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Abstract 

With the development of cloud computing, more and more security problems like “fuzzy boundary” are exposed. To 
solve such problems, unsupervised anomaly detection is increasingly used in cloud security, where density estima-
tion is commonly used in anomaly detection clustering tasks. However, in practical use, the excessive amount of data 
and high dimensionality of data features can lead to difficulties in data calibration, data redundancy, and reduced 
effectiveness of density estimation algorithms. Although auto-encoders have made fruitful progress in data dimen-
sionality reduction, using auto-encoders alone may still cause the model to be too generalized and unable to detect 
specific anomalies. In this paper, a new unsupervised anomaly detection method, MemAe-gmm-ma, is proposed. 
MemAe-gmm-ma generates a low-dimensional representation and reconstruction error for each input sample by a 
deep auto-encoder. It adds a memory module inside the auto-encoder to better learn the inner meaning of the train-
ing samples, and finally puts the low-dimensional information of the samples into a Gaussian mixture model (GMM) 
for density estimation. MemAe-gmm-ma demonstrates better performance on the public benchmark dataset, with 
a 4.47% improvement over the MemAe model standard F1 score on the NSL-KDD dataset, and a 9.77% improvement 
over the CAE-GMM model standard F1 score on the CIC-IDS-2017 dataset.
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Introduction
With the development of computing power, cloud com-
puting has affected the way we store and manage data. 
And the concept of building IT infrastructure has also 
changed dramatically, with a consequent reduction in 
start-up costs [1] and operational costs of new busi-
nesses. In addition, cloud computing enables reduced 
system complexity, fast access to information, rapid scal-
ing and a lower threshold for innovation. However, a new 
security issue arises: the disappearing boundary.

In traditional information security, data is stored in the 
enterprise or organization and can be effectively secured 

internally using firewalls, anti-virus gateways, water-
mark detection [2] and even physical isolation. However, 
with the large-scale application of cloud technology, an 
organization’s data will eventually leave the user prem-
ises and be uploaded into the cloud platform. It can be 
argued that data is the most important commodity in all 
aspects of cloud computing [3] that must be defended. In 
general, data protection in a cloud computing environ-
ment can be divided into two categories: data security 
away from organizational boundaries and data security 
within organizational boundaries [4]. However, frequent 
data interactions mean that the network boundaries of 
organizations and cloud platforms are gradually weaken-
ing. And the traditional boundary protection model is no 
longer effective in preventing attack [5, 6] patterns based 
on “supply chain pre-implantation + social engineering 
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attacks (account hijacking and insider threats)”. There-
fore, this paper proposes a new data security protection 
method. The method is about anomaly detection tech-
nology based on network traffic to ensure data security 
during the interaction between organizations and the 
cloud platform. By monitoring the interaction traffic in 
the cloud platform network, business features in the traf-
fic are extracted. On this basis, the impact (anomaly) 
of advanced attacks on business features when moving 
laterally in the intranet is identified. After that, hidden 
internal attacks can be better detected. In general this 
paper hopes to design an unsupervised anomaly detec-
tion model to address the following issues that may arise 
in the cloud security domain.

(1) Data security hazards caused by abnormal insider 
behavior.

(2) Advanced attacks that are extremely stealthy but 
have the potential to cause fluctuations in traffic 
characteristics.

(3) Hidden risks involving social engineering attacks 
such as account theft and hardware implantation.

In the process of anomaly detection, the proposed 
model only analyzes network traffic features, including 
ip address, login location, number of packet interactions, 
and data flow duration, and does not detect data content.

In recent years, machine learning has been widely 
used in unsupervised anomaly detection, especially in 
the field of high-dimensional big data anomaly detection 
represented by cloud security [7]. It has been extensively 

studied by many researchers [8–12], such as deep auto-
encoder (Deep auto-encoder), improved K-mean algo-
rithms, etc. In anomaly detection tasks, sensitivity to 
anomalous data is usually improved by training the 
model so that it could learn the internal relationships of 
normal data as much as possible. For example, deep auto-
encoders make it difficult for anomalous data to be recon-
structed through the encoder by training on normal data. 
And it is also difficult to produce a higher re-construction 
error than normal data, which in turn serves as a crite-
rion for identifying anomalies. However, the above is not 
always effective in practice. Sometimes the auto-encoder 
can be so “overgeneralized” that it can still re-construct 
anomalies well when faced with partial anomalies, result-
ing in missed or false positives. As shown in the figure 
below, most of the samples have enough low-dimensional 
information to support the anomaly detection task. How-
ever, there are still some anomalies that are difficult to 
distinguish from normal samples, such as the red and 
blue overlapping regions.

Figures 1 and 2: Low-dimensional information of sam-
ples from public cyber-security datasets: (1) Each original 
data sample contains 49 features, which can be expanded 
to 122 dimensions after one-hot encoding; (2) The red 
dots represent abnormal samples and blue dots repre-
sent normal samples. Each image contains 1000 samples 
from public datasets; (3) The low-dimensional informa-
tion represented by the horizontal and vertical axes is 
generated by a structure of 119-60- 30-10-1-10-30-60-
119 generated by a deep auto-encoder. The horizontal 
axis indicates the reconstruction error caused during the 

Fig. 1 Sample low-dimensional information
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encoding and decoding of the depth auto-encoder. And 
the vertical axis indicates the one-dimensional features of 
the samples after compression.

In this paper, we propose a new unsupervised anomaly 
detection method, MemAe-gmm-ma. The model uses a 
deep auto-encoder to generate a low-dimensional repre-
sentation and reconstruction error for each input sample. 
Meanwhile a memory module is added inside the auto-
encoder to better learn the inner meaning of the train-
ing sample. Then the low-dimensional information of 
the sample is fed into a Gaussian mixture model [13–15] 
(GMM) for density estimation. The Gaussian model affili-
ation of the output is used to calculate the martingale 
distance of the samples, and finally the anomaly index is 
obtained.

This paper makes the following contributions to unsu-
pervised anomaly detection for traffic data in cloud secu-
rity by.

(1) Jointly optimizing the parameters of the deep self-
encoder and Gaussian mixture model simultane-
ously in an end-to-end manner. The joint optimiza-
tion well balances the auto-coding reconstruction 
and density estimation. It helps the auto-coder to 
get rid of the local optimum problem.

(2) The incorporation of a memory module to sparse 
the low-dimensional data space effectively solves 
the problem that the model may be too generalized.

(3) The calculation of loss function and sample energy 
is optimized and innovated, which achieves excel-
lent results on two public datasets and also demon-
strates better robustness of the model.

The rest of the paper is structured as follows: Related 
jobs section provides an overview of existing unsuper-
vised anomaly detection that may be applicable to cloud 
security. A hybrid threshold anomaly detection model 
based on improved autoencoder and Gaussian mixture 
model section provides a detailed description of the 
model structure proposed in this paper. Experiment and 
analysis section shows the experimental results of this 
paper’s model under two public datasets and evaluates 
the robustness of the model. Conclusion section con-
cludes the paper and the direction of future work.

Related jobs
Cloud environments face many challenges. And in this 
paper, we mainly consider the hidden risks that exist 
in the cloud platform during the interaction of various 
nodes, as well as the hidden attacks from within the plat-
form. Since the cloud environment contains a variety of 
complex device access points and runs a large number of 
virtual and physical nodes, some network attacks in the 
cloud environment come from outside and some from 
inside. And the attack traces are distributed in multiple 
nodes, and the system continuously generates a large 
amount of business data, security logs and alarm infor-
mation. Traditional analysis means are difficult to cope 
with the rapid analysis of massive security data, which 
must rely on machine learning technology. For the cloud 
platform arithmetic power, the characteristics of the huge 
scale of data, it is necessary to give full play to the advan-
tages of artificial intelligence neural network with strong 
adaptive capacity. And providing end-to-end intelligent 

Fig. 2 Sample low-dimensional information
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scanning for all kinds of application vulnerabilities and 
DDOS and other network attacks abnormal traffic.

In recent years, domestic mainstream cloud service 
providers and network security companies have gradu-
ally applied artificial intelligence technology to cloud 
security. Machine learning algorithms are used for feature 
extraction and modeling of normal and abnormal traffic 
to detect traces of attacks disguised as normal traffic. The 
model parameters are adjusted to optimize the protection 
model in response to the continuously generated traffic 
data to achieve continuous iteration and update of the 
protection strategy.

The existing unsupervised anomaly detection [16–18] 
broadly includes:

Methods based on sample reconstruction such as 
principal component analysis [19, 20] (PCA), kernel 
PCA [21], robust PCA, sparse representation, and 
self-encoder. Among them, the PCA class of meth-
ods is divided into two ideas [22–24]. One is to map 
the data to a low-dimensional feature space and then 
check the deviation of each data point from other 
data in different dimensions of the feature space. The 
other is to map the data to a low-dimensional feature 
space and then remap the data back to the original 
space by the low-dimensional feature space. The sec-
ond idea tries to reconstruct the original data with 
the low-dimensional features, and determine the 
anomaly according to the magnitude of the recon-
struction error. The autoencoder [25, 26] is similar 
to this, generating a low-dimensional representation 
of the data and reconstruction error by the neural 
network structure under the constraint of the loss 
function. The sparse representation-based approach 
detects anomalies by jointly learning a dictionary and 
a sparse representation of normal data [27, 28].
Methods based on probability density estimation 
such as k-means, multidimensional Gaussian model, 
and hybrid Gaussian model. Clustering algorithms 
divide data points into relatively dense “clusters”, and 
those points that cannot be classified as a certain 
cluster are regarded as outliers. This type of algo-
rithm is highly sensitive to the choice of the num-
ber of clusters. In the case of k-means, the number 
of clusters is not chosen properly, which may result 
in more normal values being classified as outliers, 
or small clusters of outliers being classified as nor-
mal. Therefore, specific parameters need to be set 
for each data set to ensure the effect of clustering, 
which is less generalizable among data sets. Xie Bin 
et al. [12] proposed an intrusion detection algorithm 
based on three-branch dynamic threshold K-means 
clustering by improving on the basis of fixed thresh-

old to discriminate anomalies. And the team used 
the algorithmic idea of dynamic threshold to suc-
cessfully optimize the final number of K-means clus-
ters and reduce the impact of fixed initial number of 
clusters on the model detection efficiency.
Methods based on support domain such as one class 
support vector machine [29–31] (One Class SVM) and 
support vector data description (SVDD). Its assump-
tion is that normal and abnormal samples can be dis-
tinguished accordingly by boundaries. However, as 
the dimensionality of the data increases, the support 
domain-based methods are limited in performance and 
are very sensitive to outliers. Therefore, when there are 
outliers (dirty data) in the training data, the detection 
effectiveness of the method is greatly affected.

Since the performance of reconstruction-based and 
support domain-based methods is affected when deal-
ing with high-dimensional data, jointly trained model 
building is gradually gaining attention [32–34]. In 2018, 
Bo Zong et  al. [35] trained auto-encoder and Gaussian 
mixture model jointly, which not only solved the local 
optimum problem in the detection process, but also sig-
nificantly improved the performance of the model. Ning 
Hu et al. [36] proposed the RF-DAGMM method, based 
on DAGMM, not only improved the model training effi-
ciency, but also improved several metrics such as accu-
racy, precision and recall.

The reconstruction-based approach relies on the mod-
el’s comprehensive learning of the normal sample con-
notation. Thus it can accurately establish the mapping 
relationship between sample-low-dimensional information-
reconstructed sample. But in practice, sometimes the model 
can accurately reconstruct the normal sample while recon-
structing part of the abnormal sample in the meantime, 
which is the main reason for the reduced accuracy of the 
model. To avoid the problems above, many researchers have 
put great efforts in the field of memory-enhanced networks 
[37–39]. Since the memories generated by models such as 
RNN and LSTM compress information and weights into a 
low-dimensional space. And the memories generated by the 
models are relatively scarce, Jason Weston et  al. proposed 
the model of memory networks. This model jointly trains a 
read-write external memory module and an interface com-
ponent to produce long-term (large amount) and easy-to-
read memories. In 2019, Dong Gong et al. [40] proposed a 
memory-enhanced self-encoder (MemAE) which tightens 
the low-dimensional information space of the samples by 
fixing the memory module to the inner information of the 
training set (normal data). It effectively improved the anom-
aly detection performance of the self-encoder on picture 
and video and provided an improved direction for recon-
struction-based anomaly detection algorithms.
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A hybrid threshold anomaly detection model 
based on improved autoencoder and Gaussian 
mixture model
As shown in Fig. 3, MemAe-gmm-ma consists of two main 
components, namely the low-dimensional information 
network and the anomaly estimation network. The low-
dimensional information network uses the feature of the 
auto-encoder to compress the samples into the low-dimen-
sional space and introduces a memory module to allow the 
model to better learn the intrinsic relationships of the train-
ing samples. The anomaly estimation network uses a Gauss-
ian mixture model, in which the sample anomaly indices in 
the low-dimensional space are further evaluated based on 
the martingale distance of the samples in this framework.

Low‑dimensional information network
As shown in the Fig.  4, the low-dimensional information 
network consists of a deep auto-encoder, which contains a 

memory module. The sample x is downscaled by a multi-
layer neural network encoder with θe as the parameter to 
obtain the low-dimensional sample zc. zc is weighted and 
matched by a memory module to obtain z′c , and z′c is recon-
structed by a multi-layer neural network decoder with θd as 
the parameter to obtain the reconstructed sample x’ .

The memory module structure is shown in Fig. 5.
The memory module M ∈ RNm×C contains Nm memory 

messages. The dimensions of the messages in memory C 
are aligned with those of zc and each memory message is 
represented as mi(i ≤ Nm) .

(1)zc = h(x; θe)

(2)x’ = g z’c; θd

Fig. 3 MemAe-gmm-ma structure diagram

Fig. 4 Low-dimensional information network structure diagram
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The memory module first uses a softmax function in 
non-exponential form to calculate the weights

where d(⋅) is the cosine similarity.

However, some anomalous samples may have the 
opportunity to combine with the information in memory 
through a w set containing many low weights, which in 
turn can be well re-constructed. To alleviate this prob-
lem, this paper uses a hard shrink operation for the set w

ε1is a minimal value and the threshold λ is usually set to 
a value in the interval [1/N,3/N]. After the shrinkage pro-
cess, the weights are normalized and then the output of the 
memory module is obtained at z′c.

(3)wi =
exp (d(zc,mi))

∑Nm
j=1 exp

(

d
(

zc,mj

))

(4)d(zc,mi) = cos < zc,mi >

(5)ŵi =
max (wi − �, 0) · wi

| wi − � | +ε1

The output of the compressed network z contains two 
sources of features: (1) the low-dimensional information z′c 
and (2) the reconstruction error between x and x’zr.

among which, zr are the 2-dimensional features, cosine 
similarity and Euclidean distance, respectively.

(6)ŵi =
ŵi

∥

∥ŵ
∥

∥

1

(7)z’c =

Nm
∑

i=1

ŵimi

(8)zr = f

(

x
’
; x

”
)

(9)z =
[

z’c; zr

]

(10)L1

(

x; x’
)

=

√

√

√

√

N
∑

i=1

(

xi − x’i

)2

Fig. 5 Memory module structure diagram
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The cosine similarity is expressed as

Anomaly estimation network
The energy estimation network is a Gaussian mixture 
model (GMM) It performs density estimation by predict-
ing the mixed affiliation of each sample using a multi-
layer neural network, which is a clustering algorithm 
[14]. P = MLN(z; θm) is the output of a multi-layer neural 
network parameterized by θm, and ⌢γ = softmax(p) is a 
K-dimensional vector.

Given N data samples, ∀1 ≤ k ≤ K, the parameters in the 
GMM are shown below.

ϕ̂k is the mixture probability of component K in GMM. 
µ̂k is the mean. ˆ

∑

k is the covariance, and γ̂ik is the density 
estimate of the i th input sample zi under the k th Gaussian 
mixture model component.

Suppose there is a data set X = (X1, X2, ⋯Xn) with mean 
u = (u1, u2, ⋯uj)T and covariance matrix ∑. The number 
of samples is n and the dimension of the data is j. Then its 
martingale distance is expressed as

Then the martingale distance of the low-dimensional 
sample z is given by

(11)

L2

(

x
’
; x

”
)

= cos < x
’
, x
”
>=

N
∑

i=1

x’
i
• x”

i

√

N
∑

i=1

x’
i

2

•

√

N
∑

i=1

x”
i

2

(12)zr =

[

L1

(

x
’
; x

”
)

; L2

(

x
’
; x

”
)]

(13)ϕ̂k =
∑N

i=1

γ̂ik

N

(14)µ̂k =

∑N
i=1 γ̂ikzi

∑N
i=1 γ̂ik

(15)ˆ∑

k
=

∑N
i=1 γ̂ik

(

z − µ̂k

)(

z − µ̂k

)T

∑N
i=1 γ̂ik

(16)DM(X) =

∣

∣

∣

∣

∣

(

√

(X − µ)T
∑−1

(X − µ)

∣

∣

∣

∣

∣

Using the above parameters, the sample abnormality 
index can be calculated by the following formula. Lower 
sample abnormality index represents a higher normal-
ity of the sample, while the high-energy sample can be 
judged as abnormal by a pre-selected threshold.

Objective function
Given N data samples, according to the model described 
in the previous section, the objective function guiding 
the training of the model in this paper is constructed as 
follows.

The objective function consists of four components: 
L1

(

x’
i
, x”

i

)

 is the re-construction error (Euclidean dis-
tance) caused by the deep auto-encoder during encoding 
and decoding. E(zi) is the sample anomaly index of the 

Gaussian mixture model output. 
N
∑

i=1

(

− ·
⌢
wi · log

(

⌢
wi

))

 

is the negative log-likelihood from the sparsely pro-
cessed weights. P

(

ˆ
∑

)

 is a minimal value, which is 
mainly used to prevent the values on the diagonal of the 
covariance matrix from becoming zero and eventually 
leading to matrix integrability in the Gaussian mixture 
model.

Mixing thresholds
In this model species, the abnormality of samples is 
determined by the abnormality index threshold. The 
number of the samples is supposed as N and the per-
centage of abnormal samples among all samples is ρ, 
meanwhile the energy value of each sample is calculated 
by the model of this paper. Then all samples are sorted 
in descending order according to the energy value and 
the martingale distance. The threshold value T used for 
abnormality detection will be the abnormality index of 
the sample at ρ × N from the highest to the lowest among 
all samples.

(17)DM(z) =

∣

∣

∣

∣

∣

(

√

(

z − µ̂k

)T ˆ∑−1
(

z − µ̂k

)

∣

∣

∣

∣

∣

(18)E(z) = − log

(

K
∑

k=1

ϕ̂k exp (−�zDM(z))

)

(19)J (θe, θd , θe) =
1

N

N
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Experiment and analysis
This section experiments and analyzes the anoma-
lous data detection methods mentioned in this paper 
on the KDD99 dataset and the CIC-IDS-2017 dataset 
respectively.

Introduction to the data set
In this section, the two network traffic datasets NSL-
KDD and CIC-IDS-2017 used in this paper respectively 
will be introduced [16]. The NSL-KDD dataset solves 
these inherent problems. The CIC-IDS-2017 dataset con-
tains normal data and the latest common attacks, includ-
ing DoS, DDoS, Web attacks and penetration attacks, etc. 
[18], which can better simulate real-world data.

Data set distribution
Table 1 shows the distribution of different types of data 
after re-organization of NSL-KDD dataset. Table 2 shows 

(20)result =

{

abnormal, E(i) > T
normal, others

the distribution of different types of data after re-organi-
zation of CIC-IDS-2017 dataset. Figures 6 and 7 show the 
heat map of feature correlation between NSL-KDD and 
CIC-IDS-2017 respectively. Warmer color tune (yellow) 
indicates higher correlation and vice versa.

The percentage of feature relations with correlation in 
the NSL-KDD dataset is 10.89%, and the percentage of 
feature relations with correlation in the CIC-IDS-2017 
dataset is 11.79%.

Table 1 NSL-KDD data distribution

Data Category Training set (percentage) Test set (percentage)

Normal 67,343 (53%) 9711 (43%)

DoS 45,927 (37%) 7458 (33%)

Probe 11,656 (9.11%) 2421 (11%)

R2L 995 (0.85%) 2654 (12.1%)

U2R 52 (0.04%) 200 (0.9%)

Total 125,973 22,544

Table 2 CIC-IDS-2017 data distribution

Data Category Training set (percentage) Test set (percentage)

BENIGN 396,454 (79.29%) 158,556 (79.28%)

DoS Hulk 40,078 (8.02%) 15,929 (7.97%)

PortScan 27,959 (5.5918%) 11,387 (5.6935%)

DDoS 22,606 (4.5212%) 8956 (4.478%)

DoS GoldenEye 1795 (0.359%) 668 (0.334%)

Infiltration 1469 (0.2938%) 572 (0.286%)

FTP-Patator 1390 (0.278%) 550 (0.275%)

Bot 1367 (0.2734%) 577 (0.2885%)

Web Attack 2933 (0.5866%) 1183 (0.5915%)

SSH-Patator 1018 (0.2036%) 444 (0.222%)

DoS slowloris 1008 (0.2016%) 392 (0.196%)

DoS Slowhttptest 995 (0.199%) 377 (0.1885%)

Heartbleed 928 (0.1856%) 409 (0.2045%)

Total 500,000 200,000

Fig. 6 Heat map of NSL-KDD feature inter-correlation

Fig. 7 Heat map of CIC-IDS-2017 feature inter-correlation
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Symbolic feature one‑hot encoding
One-hot coding can quantify the symbolic features in 
the dataset into numeric features, while each feature is 
independent and of equal distance from each other. Kdd-
cup99 dataset contains three symbolic features: service, 
flag and protocol type. According to one-hot coding the-
ory, the number of N option degrees of freedom the sym-
bolic features have is equal to the number of dimensional 
features they can be expanded to. For example, if the 
service feature has 70 options, it can be expanded to 70 
dimensions. Since there are no symbolic features in the 
CIC-IDS-2017 dataset, one-hot coding is not required.

Numerical feature normalization process
In the dataset, some features take values in the range of 
0 to 1 billion, and some take values in the range of 0 to 
1. There is a large order of magnitude difference between 
the features. In order to eliminate this difference, the 
Min-Max algorithm is used to normalize the numerical 
features in this paper. The formula of the Min-Max algo-
rithm is shown in (21).

x is the value of the input sample. xmin is the minimum 
value of the sample range. xmax is the maximum value of 
the sample range.

Model configuration
In this section, the model is configured according to the 
number of features screened by the feature selection 

(21)x’ =
x − xmin

xmax − xmin

algorithm. Table 3 shows the structural configuration of 
the encoder in the compression network. The decoder 
structure is symmetric with the encoder, where the 
memory capacity Nm is set to 50, as shown in Fig. 8, and 
the whole model is not sensitive to Nm.λz is the distance 
coefficients for calculating the anomaly index. λ1, λ2, 
and λ3 are the coefficients of the anomaly index, shrink-
age weight, and minimum value in the objective function 
respectively.

Figures  9 and 10 show the 3D images of the sample 
low-dimensional information z′c without and pretending 
the memory module, respectively. It can be seen that the 
memory module has a strong shrinkage constraint effect.

The self-encoder part of the activation function is tanh. 
The structure of the estimated network is FC(5,10,tanh)-
Dropout(0.5)-FC(10,2,softmax). The minimal value used 
to prevent matrix integrability in the Gaussian mixture 
model is taken as 1 ×  10−12.

Baseline algorithm
In this paper, some traditional and latest anomaly detec-
tion algorithms are considered as baseline.

– Multi-level Support Vector Machine [41] (Multi-
level SVM): Wathiq Laftah Al-Yaseen et  al. used 
modified K-means to reduce the 10% KDD99 train-
ing dataset by 99.8% and construct a new set of high 
quality training dataset for training SVM and ELM. 
They also proposed multi-level model to improve the 
detection accuracy. The overall accuracy of the cali-
brated KDD99 dataset reached 95.75%.

Table 3 Encoder structure configuration

Dataset Number of 
features

Mem Capacity Compression Network 
Encoder structure

λz λ1 λ2 λ3

NSL-KDD 122 50 122-60-30-10-3-mem −0.5 0.1 0.0025 0.005

CIC-IDS 2017 78 50 78-39-20-10-3-mem

Fig. 8 Nm Parameters versus model performance
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Fig. 9 Sample low-dimensional information of the model without memory module

Fig. 10 Sample low-dimensional information of the model with memory module
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– Isolation Forest [42]: This algorithm was proposed 
by Zhihua Zhou’s team in 2008 and is widely used 
in industry for anomaly detection of structured 
data with its linear time complexity and excellent 
accuracy.

– Auto-coders [43] (Auto-encoders): H. Choi et  al. 
designed a network intrusion detection system 
based on auto-encoders and achieved an accuracy of 
91.70%.

– Deep auto-coding Gaussian mixture model [35] 
(DAGMM): in 2018, Bo Zong et al. trained the auto-
encoder and Gaussian mixture model jointly to solve 
the local optimum problem in the detection pro-
cess. The model jointly optimizes the parameters of 
the deep auto-encoder and hybrid model in an end-
to-end mode and performs excellently on a public 
benchmark dataset, providing a new idea in the field 
of anomaly detection.

– Memory Enhanced Deep Auto-encoder [40] (MemAE): 
Dong Gong et  al. use memory modules to enhance 
auto-encoders. Experiments on various datasets dem-
onstrate the excellent generalization and efficiency of 
the proposed MemAE.

– Shrinkage Self-Coding Gaussian Mixture Model [44] 
(CAE-GMM): The authors designed an unsupervised 
anomaly detection algorithm for CAE-GMM by 
improving the DAGMM algorithm, which combines 
the dimensionality reduction of CAE and the density 
estimation of GMM. The proposed algorithm also 
reduces the overfitting problem and improves the 
model generalization ability compared to DAGMM.

Experimental results
This section contains two sets of experiments, in which 
we use Accuracy, Precision, Recall, and F1-score as the 
criteria for judging whether performance of the model is 
good or bad.

In the first set of experiments, this paper uses com-
pletely clean data for training and testing, and uses data 
samples from the normal class as training samples. In 
each run, using random sampling, we take 50% of the 
data for training, and the remaining 50% is reserved for 
testing.

Tables 4 and 5 show the accuracy, precision, recall, and 
F1 scores of MemAe-gmm-ma and other baseline algo-
rithms for different datasets. In general, MemAe-gmm-
ma outperforms the baseline algorithms on all datasets 
in terms of F1 scores. On NSL-KDD and CIC-IDS-2017, 
MemAe-gmm-ma achieves 4.47% and 9.77% improve-
ment in F1 scores comparing to the existing methods. 
Figures 9 and 10 show the low-dimensional distributions 
of 20,000 test samples. It can be seen that the normal 

and abnormal samples have high differentiation of the 
abnormality index after being output by the model in this 
paper.

Figures  11 and 12: Sample low-dimensional informa-
tion of the NSL-KDD dataset and CIC-IDS-2017 dataset 
after model processing in this paper: (1) The horizontal 
axis indicates the re-construction error (Euclidean dis-
tance) caused during the encoding and decoding of the 
auto-encoder, and the vertical axis indicates the anomaly 
index of the samples; (2) The red/blue dots are the anom-
aly/normal samples respectively, and the green solid line 
indicates the threshold. Each image contains 20,000 sam-
ples from the public dataset.

Figures  13 and 14: Sample low-dimensional informa-
tion of the NSL-KDD dataset and CIC-IDS-2017 dataset 
after DAGMM model processing.

In the second set of experiments, the main study is how 
MemAe-gmm-ma responds to contaminated training 
data. In each run, we mix a certain number of anomalous 
samples into the normal samples used for model training 
in advance, with the mixed anomalous samples account-
ing for c% of the normal samples. Then we retain 50% of 
the data for model training by random sampling, and the 
remaining 50% for testing.

Table  6 shows the accuracy, precision, recall, and 
F1 scores of the training tests on the NSL-KDD data-
set containing dirty data. As expected, contaminated 

Table 4 Comparison of the results of each anomaly detection 
algorithm under the NSL-KDD dataset

Dataset Models Accuracy Precision Recall F‑score

NSL-KDD Multi-level SVM 0.9575 0.9311 0.9517 0.9413

K-means 0.8944 0.8008 0.7515 0.7754

Autoencoder 0.9170 0.8745 0.8468 0.8605

DAGMM 0.8985 0.9214 0.7560 0.8305

MemAE 0.9636 0.9627 0.9655 0.9641

CAE-GMM 0.9682 0.9532 0.9578 0.9555

Model of this paper 0.9987 0.9964 1.0000 0.9982

Table 5 Comparison of the results of each anomaly detection 
algorithm under the CIC-IDS 2017 dataset

Dataset Models Accuracy Precision Recall F‑score

CIC-IDS 2017 Isolation Forest 0.89 0.83 0.81 0.82

K-means 0.87 0.81 0.79 0.80

OC-SVM 0.90 0.84 0.81 0.82

DAGMM 0.91 0.84 0.87 0.85

CAE-GMM 0.95 0.92 0.91 0.91

Model of this 
paper

0.9986 0.9978 1.0000 0.9989
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training data negatively affects detection accuracy. As 
the contamination rate increases from 1% to 5%, each 
performance metric decreases. The good side is that 
even with 5% contaminated data, MemAe-gmm-ma 
still maintains good detection accuracy, reflecting the 
good robustness of the model.

Figure  15 shows the low-dimensional distribution of 
the samples tested by the model generated from the 
completely clean training data. Figure  16 shows the 
low-dimensional distribution of the samples tested by 
the model generated from the training data with 5% 

Fig. 11 Low-dimensional information of NSL-KDD sample after the model processing in this paper

Fig. 12 Low-dimensional information of CIC-IDS-2017 sample after the model processing in this paper
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dirty data. Both figures are with fixed random seeds 
during training and testing.

Conclusion
In this paper, we propose an improved auto-coded 
Gaussian mixture model (MemAe-gmm-ma) for 
unsupervised anomaly detection. MemAe-gmm-ma 

consists of two main components: a low-dimensional 
information network and an anomaly estimation net-
work. The low-dimensional information network uses 
the features of the auto-encoder to compress sam-
ples into a low-dimensional space. And it introduces 
a memory module to enable the model to better learn 
the intrinsic relationships of the training samples. 

Fig. 13 Low-dimensional information of NSL-KDD sample after DAGMM processing

Fig. 14 Low-dimensional information of CIC-IDS-2017 sample after DAGMM processing
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The anomaly estimation network uses a Gaussian 
mixture model, in which the sample anomaly indices 
in the low-dimensional space are further evaluated 
based on the martingale distance of the samples in this 
framework.

In the experimental study, MemAe-gmm-ma dem-
onstrates better performance on the public benchmark 
dataset, with a 4.47% improvement over the MemAe 
model standard F1 score on the NSL-KDD dataset, and 

Table 6 Response of the model in this paper with dirty data

Ratio c Accuracy Precision Recall F‑score

0 0.9986 0.9978 1.0000 0.9989

1% 0.9985 0.9964 1.0000 0.9982

2% 0.9983 0.9960 1.0000 0.9980

3% 0.9962 0.9896 1.0000 0.9948

4% 0.9944 0.9877 1.0000 0.9938

5% 0.9896 0.9863 1.0000 0.9931

Fig. 15 Low-dimensional distribution with clean training data

Fig. 16 Low-dimensional distribution with dirty data
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a 9.77% improvement over the CAE-GMM model stand-
ard F1 score on the CIC-IDS-2017 dataset. It is able to 
maintain better detection accuracy at 5% of contami-
nated data, reflecting better redundancy performance of 
the whole model. A promising direction is proposed for 
unsupervised anomaly detection of high-dimensional 
data in cloud security.
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