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Abstract

CAPTCHA is an effective mechanism for protecting comput-

ers from malicious bots. With the development of deep learn-

ing techniques, current mainstream text-based CAPTCHAs

have been proven to be insecure. Therefore, a major effort has

been directed toward developing image-based CAPTCHAs,

and image-based visual reasoning is emerging as a new di-

rection of such development. Recently, Tencent deployed

the Visual Turing Test (VTT) CAPTCHA. This appears to

have been the first application of a visual reasoning scheme.

Subsequently, other CAPTCHA service providers (Geetest,

NetEase, Dingxiang, etc.) have proposed their own visual

reasoning schemes to defend against bots. It is, therefore,

natural to ask a fundamental question: are visual reason-

ing CAPTCHAs as secure as their designers expect? This

paper presents the first attempt to solve visual reasoning

CAPTCHAs. We implemented a holistic attack and a modu-

lar attack, which achieved overall success rates of 67.3% and

88.0% on VTT CAPTCHA, respectively. The results show

that visual reasoning CAPTCHAs are not as secure as antic-

ipated; this latest effort to use novel, hard AI problems for

CAPTCHAs has not yet succeeded. Based on the lessons we

learned from our attacks, we also offer some guidelines for

designing visual CAPTCHAs with better security.

1 Introduction

Completely Automated Public Turing test to Tell Computers

and Humans Apart (CAPTCHA) is a defensive system for

distinguishing computers from humans. Since L. Von Ahn

[50] proposed this technology in 2004, CAPTCHAs have

become an almost standard security mechanism for defending

against malicious computer programs and bots. Each type

of CAPTCHA scheme corresponds to a specific AI problem

that is difficult for current computer programs to solve but is

easily solvable by humans.

*Corresponding author: Haichang Gao (e-mail: hchgao@xidian.edu.cn)

Text-based CAPTCHAs have long been the most widely

used scheme because of their simple structure and low cost.

Such a CAPTCHA relies on a text recognition problem to

distinguish humans from computers [51]. To resist the attack,

text-based CAPTCHAs are often specifically designed with

anti-segmentation features and anti-recognition features [6].

However, with advances in segmentation and character recog-

nition technologies, most text-based CAPTCHAs have been

solved [15], [5], [45], [32], [55], [14], [56], [13], [4], [57],

[60], and designers need to find a new way to achieve se-

curity. Subsequently, image-based CAPTCHAs have been

proposed. The image-based scheme is more diverse in con-

tent and background, and thus, it seems to be more secure than

the text-based scheme. However, with the rapid development

of computer vision techniques, it has been proven that solving

CAPTCHAs based on image or object recognition is not a

challenge for a machine [18], [59], [44], [29], [12].

In recent years, with the development and extensive ap-

plication of deep learning, computers have been expected to

have excellent logical reasoning skills to understand com-

plex tasks similar to humans, which has led to the emer-

gence of visual reasoning tasks based on computer vision

and natural language processing. Subsequently, visual rea-

soning CAPTCHAs have also emerged as a new direction of

development in the security field. Tencent, China’s largest on-

line instant messaging provider, proposed a visual reasoning

scheme named the Visual Turing Test (VTT) [52], as shown

in Figure 1. It uses the VTT CAPTCHA in Tencent Water-

proof Wall [46], which serves hundreds of millions of people

every day. This was the first application of a visual reason-

ing CAPTCHA, and it appears more secure than previous

schemes. There are also three CAPTCHA service providers,

Geetest, NetEase, and Dingxiang, who have now also pro-

posed visual reasoning CAPTCHAs to defend against bots.

It is therefore natural to ask a fundamental question: are the

visual reasoning CAPTCHAs, in fact, as secure as their de-

signers expect?

To comprehensively analyze the security of CAPTCHAs

based on visual reasoning, this paper first proposes a holis-
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Figure 1: Samples of Tencent’s VTT CAPTCHA.

tic method that consists of three modules: an input module

extracts semantic features through a bidirectional long short-

term memory (BiLSTM) network and visual features through

a convolutional neural network (CNN); a reasoning module

integrates the visual and semantic features to calculate the

feature vectors of the possible answer objects; and an output

module takes the output of the reasoning module as input

to predict the final answer. Our holistic method is effective

and robust. It achieves overall success rates of 67.3%, 66.7%,

77.8% and 86.5% on VTT, Geetest, NetEase, and Dingxiang

CAPTCHAs, respectively. Through analysis, we found that

most failures of our holistic method are related to abstract at-

tributes that a computer program cannot obtain directly from

an image, such as the literal meaning or pronunciations of

characters.

Accordingly, to address the abstract attribute problem, we

also propose a modular method. Its framework consists of

four modules for query parsing, detection, classification, and

integration. The query parsing module is responsible for trans-

forming the text instruction of a VTT CAPTCHA into a se-

ries of reasoning steps, while the detection and classification

modules predict the locations and visual attributes of all fore-

ground objects. Finally, the integration module refers to the

extracted reasoning steps to combine the visual and abstract

attributes of objects to predict the final answer. The success

rates of this modular method for VTT, Geetset, NetEase and

Dingxiang CAPTCHAs are 88.0%, 90.8%, 86.2% and 98.6%,

respectively.

Compared to the holistic method, the modular method is

higher in accuracy but inferior in efficiency. Nevertheless,

we have successfully broken visual reasoning CAPTCHAs.

The high success rates of both of our attacks show that visual

reasoning CAPTCHAs are not as secure as anticipated. Based

on the lessons learned from our attacks, we summarize three

guidelines for future CAPTCHA design. Our contributions

are as follows:

• We present a comprehensive summary and analysis of

the AI problems used as the basis of existing CAPTCHA

schemes.

• We evaluate state-of-the-art visual reasoning

CAPTCHAs and implement two successful attacks,

which demonstrate that visual reasoning CAPTCHAs

are not as secure as their designers hoped. To the best of

our knowledge, this is the first attempt to solve visual

reasoning CAPTCHAs in the industry.

• We summarize three guidelines (using a larger category

set, making some occlusion, using more variations) and

one promising direction for future CAPTCHA design.

2 AI Problems Underlying Existing

CAPTCHA Schemes

The design principle of a CAPTCHA is to utilize the dif-

ference between the capabilities of human beings and ma-

chines in solving hard AI problems to defend against mali-

cious bots or programs. The offensive and defensive nature

of CAPTCHAs is thus manifested in a cycle of continuously

cracking and designing new mechanisms addressing different

AI problems. In this section, we mainly focus on the most

widely used text-based and image-based CAPTCHAs and ex-

plore different hard AI problems hidden in different types of

CAPTCHAs. Table 1 lists the different CAPTCHA schemes

developed to date based on various AI problems, where the

third column presents the defense strategies used and the last

column shows typical examples.

2.1 Text-based CAPTCHAs

Early text-based CAPTCHAs adopted the character recogni-

tion task as the underlying hard AI problem and followed the

anti-recognition principle for enhanced security. Gimpy and

EZ-Gimpy are two such typical text-based CAPTCHAs. How-

ever, these two schemes have already been broken with high

success rates [32]. Chellapilla et al. [7] further proved that

computers are comparable to or even better than humans in

recognizing distorted single characters. In fact, segmentation

followed by recognition was the general process applied for

early CAPTCHA cracking. Therefore, designers turned their

attention to anti-segmentation algorithms, with the aim of pre-

venting the successful extraction of characters from images.

The most commonly used anti-segmentation schemes include

crowding characters together (CCT), the hollow scheme, the

two-layer, variable lengths, and background interference.

Unfortunately, all of these resistance mechanisms have also

been broken. Gao’s team [14] has proven that the hollow

scheme can be broken using the color filling segmentation

(CFS) algorithm. In 2017, they also proposed a method [13]

of coping with the two-layer scheme. More recently, Tang et

al. [45] proposed a pipeline method and broke a wide range

of real-world CAPTCHAs with high success rates, thereby
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Table 1: Different CAPTCHA schemes with different AI problems.

AI Problems Generation Methods Representative Mechanisms

Text-based

CAPTCHA

character recognition distort, rotate, multi-font Gimpy [32], EZ-gimpy [32]

character segmentation
CCT, hollow, two-layer, variable

length, etc.
Microsoft [13], Yahoo! [14]

Image-based

CAPTCHA

object recognition rich image categories ASIRRA [11], Facebook [44]

facial recognition background embedding
ARTiFACIAL [40],

FaceDCAPTCHA [22]

image perception orientation, size
What’s up [21],

DeepCAPTCHA [33]

semantic comprehension semantic relationship
SEMAGE [49], Google

reCAPTCHA v2 [20]

behavior detection slider, notch slider CAPTCHA [46], [16]

adversarial perturbation classification misleading
Adversarial

CAPTCHA [37], [42]

visual reasoning logical relationship, attributes
VTT [52], Space

CAPTCHA [16]

proving that the CCT scheme and background interference

are also not secure. More innovatively, Zi et al. [60] proved

that CAPTCHAs of this type can be completely broken under

deep learning attacks without segmentation, indicating that

anti-segmentation mechanisms, in general, are losing ground.

In addition to text-based CAPTCHAs designed with En-

glish letters and digits, Wang et al. [53] demonstrated that text

CAPTCHAs based on large character sets, such as Chinese,

Korean, and Japanese, are also not secure.

On the basis of the high success rates achieved to date,

researchers have begun to emphasize efficiency in breaking

CAPTCHAs. Other methods from the machine learning field

have also been applied in cracking efforts, such as reduced

training sets [17], the generative adversarial network (GAN)-

based approach [57], and unsupervised learning and represen-

tation learning [47].

Overall, only limited space for improvement remains for

text-based CAPTCHAs. Thus, CAPTCHA designers have

gradually set their sights on the image domain.

2.2 Image-based CAPTCHAs

Image-based CAPTCHAs are the most popular alternative to

text-based CAPTCHAs. Compared to the simple text-based

scheme, image-based CAPTCHAs can contain more abundant

information, with more categories and more diversity in im-

age content. We simply categorize image-based CAPTCHAs

based on different AI problems as follows:

CAPTCHA based on object recognition. Early image-

based CAPTCHAs adopted object recognition as the underly-

ing AI problem. This type of CAPTCHA usually asks users

to identify specific images from several given categories. The

robustness of an image-based CAPTCHA of this type de-

pends on the number of object categories [59]. Evolving

from ASIRRA [11] to the multiclassification CAPTCHAs of

Google and Facebook, this principle has been widely adopted

in subsequent image-based CAPTCHA design. However, each

problem has been successfully solved [18], [44]. Currently,

image CAPTCHAs based only on object recognition are not

sufficient.

CAPTCHA based on facial recognition. The facial

recognition task is also widely used as the underlying hard

AI problem in image-based CAPTCHA design. ARTiFA-

CIAL [40] requires users to click the corners of the eyes

and mouth of a human face hidden in a complex background

image. In FaceDCAPTCHA [22], a series of human faces

are embedded in the background, and black color blocks are

added to faces for enhanced security. However, both schemes

have been successfully broken [29], [12]. The work of Uzun’s

team [48] also showed that current facial recognition services

are insecure.

CAPTCHA based on image perception. The What’s Up

CAPTCHA proposed by Google [21], is based on identifying

an image’s upright orientation. Recently, Baidu and Dang-

dang [9] used a variant of What’s Up CAPTCHA to defend

against bots. It seems that image orientation perception re-

mains a hard AI problem. The main limitation is that for

a large number of images, orientation is difficult for both

humans and computers. In addition, DeepCAPTCHA [33]

distinguishes humans and bots based on depth perception. In

this CAPTCHA, the user is required to arrange 3D objects in

order of size (or depth) by clicking or touching them. The se-

curity of CAPTCHAs based on image perception is expected

to be a subject of future work by both designers and attackers.

CAPTCHA based on semantic comprehension. Some

CAPTCHAs [49], [20] capitalize on the human ability to com-
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prehend image content and establish semantic relationships.

These CAPTCHAs often ask users to select semantically re-

lated images from a given image set or select all areas that

contain specified semantic information from the sections of a

CAPTCHA image. The main limitation lies in the CAPTCHA

generation stage. The definition of the correct relationships,

the legal issues facing image collection, the time consump-

tion required for image labeling, and the implementation of a

regular updating strategy all pose large challenges.

CAPTCHA based on behavior detection. Slider

CAPTCHA is a newly emerging type of CAPTCHA based

on behavior detection. It asks the user to drag a slider to fill

in a notch in a background image or simply to slide it from

one side to another. For a machine, such a CAPTCHA es-

sentially poses an object detection and behavior simulation

problem. Zhao et al. [58] designed an algorithm based on the

exclusive OR (XOR) operation to detect the notch position

and mimic human behavior by leveraging common activation

functions to bypass detection. They achieved success rates

ranging from 96% to 100% on Geetest, Tencent, and NetEase

slider CAPTCHAs. As an increasing number of protection

mechanisms tend to detect abusive traffic based on user inter-

actions with the website, not just the behavior when sliding

the bar, the security of slider CAPTCHAs still needs further

evaluation.

CAPTCHA with adversarial perturbation. It has been

proven that deep neural networks are vulnerable to well-

designed input samples, called adversarial examples [1], [19],

which are imperceptible to humans but can easily fool deep

neural networks. To further improve CAPTCHA security,

Margarita [37] used adversarial examples for CAPTCHA gen-

eration within an object classification framework. In addition,

adversarial examples were also adopted in the design process

of reCAPTCHA v2 [20] to resist attacks based on deep learn-

ing. Shi et al. [42] proposed a framework for text-based and

image-based adversarial CAPTCHA generation to improve

the security of normal CAPTCHAs while maintaining sim-

ilar usability. The combination of adversarial examples and

CAPTCHAs is currently still in the exploration stage.

With the rapid development of the AI field, many other new

types of CAPTCHA schemes have sprung up, such as rea-

soning puzzle CAPTCHA [34], word-order click CAPTCHA

[36], scratch cards CAPTCHA [10], etc. Visual reasoning

CAPTCHAs are also a new type of image-based CAPTCHA

that relies on visual reasoning tasks, the combination of com-

puter vision tasks and natural language processing tasks. The

"visual reasoning" task includes multiple AI problems at the

same time, such as object recognition, semantic comprehen-

sion, and relational reasoning. It shows a scene in which

different objects have a logical relationship in position or

content, and the answer needs to be obtained based on the

common comprehension of text and images, which is more

complicated than CAPTCHAs based only on object recog-

nition or semantic comprehension. At present, research on

visual reasoning CAPTCHAs is still lacking. We will discuss

visual reasoning CAPTCHA and related research in detail in

the next section.

3 Visual Reasoning CAPTCHAs

In this section, we first introduce existing visual reasoning

schemes and their respective characteristics and then analyze

existing methods to solve hidden AI problems behind the

visual reasoning CAPTCHA. Finally, we illustrate the differ-

ence between the visual reasoning CAPTCHAs and the AI

problem behind it and the difficulty of cracking.

3.1 Existing Schemes

Tencent first proposed a new CAPTCHA named VTT based

on a visual reasoning task. Each VTT challenge consists

of an image and a text instruction referring to the image.

To pass the test, the user must understand the relationship

expressed in the text instruction and click a specific region of

the image. A VTT image usually contains 10 to 20 synthetic

3D objects. There are three possible types of challenges in

VTT CAPTCHA:

An object’s own attributes. The user must identify each

object’s visual attributes, including common attributes such

as geometric shape, color, and size, as well as subtle attributes

such as tilt direction, fracture type, notch type, and character

category. Examples of related instructions include "Please

click the yellow cube," "Please click the object tilting to the

left."

A visual logical relationship. Related instructions may

concern comparative relationships, e.g., "Please click the

biggest cylinder," or spatial relationships, e.g., "Please click

the cube left of the cone."

An abstract logical relationship. Related instructions

may invoke 1) synonym or antonym, e.g., "Please click the

two characters with opposite meanings"; 2) pronunciation,

e.g., "Please click the Chinese characters with pronuncia-

tion ’bai’"; 3) character components, e.g., "Please click the

Chinese characters with component ’彳’"; 4) uppercase or

lowercase, e.g., "Please click the uppercase of the green let-

ter"; 5) numerical sorting, e.g., "Please click the numbers

from the smallest to biggest". Such problems are more diffi-

cult for a machine to solve since the machine cannot obtain

the necessary knowledge from either the image or the text

instruction.

Geetest, a worldwide CAPTCHA service provider, has also

designed a simplified scheme called Space CAPTCHA [16].

It looks almost the same as VTT but involves only regular

geometries. The challenges contain only common attributes

and spatial relations. Each image contains 7 to 10 objects. The

prompts concern only the colors, shapes, sizes, and spatial

relationships of regular geometric objects. However, the ob-

ject categories and prompt formats are all different from those
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Figure 2: Samples of more visual reasoning CAPTCHAs.

of VTT. In addition, occlusion is more common in Space

CAPTCHA. For example, the answer object in Figure 2(a.Q1)

is incomplete. In Figure 2(a.Q4), the polyhedron is blocked

by the blue cylinder. In addition, it is often the case that the

relative spatial relationships are not very clear in challenges

concerning location. For instance, it is difficult to distinguish

whether the blue sphere in Figure 2(a.Q1) is behind the cylin-

der.

NetEase [35] and Dingxiang [10] have also designed spatial

reasoning CAPTCHAs. Both contain fewer objects, attributes,

and visual logical relationships and no abstract logical rela-

tionships (shown in Figure 2(b) and 2(c)).

NetEase’s visual reasoning CAPTCHA contains regular

geometric shapes, English letters, and digits. Each image usu-

ally contains 5 to 7 objects. The prompts mainly focus on

objects that are "the same color", "side facing", and "with the

same direction".

Dingxiang’s CAPTCHA includes planar graphics, regular

geometric shapes, and English letters. Each image shows 5

objects. The prompts concern only the locations (e.g., up,

down, left, right, closest to) of objects or objects of the same

color.

The main object categories in the existing visual reasoning

schemes are shown in Table 2.

Table 2: Main object category in the existing visual reasoning

schemes.

VTT Geetest NetEase Dingxiang

Regular geometries X X X X

Chinese characters X - - -

English letters X - X X

Digits X - X -

3.2 Related Work and Key Issues

Visual reasoning tasks have emerged as a basis for evaluating

the logical reasoning abilities of AI systems. Three datasets,

DAQUAR [31], VQA [3], and CLEVR [26], have been built

as standard datasets for visual reasoning tasks that require

a computer to infer an answer from an image for a given

text-based prompt concerning spatial and semantic relation-

ships. Simply put, the input problems for visual reasoning

tasks are relatively difficult, involving multilevel relationships
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among objects. Therefore, to solve such a task, an AI model

needs reasoning capabilities, and a neural module network is

an effective method. Methods of this kind make full use of

the composability of language. Many small neural modules

responsible for specific functions such as detection and loca-

tion are defined, and the input problem is then parsed into a

combination of modules composing a program that can be

executed to obtain the answer to the prompt. [25], [8], [43]

are several typical reasoning models.

However, the current AI solutions to visual reasoning

problems are not sufficient for solving visual reasoning

CAPTCHAs. The reason is that solving the CAPTCHA is not

exactly equivalent to solving the underlying visual reasoning

problem. Specifically, measures such as changing the form

of the prompts and applying the click mechanism make the

task of cracking this type of CAPTCHA different from that of

simply solving a visual reasoning problem, as these measures

may invalidate the reasoning mechanism. Therefore, how to

deal with such changes is a difficult point to consider.

In addition, most of the current technologies for cracking

CAPTCHAs are only aimed at solving specific mechanisms,

and some general cracking methods tend to focus on the

commonality of different CAPTCHAs. The novel AI problem

involved in visual reasoning CAPTCHAs, i.e., the in-depth

analysis and inference of the question to determine the answer,

is the first time used in the CAPTCHA field. The simple

convolutional network and long short-term memory network

applied to previous text and image cracking methods have

no way to understand some meanings more deeply. Thus,

the inapplicability of past technologies to new mechanisms

is also a bottleneck that we need to address. In fact, VTT

designers have evaluated its security by implementing an

attack experiment with a relation network and achieved only

a 4.7% success rate [52].

Does this mean that the security of the visual reasoning

CAPTCHAs is as their designers expected? In the follow-

ing section, we present an in-depth analysis to answer this

question.

4 Holistic Approach

In this section, we introduce a holistic attack on the represen-

tative visual reasoning CAPTCHA, VTT. After introducing

this attack, we conduct a comprehensive analysis of its results

and the reasons for its failure cases. We also attacked visual

reasoning schemes designed by Geetest, NetEase, and Dingx-

iang to demonstrate the universal capabilities of our method.

To evaluate the robustness of our attack, we also present two

groups of experiments addressing higher logical complexity

and new categories.

4.1 Model structure

The VTT CAPTCHA and the traditional visual reasoning task

are two distinct tasks. The former is a reasoning detection task

that requires the correct object to be located, while the latter

requires giving a text answer. To solve the VTT CAPTCHA,

we modify the MAC model [25], which achieved state-of-the-

art performance on the CLEVR dataset in 2018, to output an

object detection result rather than a text answer.

As long as the user clicks on any pixel of the target object

in the VTT image, the system will determine the user to

be a human. Inspired by YOLO-v3 [38], we evenly divide

each image into a 14×14 grid and, for each grid cell, predict

whether the center coordinates of the object of interest are

located in that grid cell. Figure 3 depicts an outline of our

holistic model, which consists of an input module, a reasoning

module, and an output module.

1) Input module. The input module is designed to extract

semantic features and global visual features. For the semantic

feature extractor, we adopt the original BiLSTM [41] network

to process the word embeddings of the text instruction. The

output states of the BiLSTM network, cw1,cw2, . . . ,cws, rep-

resent each word in the instruction string, whose length is s.

The final hidden states from the backward and forward direc-

tions of the BiLSTM network are concatenated to form the

global semantic feature vector of the whole text instruction,

denoted by q. To extract the global visual feature vector f,

we replace ResNet-101 with ResNet-50 [23], which allows

a larger batch size and provides a faster training speed and

better prediction performance.

2) Reasoning module. The reasoning module is the core

of our holistic model. It has a recurrent structure and consists

of a sequence of elementary reasoning cells. Our reasoning

cell follows the working principle of the MAC cell [25]. It

contains two basic units: a control unit and a memory unit.

The control unit receives both the semantic feature vector q

and the control state Ci−1 from the previous step to calculate

the updated control state Ci. It determines which part of the

text instruction is the most relevant to each reasoning step.

The memory unit is responsible for taking orders from the

control unit and identifying the most important part ui from

the global visual feature vector f. Then, the memory unit

incorporates the previous memory state Mi−1 and ui to obtain

the updated memory state Mi. The memory state represents

the most relevant visual information in each step.

Compared to the original MAC cell, our reasoning cell

lacks a write unit. The write unit of the MAC cell is designed

to integrate information retrieved from the global visual fea-

ture vector with the current memory state. The intermediate

result of the write unit represents the current information of

the reasoning process. For the CLEVR dataset, the model

needs to output a text description of the answer. In contrast,

VTT CAPTCHA requires the model to predict the coordinate

information of the answer object. Due to this special require-
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Figure 3: Framework of the holistic model. (The final answer is labeled with a red rectangle)

ment of the VTT CAPTCHA, using the memory state from

the memory unit instead of the output of a write unit to predict

the answer grid cell is a more reasonable approach.

3) Output module. The output module receives the global

text representation q and the final memory state Mp as inputs.

Then, q and Mp are concatenated together and passed through

a classifier that consists of two fully-connected layers, one

ReLU layer, and one softmax layer. The dimensions of the

last fully-connected layer are modified to 196(14× 14) to

allow the model to predict the probability distribution over all

candidate grid cells. After normalization by the softmax layer,

the grid cell with the highest score is the final prediction of

our model.

4.2 Experiments and analysis

1) Implementation details

Data preparation. First, we collected 13,500 VTT

CAPTCHA instruction-image pairs from the Internet [46].

The labeling task was to label the bounding box of the an-

swer. In most cases, there was only one answer object for

a given challenge. It took less than one day for five of this

paper’s authors to finish the labeling task. For each VTT test,

the final feature map has dimensions of 14× 14, so every

test image was evenly divided into 14×14 grid cells to map

each position in the feature map to the original image. Then,

we wrote a simple Python program to calculate the grid cell

containing the central pixel of the answer object. Accord-

ingly, the calculated grid cell was labeled the ground truth

for the VTT test. Finally, we divided the samples into a train-

ing dataset (10,000), a validation dataset (2,500), and a test

dataset (1,000).

Training. Each image was normalized to 224×224 pixels

before being processed by the model. The text instructions

were embedded in a 300-dimensional space. The dimensional-

ity of the hidden states (the control state and memory state) of

our model was set to 512. We combined 16 reasoning cells to

build the core reasoning module. A variable dropout strategy

and exponential linear unit (ELU) activation functions were

used throughout the network. In the training phase, the model

was trained by minimizing the softmax cross-entropy loss

Table 3: Proportions and success rates of different answer

questions.

Answer object Proportion Success rate

Regular geometries 35.5% 78.5%

Chinese characters 30.2% 32.9%

English letters 18.2% 83.6%

Digits 16.1% 76.2%

Total 100.0% 67.3%

with the Adam [28] strategy for 25 epochs on an NVIDIA

GTX 1080 GPU.

2) Experimental results

Our holistic approach achieved an average success rate of

67.3% on the test dataset. Moreover, the average processing

time for each CAPTCHA was less than 0.05 seconds, which

is 120 times faster than a human being [52].

Although the success rate of 67.3% is encouraging, it

also indicated that our approach failed on some CAPTCHAs.

Based on the categories of the answer objects, instances of

the VTT CAPTCHA can be roughly divided into four classes:

those based on regular geometric objects, Chinese characters,

English letters, and digits. Table 3 lists the proportions and

success rates for the different challenge types. From the pro-

portions, we find that challenges concerning regular geometric

objects make up the largest part of the entire dataset, followed

by challenges concerning Chinese characters. Challenges ad-

dressing English letters and digits are fewer in number. In

this experiment, the success rate for challenges based on En-

glish letters was the highest, at 83.6%. The success rates for

challenges based on regular geometric objects and digits were

78.5% and 76.2%, respectively, while for challenges related to

Chinese characters, only a 32.9% success rate was achieved

because of the diversity of the character classes.

We comprehensively analyzed the reasons for the failure

cases of our holistic method and found that the main reasons

for failure are different for different challenge types. Some

failure samples for our holistic model are shown in Figure 4.

The failures of our holistic method can be attributed to four

main causes:

Classification error. As shown in Table 4, classification
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Figure 4: Failure samples for our holistic method.

Table 4: Error distribution(%) for the holistic method.

Answer object CE GPE SPE AAE Others

Regular geometries 69.6 15.9 8.7 0 5.8

Chinese characters 18.1 0 0 81.9 0

English letters 20.2 17.0 11.4 45.7 5.7

Digits 15.5 26.2 20.0 38.3 0

* Abbreviations in Table 4: CE (classification error), GPE (grid prediction

error), SPE (semantic parsing error), AAE (abstract attribute error)

errors account for 69.6% of attack failures on challenges

concerning regular geometric objects. The subtle attributes of

regular geometric objects include the tilt direction, notch type,

and fracture type. For English letters and digits, classification

errors are responsible for 20.2% and 15.5%, respectively, of

all attack failures. The only subtle attribute of the relevant

objects in these two categories is the side facing direction. For

Chinese characters, classification errors account for 18.1%

of attack failures. In this category, subtle visual attributes

exist in relatively few training samples compared to color,

shape, and other common attributes. Our model can learn the

features corresponding to common attributes for almost all

types of samples, while some subtle attributes appear only in

relation to specific challenges. Therefore, the performance

of our model in recognizing these subtle attributes is slightly

inferior (see the failure cases shown in Figure 4(a.Q1) (a.Q2)).

Grid prediction error. The design principle of our holistic

attack simplifies the complexity of the task and improves the

attack efficiency. However, this design will sometimes lead to

inaccurate prediction, with the model incorrectly outputting a

grid cell that is close but not identical to the answer grid cell

(shown in Figure 4(b.Q1) (b.Q2)). Such grid prediction errors

are responsible for 15.9%, 17.0%, and 26.2% of the failure

cases on regular geometric objects, English letters, and digits,

respectively.

Semantic parsing error. Another failure cause is that our

holistic model fails to extract the logical relationships ex-

pressed in the natural language instructions. Taking Figure

4(c.Q1) as an example, the model successfully recognized the

"cube closest to the user" but missed the color information

"blue" and instead found a "green" one, resulting in failure.

Such semantic parsing errors are responsible for 8.7% of the

failures on regular geometric objects, 11.4% of the failures

on English letters, and 20.0% of the failures on digits.

Abstract attribute error. Table 4 shows that failure to

identify abstract attributes is responsible for 81.9% of the

failures on challenges based on Chinese characters. Accord-

ing to our manual count, most of the Chinese-based VTT

CAPTCHA instances in our dataset involve abstract attributes.

Because there are thousands of Chinese character classes, the

numbers of classes of synonyms or antonyms, pronunciations,

components, and other attributes are even larger. The map-

ping relationships between the characters and their abstract

attributes are independent of the presented image and text

instruction themselves. Therefore, it is not surprising that our

model failed to establish the relevant mapping relationships

between Chinese characters and their abstract attributes (as

shown in Figure 4(d.Q1)). The high proportions of failures

related to abstract attributes for English-based and digit-based

CAPTCHAs can be attributed to similar reasons: some of

these CAPTCHAs involve the mapping between lowercase

and uppercase letters (as shown in Figure 4(d.Q2)), while

some relate to the sorting of digits. For English-based and

digit-based tests, abstract attribute errors account for 45.7%

3298    30th USENIX Security Symposium USENIX Association



and 38.3%, respectively, of all failure cases. By contrast, 0%

of the failures on regular geometric objects are related to

abstract attributes because these objects have only common

attributes and subtle attributes.

Table 5: Attack results for different visual reasoning

CAPTCHAs.

VTT Geetest NetEase Dingxiang

Success Rate 67.3% 66.7% 77.8% 86.5%

Figure 5: Loss and accuracy during the training and validation

phases of Geetest, NetEase and Dingxiang.

4.3 More visual reasoning schemes

We also used the holistic method to attack the other three

visual reasoning CAPTCHAs.

We collected 5,000 prompt-image pairs for each scheme

from Geetest’s website [16], NetEase’s website [35], and

Dingxiang’s website [10]. A total of 4,000 samples were used

for training, 500 were used for validation, and 500 were used

for testing. The split of the dataset was randomly determined.

We loaded the VTT baseline model and further trained it to

fine-tune the holistic model for the new schemes. As shown in

Table 5, the final attack results are 66.7%, 77.8%, and 86.5%

successful, comparable to or better than the VTT attack re-

sults. For Geetest’s Space CAPTCHA, although only regular

geometric objects are involved, the attack success rate is lower

than that of NetEase and Dingxiang. One of the reasons is

that Geetest’s Space CAPTCHA contains more objects in a

challenge, and some of them are partially occluded by other

objects. The other reason is that the combination of object

attributes contained in the question is more abundant, which

increases the difficulty of reasoning. In contrast, NetEase’s

and Dingxiang’s CAPTCHAs contain richer categories, but

the question is more straightforward, lower in complexity, and

involves fewer types. The loss and accuracy on the Geetest,

NetEase and Dingxiang samples during the training and vali-

dation phases are shown in Figure 5.

4.4 Robustness analysis

The experimental results discussed above show our holistic

method’s great ability to address the visual reasoning task

in existing VTT CAPTCHAs. To test the robustness of our

holistic model when faced with new variations, we conducted

two groups of supplementary experiments.

1) Robustness to higher visual logical complexity

For the original VTT prompts, the user needs to refer to

only one object to identify the answer object. For example, for

the instruction "Please click the blue cube that is on the right

of the blue cone," the user needs to refer to the location of the

blue cone to find the answer blue cube to its right. To test the

robustness of our model to prompts with higher visual logical

complexity, we extended the number of reference objects to

2 and 3. For instance, the instruction "Please click the green

cone that is on the right side of the green cone left of the red

cube" has two reference objects. It should be noted that we

performed this robustness experiment after developing the

modular attack. Considering that the logical reasoning task in

the VTT CAPTCHA is similar to that on the CLEVR dataset,

we modified the generation code of CLEVR [26] to generate

this new type of VTT prompt in accordance with the image

information we prepared for the modular attack.

We used 1,500 instruction-image samples (1,300 as the

training dataset and 200 as the validation dataset) to fine-tune

the baseline model for 2 and 3 reference objects and then eval-

uated the performance of the two fine-tuned models on their

respective 500 test samples, which had the same distribution

as the samples based on geometric objects in the baseline eval-

uation. The attack success rates of the two fine-tuned models

were 45.0% and 42.3%. Compared to the 78.5% success rate

of the baseline model, the fine-tuned results were slightly

lower but still acceptable. The results show that despite the

greatly increased logical complexity of the VTT instructions,

with only a small number of newly labeled samples to train

the baseline model, our holistic model still performs well in

breaking the VTT CAPTCHA under the criterion of a 1%

attack success rate [5].

2) Robustness to new object categories

Introducing new object categories into the VTT CAPTCHA

design is a simple but valid way to defend against attacks

from adversaries. In fact, each Chinese character class can be

considered an individual category. Therefore, in this section,

we used Chinese character classes to analyze the robustness

to new object categories.

First, we removed all Chinese samples used in the base

experiment and retrained our model in the same way as be-

fore. Without Chinese characters, the new model achieved

77.2%, 78.9%, and 85.7% success rates for challenges based

on regular geometric shapes, English letters, and digits, re-
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Figure 6: Framework of the modular approach.

spectively. The final success rate on the test dataset without

Chinese samples was 77.9%. Then, we selected another 1,500

images (1,300 as the training dataset and 200 as the validation

dataset) containing 100 Chinese character classes to generate

corresponding visual reasoning based instructions for each

image in a manner similar to the first robustness experiment.

Note that the instructions were all based on common attributes

rather than abstract attributes of Chinese characters.

After the new model was fine-tuned, the attack success rate

on the 500 Chinese character challenges was 69.7%, show-

ing the high robustness of our holistic attack to new object

categories. This result is higher than the 32.9% success rate

achieved in the base experiment. The reason is that the model

needed to learn only the common attributes from 100 Chi-

nese character classes represented in 1,500 images rather than

many abstract attributes of thousands of Chinese character

classes represented in nearly the same number of samples.

In summary, despite an increase in the visual logical com-

plexity of the challenges or the introduction of new object

categories, as long as the CAPTCHA is still based on the

visual reasoning task, our method is able to achieve a high

attack performance after fine-tuning on only a small number

of newly collected CAPTCHA samples.

5 Modular Approach

Our holistic network has shown remarkable performance in

breaking visual reasoning CAPTCHAs. However, when a

CAPTCHA involves abstract attributes, such as synonyms or

antonyms, pronunciations, or components, our holistic model

does not work well. If we could manage to obtain the abstract

attributes of all foreground objects and then integrate them

into the process of completing the visual reasoning task, this

problem could be solved. Based on this idea, we developed a

modular method.

5.1 Model structure

The framework of our modular method is shown in Figure 6.

It consists of four modules for semantic parsing, detection,

classification, and integration. The semantic parsing module

is responsible for inferring the reasoning steps necessary to

complete the task. The detection and classification modules

locate each foreground object and extract common attributes

such as the color, shape, and size. The integration module then

refers to the extracted reasoning procedure and aggregates all

of the objects’ attributes to predict the final answer.

1) Semantic parsing module

The semantic parsing module takes the raw text instruc-

tion q as its input and outputs the corresponding reasoning

procedure p. In essence, transforming q to p is a sequence-to-

sequence task. As shown in Figure 7, the program generator

network developed by Feifei’s team [27] is adopted as the

basis of our semantic parsing module. An encoder takes the

raw text instruction q as its input and extracts its semantic

features. A decoder then takes these semantic features to pre-

dict the corresponding program p. Both the encoder and the

decoder adopt a two-layer long short-term memory (LSTM)

architecture as their core structures.

Step 1. The encoder first embeds the discrete words <

v1,v2, . . . ,vt > of the natural language instruction into 300-

dimensional vectors < x1,x2, . . . ,xt > through an embedding

layer with weights Wx:

xi = Wx · vi (1)

All of these word vectors < x1,x2, . . . ,xt > are then input

into a two-layer LSTM with 256 hidden units in sequence.

The reason for the choice of a two-layer structure instead

of a single-layer structure is that it allows the network to

extract higher-order features and enhances the representation

capability of the semantic parsing module. For step i in each

time, an LSTM cell takes the preceding hidden state hi−1 and

the current word vector xi as its input and outputs the updated
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hidden state hi:

hi = LSTMStep(xi,hi−1) (2)

The hidden state ht of the second LSTM layer in the final time

step t is used as the input to the decoder. For the same reason

as for the encoder, a two-layer LSTM structure is adopted as

the framework for the decoder. However, the network weights

are not shared between the encoder and the decoder.

Step 2. For step i in each time step, the decoder network

first concatenates its output oi−1 from the previous time step

with the encoder’s final hidden state ht through a learned

embedding layer. This operation allows the model to predict

the current program p by referring to the previous prediction

and the global semantic information:

ui = Wu[oi−1,ht ] (3)

Step 3. ui is used to compute the hidden state of the decoder

cell, oi:

oi = LSTMStep(ui,oi−1) (4)

Step 4. oi is passed through a softmax layer to compute a

probability distribution over all programs:

si = softmax(oi) (5)

Step 5. The prediction with the highest probability is re-

garded as program p:

pi = argmax(si) (6)

It should be noted that the semantic parsing module is

responsible only for transforming the input text instruction

into a sequence of programs. The specific function of each

program will be discussed in regard to the integration module.

2) Detection module

The task of the detection module is to locate the positions

of all foreground objects. Faster R-CNN [39] is used as the de-

tection module. Although there are other detection networks

that perform better in terms of accuracy and efficiency, such as

YOLO-v3 [38] and SSD [30], our detection task is relatively

simple. Thus, the simple Faster R-CNN already satisfies our

requirements.

In addition to locating the foreground objects, the detection

network is able to perform some simple classification at the

same time. Some common visual attributes, such as colors,

sizes, and shapes of regular geometries, are also predicted by

the detection module. After detection, the detected objects are

cropped from the original images and sent to the classification

module for further classification of subtle attributes.

3) Classification module

The function of the classification module is to recognize

subtle visual attributes such as notches, fractures, tilt direc-

tions and character categories. SENet [24] is used as the

classification module. By calculating the interdependencies

among channels, this structure enables adaptive recalibration

of the channelwise feature responses, thus greatly enhanc-

ing the representation power of the model and increasing the

classification accuracy.

4) Integration module

Figure 7: Structure of the semantic parsing module.

The three modules described above predict the reasoning

procedure and visual attributes needed to solve CAPTCHAs.

However, they cannot address abstract attributes invoked in

the presented instructions. If we can establish the relevant

mapping relationships between objects and their abstract at-

tributes, the corresponding CAPTCHAs will be cracked. For

each Chinese character object, we input its predicted charac-

ter class into the online Xinhua Dictionary [54] to search for

its pronunciation, antonym, and component attributes. The

mappings between the uppercase and lowercase versions of

English letters and the numerical sorting of numbers were

established programmatically.

The extracted reasoning procedure for a CAPTCHA in-

stance consists of a series of programs, each of which repre-

sents a reasoning step. A program is responsible for filtering

out redundant foreground objects. Different programs serve

unique functions. After the processing of the program, only

objects with the required attributes remain. For example, the

program filter_shape[cone] selects objects with the shape

"cone" from among the objects remaining after the preceding

program. After a sequence of program-based filtration opera-

tions, the final remaining objects are the predicted answers.

Taking the CAPTCHA shown in Figure 8, with the instruc-

tion "Please click the letter ’B’ left of the big cone" as an

example, we describe the integration process in detail below.

It consists of five programs in total. To clearly illustrate the in-

tegration process, the candidate answer objects are displayed

in colors, while the eliminated objects are displayed in gray.

The whole reasoning procedure is as follows:

a. Initially, all foreground objects are treated as candidate

answers.

b. The first is program filter_shape[cone]. Its function is

to select all the objects with the shape "cone" from among

all the candidate objects. As shown in Figure 8, only the

cones are selected to be used as candidate answers to the next

program.

c. The second program, filter_size[big], is responsible for

selecting all objects with the size "big" from among the can-

didate objects output by the previous step.

d. The program relate[left] is slightly different. Instead of

selecting candidate answers from the output of the last step, it

treats the output of the last program as a reference to search

for candidates among all the foreground objects. The output

USENIX Association 30th USENIX Security Symposium    3301



Figure 8: Integration process.

of the second program consists of a "big cone." Thus, the

function relate[left] finds objects to the left of such objects.

e. After the program filter_shape[letter], only English let-

ters remain.

f. The program filter_letter[’B’] searches among its candi-

date objects for objects equivalent to the letter "B."

g. Finally, after all of the programs have performed their

filtration tasks, only the green letter "B" remains, which is the

final answer of our model.

5.2 Experiment details

Data preparation. 1) Visual feature selection. We manually

analyzed 2,000 VTT instruction-image pairs in our dataset

and counted the visual attributes involved, including color,

shape, size, direction of rotation, notch type, and fracture type.

The number of classes of each attribute above is listed in Table

6. For the tilt direction attribute, "T1" and "T2" represent two

different values. The naming principle for the values of the

notch type attribute is similar. For the fracture type attribute,

"Fi" and "F(-i)" can be joined together. 2) Instruction-image

pairs preparation. To reduce the labeling burden, we chose

only 5,000 VTT images from among the training samples

collected for the holistic experiment and labeled every fore-

ground object in these images. Twenty members of our labo-

ratory spent one day labeling all of the object attributes online.

We needed only to select the corresponding attributes from

option boxes instead of providing keyboard input. Each test

image could be reused to generate multiple instructions. For

this purpose, the generation code of CLEVR [26] was modi-

fied to automatically generate instructions in accordance with

the labeled information and the preset VTT instruction tem-

plates. Instruction labeling was also automatically completed

by means of the instruction generation code. Finally, 5,000

labeled images, each corresponding to 2 instructions (10,000

instructions in total), were prepared. It should be noted that

the 5,000 selected images were not all randomly chosen. In-

Table 6: Number of classes of different visual attributes.

Attribute

Number

of

Classes

Sample of Label

Color 4 Yellow, Red, Blue, White

Shape 924 Cube, r, 3,田,…

Size 3 Big, Medium, Small

Tilt direction 2 T1, T2

Notch 4 N1, N2, N3, N4

Fracture 8
F1, F2, F3, F4, F(-1), F(-2),

F(-3), F(-4)

stead, different types of images were selected in accordance

with the category proportions in the holistic experiment, as

shown in Table 3. Specifically, 1750 (35%), 1,500 (30%),

1,000 (20%), and 750 (15%) images were chosen for which

the answer objects were regular geometric shapes, Chinese

characters, English letters and digits, respectively. The test

samples in the holistic experiment were reused in the modular

attack test.

Training the semantic parsing module. We used 10,000

instruction and reasoning procedure pairs, denoted by (q, P),

to train the semantic parsing module (8,500 as the training

dataset and 1,500 as the validation dataset). For each instruc-

tion, the corresponding reasoning procedure was manually

labeled. We used the cross-entropy loss to measure the dif-

ference between the model prediction P’ and the true label P

for instruction q. During the training process, the Adam [28]

strategy was used to optimize the model. The learning rate

was set to 5×10−4. The model was trained with a batch size

of 64 for 16,000 iterations on an NVIDIA TITAN X GPU.

Training the detection module. A total of 5,000 images

were used to train the detection module (4,500 as a training

dataset and 500 as a validation dataset). Note that the detection

module is responsible only for predicting object locations and

simple visual attributes. The detection module was trained

with a batch size of 8 and a learning rate of 5× 10−3 for

32,000 iterations. The training hardware was the same as that

for the semantic parsing module.

Training the classification module. According to the

bounding boxes predicted by the detection module, we cut

out all foreground objects from the original images and saved

them as individual images. Each kind of subtle visual at-

tribute was equally treated as one individual class regardless

of the other attributes. The sizes of the training and validation

datasets were 54,212 and 16,347, respectively. Each image

was normalized to 224×224 pixels before being input to the

model. The classification module was optimized using the

stochastic gradient descent (SGD) strategy with a momentum

of 0.9 and a batch size of 8. The learning rate was initially set

to 1×10−4 and was decreased by a factor of 10,000 in every

epoch. The model was trained for 10 epochs.
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Table 7: Results of our modular attack.

Answer object SPM DM CM ASR

Regular geometries 100% 93.0% 90.0% 99.0%

Chinese characters 100% 96.6% 82.7% 80.0%

English letters 100% 98.5% 93.8% 83.7%

Digits 100% 99.0% 96.3% 94.7%

Overall accuracy 100% 95.0% 88.8% 88.0%

* Abbreviations in Table 7: SPM (semantic parsing module), DM (detec-

tion module), CM (classification module), ASR (attack success rate)

5.3 Evaluation

We ran our attack on 1,000 CAPTCHA challenges and

achieved a success rate of 88.0% with an average speed of

0.96 seconds per challenge. To systematically analyze our

method, we counted the failure cases of our attack (as shown

in Table 7) and analyzed the causes.

Final accuracy. The accuracy for the challenges based on

Chinese characters is the lowest due to their diversity and com-

plexity. We observed an interesting phenomenon: although

the detection accuracy and classification accuracy for geomet-

ric objects are not the highest, their overall accuracy is the

best. One reason is that geometric objects do not have abstract

attributes. Another is that during the process of cracking a

visual-based CAPTCHA, the model does not need to recog-

nize all foreground objects correctly; as long as the target

object is recognized correctly, the challenge is considered

cracked.

Semantic parsing module. The evaluation criterion for

the program generator is that the prediction for a text instruc-

tion is considered correct only if every step of the predicted

reasoning procedure is equal to the ground truth. Under this

standard, the program generator achieved 100% accuracy.

The program generator network has previously shown great

power on the CLEVR task [27]. Thus, considering that the

text instructions of the VTT CAPTCHA scheme involve fewer

categories and much simpler logical relationships, this high

accuracy is not surprising.

Detection module. The overall true positive rate (TPR) of

detection of the Faster R-CNN module across all classes is

95.0%. We found that occlusion was the main cause of failure.

Figure 9 shows a failure case of our detection module. The

red bounding boxes represent the predictions of our model,

and the green bounding box represents an object that was not

correctly predicted. The blue cylinder in the green bounding

box was not detected because its edge was partially blocked

by a Chinese character.

Classification module. The overall accuracy of the classi-

fier is 88.8%. As expected, the accuracy of Chinese characters

is the lowest. The number of categories of Chinese characters

is the largest, and tilt and occlusion effects make the classi-

fication problem even more challenging. Consequently, the

classifier can easily misclassify these characters. Moreover,

Figure 9: A failure case of the detection module.

Table 8: Results for different visual reasoning CAPTCHAs of

the modular method.

SPM DM ASR

Geetest 100% 95.7% 90.8%

NetEase 100% 93.5% 86.2%

Dingxiang 100% 95.2% 98.6%

* Abbreviations in Table 8: SPM (semantic parsing module), DM (detec-

tion module), ASR (attack success rate)

the classification accuracy for geometric objects is the second

lowest. For geometric objects, the task of the SENet module

is to classify their subtle attributes, such as tilt direction, notch

type, and fracture type. These attributes are essentially local

features relative to the shape of the object. For example, two

distinct geometric objects might have the same notch type.

As a result, the classifier must strip these local features from

the various geometric shapes.

5.4 More visual reasoning schemes

1) Attack

We also used the modular method to attack the other three

visual reasoning CAPTCHAs. The three schemes have much

fewer categories than VTT CAPTCHA. To simplify our ex-

periments, we removed the classification module and used

the detection module to complete detection and classification

tasks simultaneously. We used the data collected in Section

4.3 and annotated the data in the same manner as in Section

5.2. For each scheme, there are 4,000 samples for training

the models of semantic parsing and detection modules, 500

samples for validation and 500 samples for testing. Table 8

list the experiment results. The final attack results are 90.8%,

86.2% and 98.6% for the Geetest, NetEase and Dingxiang

schemes, respectively. This suggested the wide applicability

of our method.

2) Usability Analysis

To visually express the quality of the proposed attack meth-

ods, we compared the attack results with actual humans from

two aspects. On the one hand, considering that the CAPTCHA

is used to distinguish humans from bots, we expect to quan-

titatively measure how close our attacks are to human per-
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formance. On the other hand, we want to learn whether the

problems difficult for machines to solve also apply to humans.

We applied a framework similar to that used in [52] to quan-

titatively evaluate the usability of the four tested CAPTCHAs.

More specifically, we analyzed the usability of these schemes

from the perspectives of success rate and response time.

For each CAPTCHA mechanism, 2,500 samples containing

prompts of various types in even proportions were selected for

online deployment. All of these CAPTCHA prompt-image

pairs were derived from the training and test datasets used for

the security analysis.

In the usability experiment, we invited 50 participants

whose ages ranged from 19 to 45 on our campus to take

our online tests. We recruited volunteers online on the cam-

pus social network. All volunteers were composed of stu-

dents and teachers from various majors, who have enough

ability to solve such CAPTCHA schemes. To avoid the in-

herent biases, we ensure that these volunteers have not done

similar CAPTCHA tests before. Everyone was required to

complete the test independently. Each volunteer was asked to

complete at least 40 CAPTCHA tests for each scheme. We

received 2475, 1969, 2061, and 2361 valid records for the

four CAPTCHA mechanisms of VTT, Geetest, NetEase, and

Dingxiang, respectively. Table 9 lists the success rates and

average response times for the different CAPTCHA schemes.

The response times for all four schemes are relatively short,

with the longest being 10.7 seconds for Geetest CAPTCHA.

The consensus is that a CAPTCHA should be completable

by a human in no more than 30 seconds [40], and these

CAPTCHAs satisfy this principle well. Both the short

response times and the high pass rates prove that these

CAPTCHAs all have good usability and that complex prob-

lems for machines do not have a significant impact on humans.

Our methods approach or even exceed the human pass

rates, which proves the effectiveness of the attack. Following

the criterion that a scheme is considered broken when the

attacker is able to reach a precision of at least 1% [5], our

method achieved a good attack effect.

Table 9: Usability analysis of different CAPTCHA schemes.

VTT Geetest NetEase Dingxiang

Response Time (s) 9.1 10.7 4.5 5.7

Std Dev of

Response Time (s)
5.5 5.9 3.0 4.3

Human Pass

Rate(%)
87.48 90.76 95.20 95.43

5.5 Ablation study

Our modular attack is based on a modular design principle. To

fairly evaluate the contributions of each of the three modules

of our attack, we performed an ablation study, as reported in

this section.

Contribution of the semantic parsing module. In this

test, we removed the semantic parsing module and used only

the detection module to predict the locations of foreground

objects. Then, we randomly selected one foreground object

as the final answer. We implemented this attack strategy on

the same 1,000 samples used to test our modular method, and

the final success rate was 6.9%. The dramatic reduction in

the success rate demonstrates the great significance of our

semantic parsing module in the entire modular attack.

Contribution of the detection module. The basic require-

ment to solve a VTT CAPTCHA instance is to identify an

area of the image as the answer. Without the detection mod-

ule, an adversary must take a brute force strategy to attack

the VTT CAPTCHA. Using this method, the final success

rate was only 3.2%, showing that the detection module is

indispensable for our modular attack.

Contribution of the classification module. In this test,

we removed the classification module and trained a Faster

R-CNN model to predict both the bounding boxes and the

classes of all visual attributes (including subtle attributes)

of the foreground objects. That is, for all objects, only the

detection module was used to perform both the detection

and classification tasks. In this way, our simplified modular

method achieved a success rate of 45.9%.

As shown in Table 10, we further calculated the accuracy

of the simplified modular method for each challenge category.

The second column presents the final detection-classification

results, and the last column shows the final success rate when

the classification module is removed. In contrast to the results

for Chinese characters, the final success rate for challenges

based on geometric objects is still very high. The root cause

lies in the fact that for Chinese characters, there are more

object categories represented by the same number of training

samples. Consequently, there are fewer training samples for

each character class. Moreover, it is quite difficult for an object

detection network to classify a large number of categories,

especially categories that contain subtle properties. Therefore,

it is not unexpected that the success rate for Chinese characters

is the worst. Thus, the classification module is required. When

our classification module is presented with the same number

of samples for Chinese characters as for geometric shapes,

it can achieve much better accuracy on Chinese character

objects.

In summary, our classification module not only increases

the overall success rate from 45.9% to 88.0% but, more im-

portantly, can greatly increase the recognition accuracy when

the number of training samples is limited.

6 Guidelines and Future Direction

Our experimental attacks on visual reasoning CAPTCHAs

not only reveal their weaknesses and vulnerabilities but, more

importantly, help us better understand what kinds of mecha-

nisms or design features contribute to good security. Based
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Table 10: Results of the ablation study.

Target object

Detection-

classification

rate

Attack

success

rate

Regular geometries 93.2% 89.9%

Chinese characters 24.2% 20.0%

English letters 89.7% 54.5%

Digits 91.6% 78.9%

Overall accuracy 77.3% 45.9%

on the observation of the effectiveness of the different de-

sign features of visual reasoning CAPTCHAs, we summarize

three guidelines for future CAPTCHA design that could make

these types of CAPTCHAs harder to crack. We also evalu-

ate the recommendations experimentally and continue to use

commonsense knowledge in CAPTCHAs in future work.

Using a larger category set. As discussed above, using

more categories in CAPTCHA design results in a larger the-

oretical solution space that a malicious bot must search and

thus provides better security. To evaluate this guideline, we

expanded the robustness experiments in Section 4.4 in the

same experimental settings. Under the same amount of data,

attacking VTT challenges containing 100 Chinese character

classes is more difficult than attacking 50 Chinese character

classes. The attack results in Table 11 strongly demonstrate

our opinion. Meanwhile, according to our experimental results

in Table 7, the classification accuracy for Chinese characters

is the lowest among regular geometries, English letters, and

digits, which indicates that using more classes indeed pro-

vides better defense against adversaries. Research by Algwil

et al. [2] also corroborates our view. They have shown that

in the context of recognition tasks, it is more demanding to

attack CAPTCHAs with a Chinese mechanism than Roman

character-based CAPTCHAs. One important reason is that

the Chinese character set is a larger category set than English

letters.

Table 11: The attack success rates of adding more categories.

50 classes 100 classes

Attack Success Rate 77.7% 69.7%

Making some occlusion. Occlusion refers to the case in

which the view of an object is partially blocked by another

object. Making some occlusion will enhance the security of

CAPTCHAs. To confirm this guideline, we set comparative

experiments for no occlusion and occlusion of the answer ob-

jects, as shown in Figure 10. Meanwhile, we explore whether

occlusion will affect human pass rates. We use one single

question type and only regular geometries contained in im-

ages to simplify the experiments. Table 12 shows that the

occlusion of the answer objects has significant impact on the

machine attack results but has little impact on humans’ ability

Figure 10: Examples of no occlusion (left) and occlusion

(right) of the answer objects.

to solve the CAPTCHA. The root cause lies in the fact that

once part of an object is blocked, its edge information and

part of its texture information are lost, in turn, which will

affect the final prediction of the CNN model. In contrast, hu-

mans can infer the shape contour of an object by observing

only a small fraction of it. Therefore, for visual perception-

based CAPTCHAs, designers can make use of this defect of

machine learning to enhance the security of CAPTCHAs.

Table 12: The attack success rate and human pass rate under

different occlusion settings.

No Occlusion Occlusion

Attack Success Rate 86.0% 69.5%

Human Pass Rate 93.9% 92.9%

Using more variations. Variation refers to objects in the

same category that appear subtly different but remain the

same in their main outline and basic features. The experimen-

tal results of our holistic attack in Table 4 demonstrate that

among all our attack failure cases, the recognition error rate

is the highest for regular geometric objects. The root cause

lies in the fact that more variations are introduced in the de-

sign of the geometric objects used in the VTT CAPTCHA,

such as the notch and slant attributes. On the one hand, these

attributes raise the difficulty for a model in recognizing the ob-

ject category; on the other hand, recognizing these attributes

themselves is even more challenging for a model than the cate-

gory classification task. In fact, Zi et al. [60] argued that using

a number of character fonts can greatly increase CAPTCHA

security because it introduces more variations and requires a

more robust attack model. Therefore, more variations can be

introduced to enhance security.

Commonsense knowledge. Abstract concepts can be re-

garded as a type of commonsense knowledge. The inability

of our holistic model to address abstract concepts resulted in
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81.9%, 45.7% and 38.3% of its failures on VTT tests based

on Chinese characters, English letters, and digits, respectively,

as shown in Table 4, and our modular method can solve only a

limited subset of challenges based on abstract concepts. How-

ever, the body of commonsense knowledge held by humans

is nearly infinite. All these experimental results show that

solving problems based on commonsense knowledge is in-

deed a complex task for current machine learning and deep

learning algorithms. The high abstractness and infinite scope

of commonsense knowledge greatly increase the problem

complexity for a machine. We believe CAPTCHAs invok-

ing commonsense knowledge will be a promising research

direction.

7 Conclusion

In this paper, we explored the hard AI problems underly-

ing current existing CAPTCHAs and found that conventional

CAPTCHA schemes have been proven to be insecure. We

comprehensively studied the security of one representative vi-

sual reasoning scheme, Tencent’s VTT CAPTCHA, by means

of a holistic attack and a modular attack and achieved success

rates of 67.3% and 88.0%, respectively. To test the robustness

of our method, we also conducted supplementary experiments

on three other visual reasoning schemes. Our high success

rates prove that the latest effort to use novel, hard AI problems

(visual reasoning) for CAPTCHAs has not yet succeeded. We

further summarized three guidelines for future vision-related

CAPTCHA design and believe that in particular, the adop-

tion of commonsense knowledge in CAPTCHA design has

promising prospects.
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