations, the

learning rate is 0.01, and the error is 0.004. The number

of hidden layer neurons is calculated using the following

empirical formula, where a is a constant between 1 and

10:

h ¼
ffiffiffiffiffiffiffiffiffiffiffi

nþ o
p

þ a ð5Þ

ERNN is a classical nonlinear local recursive network.

In contrast to the feedforward neural network, the re-

ceiving layer is added to the hidden layer to achieve dy-

namic memory capabilities. ERNN consists of four parts:

an input layer, a hidden layer, a receiving layer and an

output layer. The input layer transmits signals. The hid-

den layer receives the input from the input layer and the

feedback input of the receiving layer, and its self-joining

mode has a strong sensitivity to time series data. The re-

ceiving layer stores the output value of the previous hid-

den layer and passes it to the current hidden layer by a

one-step delay operator to achieve the purpose of dy-

namic memory. The output layer receives the output of

the hidden layer, mainly the role of linear weighting.

The learning process of ERNN is a process of learning

and training sample data, obtaining dynamic characteris-

tics between input and output parameters, and ultim-

ately obtaining stable network parameters. In this paper,

the training function is traingdx, the number of hidden

layer neurons is also calculated by the above empirical

formula, and other parameters are the same as the BP

neural network. The mathematical formulas of ERNN

used in this study are shown as follows:

S j tð Þ ¼ g1

X

h

r¼1

X

h

j¼1

U rjSr t − 1ð Þ þ
X

n

i¼1

X

h

j¼1

V ijX i tð Þ
 !

ð6Þ

Y k tð Þ ¼ g2

X

h

j¼1

X

o

k¼1

W jkS j tð Þ
 !

ð7Þ

Similar to the BPNN, n, h and o are the neuron num-

bers of the input layer, the hidden layer and the output

layer, respectively. Xi(t) is the input of input layer at time

t. Sr(t − 1), Sj(t) and Yk(t) are the outputs of the receiving,

hidden and output layers, respectively. Urj(r = 1, 2,⋯, h;

j = 1, 2,⋯, h), Vij(i = 1, 2,⋯, n) and Wjk(k = 1, 2,⋯, o)

represent the connection weights of the receiving layer-

the hidden layer, the input layer-the output layer and

the hidden layer-the output layer, respectively. g1, g2 are

activation functions of ERNN.

ARIMA-BPNN model and ARIMA-ERNN model

The ARIMA model is suitable for extracting the linear

components of the original time series, but it loses non-

linear information in the residual [41]. The nonlinear

mapping ability of ANNs can reduce the error of the

ARIMA model, so artificial neural networks based on

the optimal ARIMA model are constructed to improve

the prediction accuracy of the model. The specific steps

are as follows: First, the optimal ARIMA model was
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established based on the original series, the fitting value

was obtained, and the error was calculated by the follow-

ing formula:

et ¼ yt − Lt
∧

ð8Þ

where yt is the actual value of the original series, Lt
∧ is

the fitting value of the optimal ARIMA, and et is the

error, also known as the residual. Since a first-order dif-

ference and a seasonal difference were performed in

building the optimal ARIMA model, the incidence data

of the first 13 months were lost in this step. Second, the

data from February 2008 to December 2015 were used

to build the BPNN or ERNN, and the data from January

2016 to December 2016 were used to verify the neural

network. The input values were the fitting values of the

optimal ARIMA model and the corresponding time in-

formation, and the actual values were taken as output.

In this study, to avoid unnecessary results or difficult

training processes causing algorithm convergence prob-

lems, we used the mapminmax function to normalize

the input and output data [23]. Third, BPNN and ERNN

continuously learned and trained the network through

the input data set and the output data set, and we se-

lected MSE as the evaluation index of network perform-

ance. When the MSE is the smallest, the corresponding

BPNN and ERNN have the best fitting effect. Finally, the

predicted values of the optimal ARIMA model from

January 2017 to December 2017 were used as the input

values of the combined model to obtain the output pre-

dicted values, and the inverse normalization method was

used to restore the output predicted value of the com-

bined models into meaningful data.

Indicators of model performance

Three performance indexes, MSE, MAE and MAPE, are

used to assess the fitting and prediction effects of those

models. The smaller the value, the better the model

performance.

MSE ¼ 1

N

X

n

K¼1

Xk − Xk

∧

� �2

ð9Þ

MAE ¼ 1

N

X

N

k¼1

Xk − Xk

∧

�

�

�

�

�

�

�

�

ð10Þ

MAPE ¼ 1

N

X

N

k¼1

Xk − Xk
∧j j

Xk

� 100% ð11Þ

Xk is the actual value at time k. Xk
∧ is the predicted

value of the model. N is the number of the incidence

data.

Data analysis

STL was performed with the stl function of R statistical

software version 3.1.2, the ARIMA model was built on

the appropriate module of SAS Software version 9.2, and

the combined model was built on MATLAB2014a.

Results

Seasonal characteristics of human brucellosis

STL was used to study the time series of human brucel-

losis in Shanxi Province from 2007 to 2017, and the re-

sults are shown in Fig. 1. The grey bars of the figure

represent the same magnitude and were used to compare

the sizes of each part. The original data (data), seasonal

trends (seasonal), long-term trends (trend) and random ef-

fects (remainder) are shown from top to bottom. Based on

the seasonal part, human brucellosis in Shanxi Province

showed obvious seasonality and periodicity, with a cycle of

1 year. The trend part revealed that the incidence in-

creased from 2007 to 2014 and decreased from 2015 to

2017. However, the seasonal decomposition plot could

not determine the peak season, which we solved by using

the monthplot. We found that the long-term trend of re-

ported cases was basically consistent in the same month

of each year, and the data indicated that the months from

March to July were high-risk months, of which the re-

ported cases were the highest in May (Fig. 2).

ARIMA model

The monthly incidence data of human brucellosis from

January 2007 to December 2016 in Shanxi Province were

used to develop the ARIMA model (Fig. 3). We also ob-

served an upward trend from 2007 to 2014 and a signifi-

cant decline from 2015 to 2016. The original series

became stationary after the first-order difference and a

seasonal difference, and the adjusted sequence was not a

random effect (Fig. 4 and Table 1). The ARIMA model

could be built at this time. Since the periodic change of

the original series was 1 year, the parameters d, D and s

for the ARIMA model were set to 1, 1 and 12, respect-

ively. The possible values for P, Q, p, and q were deter-

mined according to the plot of ACF and PACF of the

adjusted sequence (Fig. 5). The residual sequence of

those fitting models was a random sequence (Table 2).

Therefore, several alternative models could be initially

identified by the residual test:

ARIMA (1,1,0) (1,1,0)12, ARIMA (0,1,1) (0,1,1)12,

ARIMA (1,1,1) (1,1,0)12, and ARIMA (1,1,1) (0,1,1)12.

The MLE was used to estimate the parameters of the

candidate model. According to the results of the parameter

estimates and fitting index, we found that the parameters of

the ARIMA (0, 1, 1) (0, 1, 1)12 model were statistically sig-

nificant and that the residual sequence of the model was a

random sequence. In addition, the AIC and the SBC

of this model were the smallest, and the R2 was the
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largest (Table 2). Therefore, the ARIMA (0, 1, 1) (0,

1, 1)12 model was the optimal model for prediction.

ARIMA-BPNN model and ARIMA-ERNN model

According to the above formula, the hidden layer neurons

of the BPNN and ERNN were between 3 and 14. We tried

different neuron numbers in the hidden layer (Table 3) and

found that when the numbers of hidden layer neuron in the

BPNN and ERNN were 7 and 11, respectively, the perform-

ance of the two models was optimal; that is, the structure of

BPNN was 2–7-1, and the structure of ERNN was 2–11-1.

Finally, the predicted values of the ARIMA (0,1,1) (0,1,1)12
model from January 2017 to December 2017 were used as

the inputs of BPNN with a structure of 2–7-1 and ERNN

Fig. 1 Seasonal decomposition based on STL of human brucellosis in Shanxi Province from 2007 to 2017

Fig. 2 Monthplot of the cases of human brucellosis in Shanxi Province from 2007 to 2017
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with a structure of 2–11-1, respectively, and the output

values were the predicted values of the combined models.

Comparison of the three models

The optimal ARIMA model, the ARIMA-BPNN model

and the ARIMA-ERNN model were used to predict the

incidence of human brucellosis in Shanxi Province from

January 2017 to December 2017. The predicted values of

the three models and the incidence of human brucellosis

are shown in Fig. 6. The fitting and prediction perfor-

mances of the three models were compared by MSE,

MAE and MAPE (Table 4). The combined model was

better than the single ARIMA model, and the ARIMA-

ERNN model was better than the ARIMA-BPNN model.

Compared with those of the ARIMA model, the MAE,

MSE and MAPE of the ARIMA-ERNN model decreased

Fig. 3 Time series plot for the incidence of human brucellosis in Shanxi Province from January 2007 to December 2016

Fig. 4 Plot of human brucellosis incidence after a first-order difference and a seasonal difference
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by 18.65, 31.48 and 64.35%, respectively, in fitting per-

formance; in terms of prediction performances, the

MAE, MSE and MAPE decreased by 60.19, 75.30 and

64.35%, respectively. Compared with those of the

ARIMA model, the MAE, MSE and MAPE of the

ARIMA-BPNN model decreased by 10.08, 16.68 and

12.53%, respectively, in fitting performance; in terms of

prediction performance, the MAE, MSE and MAPE de-

creased by 41.78, 54.44 and 49.37%, respectively. Com-

pared with those of the ARIMA-BPNN model, the MAE,

MSE and MAPE of the ARIMA-ERNN model decreased

by 9.60, 15.73 and 11.58%, respectively, in fitting per-

formance; in terms of prediction performance, the MAE,

MSE and MAPE decreased by 31.63, 45.79 and 29.59%,

respectively.

Discussion

Since 2000, with the rapid development of agriculture

and the animal husbandry economy in Shanxi Province,

Table 1 ADF and Ljung-Box tests of the time series

Time series ADF Test Ljung-Box Test

T P χ
2

P

Original series −2.86 0.179 749.83 < 0.001

Adjusted series −13.51 < 0.001 72.73 < 0.001

Fig. 5 Autocorrelation and partial autocorrelation plots for the adjusted time series
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human brucellosis has become one of the fastest-

growing infectious diseases in Shanxi Province [42]. The

incidence of human brucellosis in Shanxi Province

showed an upward trend from 2007 to 2014 and peaked

in 2014 (Fig. 3). This may be related to the implementa-

tion of the Central Transfer Payment Brucellosis Preven-

tion and Control Project since 2006 and the pilot project

of human brucellosis prevention and treatment from

2008 to 2010. In the early stage, the persistence of risk

factors for human brucellosis and increased awareness

of brucellosis among residents and medical institutions

led to an increase in epidemiology reporting. The inci-

dence decreased yearly from 2015 to 2017, which may

be due to the successful implementation of the above

two initiatives [43].

The analysis of seasonal characteristics (Fig. 1) shows

significant seasonal characteristics, mainly in the period

from March to July. The main reason may be related to

farming operations. In the spring, herders have close

contact with livestock because of shearing. Summer is

the peak season of delivery of livestock such as cattle

and sheep, which greatly increases the chances of con-

tact with pathogenic factors during this process [44].

Moreover, most human brucellosis infections occur in

spring and summer, which are attributed to

meteorological and temperature factors. As the

temperature and relative humidity decrease in autumn

and winter, the survival rate of pathogenic bacteria de-

creases, thereby reducing the chance of infection in

humans [45]. Therefore, prevention and control mea-

sures for brucellosis should consider seasonal fluctua-

tions, and some targeted interventions should be

performed at the peak of the epidemic. This suggests

that we should pay special attention to protection when

we are in contact with cattle, sheep and other livestock

and implement active monitoring measures.

Accurate prediction of epidemic trends is of great sig-

nificance for the prevention and control of human bru-

cellosis [19]. The occurrence of brucellosis is subject to

many factors, and it is difficult to collect data on influen-

cing factors. However, the time series prediction model

can overcome the shortcomings of conventional

mathematical-statistical methods in the face of this situ-

ation, and all the complex external factors are attributed

to the time factor to predict the future incidence. The

ARIMA model is one of the most commonly used

methods in infectious disease prediction and has been

proven to have high accuracy [38]. It does not require

additional variables and is more practical when the data

for other influencing factors are not available. In this

paper, we used the optimal model ARIMA (0, 1, 1) (0, 1,

1)12 as the basic model for evaluating the performance

of other models, and the results showed that the pre-

dicted value of the optimal ARIMA (0, 1, 1) (0, 1, 1)12
model was essentially consistent with the actual value,

but there was still a certain gap. The possible reason is

that the real-time series are generally a combination of

linear and nonlinear relationships. The ARIMA model

can extract the linear components of the time series, but

it loses the nonlinear information in the residual. An

artificial neural network is an emerging technology that

can imitate the learning and reasoning process of the

human brain and nervous system and has a nonlinear

mapping ability. In this paper, we used human brucel-

losis data to compare the performance of the ARIMA-

BPNN, ARIMA-ERNN and ARIMA models in fitting

and prediction. The study found that compared with the

ARIMA model, the MAE, MSE and MAPE of the

ARIMA-ERNN and ARIMA-BPNN models had different

Table 2 Selection of the optimal model from among the four candidate models

Candidate models Parameter estimate Fitting index Ljung-Box Test

AR1 SAR1 MA1 SMA1 AIC SBC R2 χ2 P

ARIMA (1,1,0) (1,1,0)12 −0.0914 − 0.3839* – – − 363.82 − 358.47 0.929 18.42 0.6807

ARIMA (0,1,1) (0,1,1)12 – – −0.7900* −0.9913* − 374.14 −368.79 0.938 21.60 0.4843

ARIMA (1,1,1) (1,1,0)12 −0.2288 −0.3835* 0.1363 – − 361.82 − 353.80 0.929 18.43 0.6217

ARIMA (1,1,1) (0,1,1)12 −0.3295 – −0.2707 0.6712* −374.03 − 366.00 0.937 24.04 0.2909

*P ≤ 0.05. The residuals of the four candidate models were tested using the Ljung-Box Test

Table 3 Training error of the ARIMA-BPNN and ARIMA-ERNN

models

Neuron number of the
ARIMA-BPNN model

MSE Neuron number of the
ARIMA-ERNN model

MSE

3 0.0133 3 0.0115

4 0.0109 4 0.0099

5 0.0147 5 0.0107

6 0.0144 6 0.0112

7 0.0101 7 0.0123

8 0.0131 8 0.0095

9 0.0123 9 0.0091

10 0.0135 10 0.0114

11 0.0120 11 0.0088

12 0.0112 12 0.0093

13 0.0133 13 0.0107

14 0.0140 14 0.0128
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degrees of decline in terms of fitting and prediction per-

formance. The fitting and prediction performances of

the combined model were better than those of the single

ARIMA model, consistent with the research results of

other scholars [46]. The combined model compensates

for the lack of nonlinear mapping ability of the ARIMA

model and modifies the predicted value of the ARIMA

model. Compared with the ARIMA-BPNN, the MAE,

MSE and MAPE of the ARIMA-ERNN model also de-

creased to different degrees. The ARIMA-ERNN model

had the best effect in predicting the incidence of human

brucellosis and was superior to the other two models.

The reason may be that the BPNN regards the predic-

tion process as static system modelling, while ERNN is

based on the structure of the BPNN and uses the receiv-

ing layer to provide its function of mapping dynamic

characteristics. Therefore, ERNN can better adapt to

event changes and fit time series, thus achieving the

highest prediction accuracy.

To the best of our knowledge, this is the only study to

explore a combined model of ARIMA and ERNN for

predicting the incidence of human brucellosis. Its

Fig. 6 Predictive values obtained by using the ARIMA, ARIMA-BPNN and ARIMA-ERNN models and the incidence of human brucellosis in Shanxi

Province. The figure is divided into two parts by a dashed line. The left side of the figure is the fitting part, and the right side is the

prediction part

Table 4 Comparison of the three models in fitting and prediction performance

Model Fitting performance Prediction performance

MAE MSE MAPE (%) MAE MSE MAPE (%)

ARIMA 0.1319 0.0305 12.01 0.1728 0.0417 26.23

ARIMA-BPNN 0.1187 0.0248 10.45 0.1006 0.0190 13.28

ARIMA-ERNN 0.1073 0.0209 9.24 0.0688 0.0103 9.35
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advantage is that the ARIMA-ERNN model combines

the advantages of ARIMA in linear features and a

neuron network in nonlinear features and enhances the

capability of a single ARIMA while retaining the advan-

tage of its simplicity in utilizing only incidence time

series data as input. Second, based on the structure of

the BPNN, the ERNN adds a corresponding receiving

layer in the hidden layer to provide its dynamic memory

and strong sensitivity to time series, which are more

suitable for analysing human brucellosis. Third, the use

of the ARIMA-ERNN model contributes to rational allo-

cation of limited public health resources and the early

prevention and control of human brucellosis.

Nevertheless, there are also some limitations. First, the

epidemic pattern and incidence of human brucellosis are

different in different areas. Whether the ARIMA-ERNN

model is suitable for other regions needs further study

[47]. Second, the incidence of human brucellosis is vul-

nerable to many factors [19]. This study used only

monthly incidence data, which may have impacted the

performance of the models. Third, only two combinator-

ial models are established in this study, and the superior-

ity of the ARIMA-ERNN model and other models

remains to be verified. In the future, we will incorporate

the influencing factors of human brucellosis into the

prediction model and compare the ARIMA-ERNN with

other models.

Conclusions

In this study, the time series of human brucellosis in

Shanxi Province from 2007 to 2017 showed obvious sea-

sonal characteristics and a trend of first increasing and

then decreasing. The fitting and prediction performances

of the ARIMA-ERNN model were better than those of

the ARIMA-BPNN and ARIMA models, and the

ARIMA-BPNN model was better than the ARIMA

model. The ARIMA-ERNN model was more suitable for

predicting the incidence of human brucellosis than the

ARIMA and ARIMA-BPNN models.
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