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Gold price forecasting has been a hot issue in economics recently. In this work, wavelet neural network (WNN) combined with
a novel arti	cial bee colony (ABC) algorithm is proposed for this gold price forecasting issue. In this improved algorithm, the
conventional roulette selection strategy is discarded. Besides, the convergence statuses in a previous cycle of iteration are fully
utilized as feedback messages to manipulate the searching intensity in a subsequent cycle. Experimental results con	rm that this
new algorithm converges faster than the conventional ABC when tested on some classical benchmark functions and is e
ective to
improve modeling capacity of WNN regarding the gold price forecasting scheme.

1. Introduction

Since ancient times, gold has been recognized as a symbol
of wealth and a frontierless currency that can be easily
exchanged among di
erent monetary systems [1, 2]. In recent
decades, gold has gradually become a popular nonmonetary
tool in the 	nancial market, which is characterized by high-
yield and high-risk. Gold price is partly regarded as a
re�ection of investors’ expectations and the world’s economic
trends. �erefore, gold price forecasting is a vital issue in
economics. At the same time, it is noted that, during the
	nancial crisis in 2008 and early 2009, the global gold price
has increased by 6% on average, while many mineral prices
have dropped by 40% approximately [3]. In this sense, the
gold price behavior di
ers from that of most other mineral
commodities, making the forecasting scheme even more
challenging.

Regarding the prediction of gold price, like the prediction
of any other macroeconomic indexes, research e
orts have
been focused on the neural network (NN) approaches [4]. A
neural network is known as a mathematical model consisting
of interconnected groups of arti	cial neurons and processing
information based on a connectionist approach to compu-
tation [5, 6]. In most cases, neural networks are adaptive
systems that can alter the internal structures according to the

external information. Ever since McCulloch and Pitts pio-
neering work [7], arti	cial models, such as back-propagation
neural network (BP-NN) [8], radial basis function neural
network (RBF-NN) [9], wavelet neural network (WNN) [10],
Kohonen neural network [11], and Hop	eld neural network
[12] have been proposed and investigated. Among all these
methods, WNN has shown its advantages in regression
accuracy and fault-tolerant ability due to the adoption of
wavelet transform. It has been con	rmed that the WNN
model is the optimal approximator for functions of one
variable [13].

Large numbers of methods have been available to opti-
mize WNN models, among which the gradient descent
method (GDM) and the least square method (LS) are
undoubtedly the most popular ones [14]. However, such
conventional methods cannot help to optimize e�ciently or
globally in terms of some complicated WNN models. In
other words, when the parameters in a WNN model are
large in number or when the training scheme is complicated,
these deterministic optimization methods are not as e�cient
as they are expected. �erefore, researchers have gradually
shi�ed their interests towards some intelligent algorithms to
optimize WNNmodels [15].

Intelligent algorithms have been well studied in recent
decades, among which arti	cial bee colony (ABC) algorithm
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Figure 1: Basic WNNmodel structure.

is a famous example. It is motivated by the foraging behav-
ior of bee swarms, in which both local exploitation and
global exploration are implemented in each iteration [16].
Applications and developments have been made for ABC in
di
erent ways [17–23]. However, viewing the improvements
has ever been made for the conventional ABC; to the best
of my knowledge, attention has seldom been paid to fully
utilizing the convergence messages hiding in the iteration
system. In this paper, internal-feedback ABC (IF-ABC) is
applied for WNN parameter optimization when training a
gold price prediction model. In this new algorithm, invalid
trial time is taken as an index to re�ect the internal status and
then to manipulate the exploration/exploitation intensity. At
this point, the author believes that, apart from the objective
function values, messages that re�ect the convergence status
should be made full use of so as to direct the subsequent
searching cycles [24].

As for gold price forecasting, neural network methods
such as RBF-NN [25], BP-NN [26], andWNN [27] have been
studied. �is work provides an intensive research to evaluate
the performance of IF-ABCwhen training theWNNmodels,
in comparison with the conventional ABC algorithm.

�e remainder of this paper is organized as follows. In
Section 2, principle of the WNNmodel is brie�y introduced.
In Section 3, principles of ABC and IF-ABC are introduced
in detail. Section 4 validates the e
ectiveness of IF-ABC
by means of some classical benchmark functions. �en, IF-
ABC is applied to optimize the WNN models for the gold
price forecasting scheme. Simulation results are released in
Section 5, together with some discussions. �e conclusion is
drawn in the last section.

2. Principle of Wavelet Neural Network Model

WNN is a feed-forward neural network combined with the
wavelet transform theory [15]. In such a framework, the
wavelet space is regarded as a feature space, where features
are extracted by weighting the interior states of the input
signals. Compared with other NN models, WNN possesses
higher prediction accuracy and better fault tolerance to meet

the uncertainty, nonlinearity, and complexity in real-world
systems [28].

�e basic structure of a WNN model is illustrated in
Figure 1, where�� (� = 1, . . . , �) denotes the �th input,�� (� =1, . . . , �)denotes the �th output,��� (� = 1, . . . , �; � = 1, . . . , 	)
refers to the connection weight between the �th input node
and the �th hidden node, 
�� (� = 1, . . . , 	; � = 1, . . . , �) refers
to the connection weight between the �th hidden node and
the �th output node, � represents the number of input nodes,	 represents the number of hidden nodes, and � represents
the number of output nodes. Ψ(⋅) and (⋅) stand for the
Morlet and Sigmoid functions, which are de	ned in (1) and
(2), respectively [14]:

Ψ (�) = cos (1.75 ⋅ �) ⋅ exp(−�22 ) , (1)

 (�) = 11 + exp (−�) . (2)

Each weighted sum of the input components ∑��=1(��� ⋅��) is mapped into the feature space by the dilation and

translation procedures, yieldingΨ((∑��=1(��� ⋅��−��))/��).
Here, �� and ��, respectively, denote the dilation factor and
translation factor. �e output �� is given as

�� =  ( �∑
�=1

[
�� ⋅ 1√��Ψ (∑��=1 ��� ⋅ �� − ���� )]) . (3)

�e training process of WNN is considered an esti-
mation process to optimize the parameter set Θ ={�11, . . . , ���, 
11, . . . , 
��, �1, . . . , ��, �1, . . . , ��} as mentioned
above. RMSE (i.e., rootmean square error) that re�ectsWNN
modeling accuracy is de	ned in (4). Obviously, the smaller
the forecasting error is, the better the model will be:

RMSE (Θ) = √ 1�
	∑
�=1

������ − true������2, (4)

where true�� (� = 1, . . . , �) stands for the �th output sample,�� (� = 1, . . . , �) stands for the corresponding output value
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(1) initialize solution population using (5)
(2) set ���� (�) = 1 (� = 1, 2, . . . , SN)
(3) for ��!� = 1 :MCN, do
(4) for ��!" = 1 : SN, do
(5) crossover and mutate using (8) in as many as ���� (��!") randomly

selected elements for the ��!"-th employed bee
(6) adopt greedy selection
(7) if better position is found for the ��!"-th employed bee, do
(8) ���� (��!") ← 1
(9) else

(10) ���� (��!") ← ���� (��!") + 1
(11) end if

(12) end for

(13) for ��!" = 1 : SN, do
(14) crossover and mutate using (9) and (10) in one randomly selected

element for the ��!"-th onlooker bee
(15) adopt greedy selection
(16) if better position is found for the ��!"-th onlooker bee, do
(17) ���� (��!") ← 1
(18) else

(19) ���� (��!") ← ���� (��!") + 1
(20) end if

(21) end for

(22) if ���� (�) > $�"��, � ∈ Ω, do
(23) initialize the �-th employed bee using (5), ∀� ∈ Ω
(24) end if

(25) memorize current best solution
(26) end for

(27) output global optimum

Algorithm 1

computed by WNN, and � denotes the number of training
samples.

3. Principles of ABC Relevant Algorithms

3.1. Review of Conventional ABC. ABC is a swarm intel-
ligencebased optimization algorithm inspired by the forging
behavior of bees [16]. In this algorithm, three kinds of bees,
namely, the employed bees, the onlooker bees, and the scout
bees, cooperate to search for the very optimal nectar source
in the space [23].

At the beginning, an initial population is randomly
generated, which contains as many as �* food sources
(i.e., �* feasible solutions) using (5). In this equation, each

solution X� = (�1� , �2� , . . . , �
� ) is a --dimensional vector,
Xmax and Xmin stand for the constraints of the optimization
problem, and rand(0, 1) stands for a random number in the
range (0, 1) obeying the uniform distribution. Note that the
variables involved in this section are not relevant to those
emerged in Section 2:

X� ←: Xmin + rand (0, 1) ⋅ (Xmax − Xmin) ,
� = 1, 2, . . . , �*. (5)

A�erwards, the iteration process starts. Generally, in each
cycle of iteration, as many as �* employed bees search glob-
ally, and then �* onlooker bees search locally for the “qual-
i	ed” employed bees. Here, the quali	cation standard con-
cerns the roulette selection strategy and will be introduced
later.

In detail, each employed bee utilizes the position of its one
randomly chosen companion so as to generate a new search-
ing position. Here, only one (randomly chosen) element in
the vector X needs to be changed. For instance, when the�th employed bee utilizes position of the 	th companion in
the �th element, the involved element is changed according
to

��� ←: ��� + rand (−1, 1) ⋅ (��� − ��� ) ,
� ̸= 	, �, 	 ∈ [1, -] ∩ Z, � ∈ [1, �*] ∩ Z. (6)

A�erwards, the greedy selection procedure is imple-
mented. If the new position updated by (6) is better (i.e.,
if the corresponding objective function value is lower), the
previous position is discarded; otherwise, the employed bee
remains at the previous position. When all the �* employed
bees complete the searching procedure mentioned above, an
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Table 1: Benchmark functions together with optimums and optimal solutions.

Test function Ranges Optimum Optimal solution

1 (�⃗) = dim∑
�=1

(��)2 [−100, 100]dim 0 [0, 0, . . . , 0]dim
2(�⃗) = − dim∑

�=1
�� sin(√FFFF��FFFF) [−500, 500]dim −418.9829 ⋅ dim [420.96, 420.96, . . . , 420.96]dim

3(�⃗) = dim∑
�=1

[(�� − 1)2 − 10 cos (2H (�� − 1)) + 10] [−5.12, 5.12]dim 0 [1, 1, . . . , 1]dim
4 (�⃗) = −20 exp(−0.2√ 1

dim

dim∑
�=1

��)
− exp( 1

dim

dim∑
�=1

cos (2H��)) + 20 + !
[−32, 32]dim 0 [0, 0, . . . , 0]dim

5(�⃗) = 14000
dim∑
�=1

(��)2 − dim∏
�=1

cos( ��√�) + 1 [−600, 600]dim 0 [0, 0, . . . , 0]dim

Table 2: Mean and standard deviations of benchmark function values.

Test function Dim
ABC IF-ABC

Mean S.D. Mean S.D.

1 20 3.91095 × 10
−16

8.20298 × 10
−17 9.35983 × 10−16 5.51436 × 10−16

30 3.60481 × 10−11 5.46368 × 10−11 3.36243 × 10
−15

1.52689 × 10
−15

50 5.12689 × 10−6 7.57033 × 10−6 3.88046 × 10
−7

1.43985 × 10
−7

2 20 −8296.94 71.2099 −8374.8 23.4352

30 −12024.2 161.724 −12543.4 60.0115

50 −19268.7 207.685 −20528.7 215.453

3 20 1.68276 × 10−7 7.51168 × 10−7 9.18874 × 10
−12

4.64979 × 10
−11

30 0.437308 0.605332 0.0454379 0.21805

50 6.73436 2.3812 10.7746 2.77952

4 20 2.3339 × 10−9 1.87748 × 10−9 6.05063 × 10
−13

2.56131 × 10
−13

30 2.22333 × 10−5 1.33379 × 10−5 4.46 × 10
−8

1.79015 × 10
−8

50 0.0239478 0.0210904 0.00041254 8.76608 × 10
−5

5 20 0.00279802 0.00583702 2.61542 × 10
−8

9.66738 × 10
−8

30 0.00294599 0.00756719 3.3219 × 10
−9

1.53684 × 10
−8

50 0.0147917 0.0209218 8.75378 × 10
−6

3.08913 × 10
−5

�e bold values denote the better value (mean or S.D.) in each line.

indexO is calculated as the quali	cationmeasurement for the
employed bees using

O (�) = 	tness (�)∑	��=1 	tness (�) ,

	tness (�) = {{{{{
11 + obj (X�) if obj (X�) ≥ 0

1 + abs (obj (X�)) if obj (X�) < 0
}}}}}

,
(7)

where obj(⋅) stands for the objective function and 	tness(⋅)
stands for a conventionally de	ned 	tness function. Each
onlooker bee needs to search for an employed bee using

(6). In this case, ��� stands for the corresponding element

of the selected employed bee and ��� denotes that of the �th

onlooker bee. Again, the greedy selection procedure is then
implemented.

�e selection principle for the quali	ed employed bees
concerns the roulette selection strategy. If O1 ≥ rand(0, 1),
the 	rst employed bee is chosen for the speci	c onlooker bee;
otherwise, comparison between O2 and rand(0, 1) is carried
on. If every O� happens to be smaller than rand(0, 1), such
process will go over again until one employed bee satis	es
the condition. In this way, each of the �* onlooker bees
determines the corresponding employed bee to follow.

During each cycle of iteration, once the �th employed
bee or an onlooker bee which searches for the �th employed
bee 	nds a better position in the crossover procedure, the
parameter trial(�) is directly reset to zero; otherwise, it adds
one. In this sense, trial is regarded as a counter memorizing
the invalid searching times for the �th employed bee. Before
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Figure 2: Comparative simulations for minimization of 1 (dim =30).
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Figure 3: Comparative simulations for minimization of 2 (dim =50).

a new cycle of iteration starts, it is necessary to check whether
any trial(�) exceeds a certain threshold Limit. If trail(�) >
Limit, trial(�) will be directly reset to zero. A scout bee with a
randomly initialized position in the food source utilizing (5)
will take the place. It should be noted that one scout bee at
most is allowed to emerge in each cycle of iteration.

3.2. Principle of IF-ABC. �e author and some companions
proposed IF-ABCoriginally in the previous literature [24, 29].
But this algorithm is slightly modi	ed when presented in this
work, aiming to make it more e�cient.

At 	rst, all the employed bees are randomly sent out to
explore in the nectar source space (i.e., the feasible solution
space) following (5). A�erwards, the iteration process gets
started.

In each cycle of iteration, an employed bee exchanges
information with its (randomly selected) companions. Dif-
ferent from that in ABC, the crossover procedure should
involve as many as trial(�) elements in the position of the �th
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Figure 4: Comparative simulations for minimization of 3 (dim =30).
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Figure 5: Comparative simulations for minimization of 4 (dim =50).

employed bee (see (8)), where trial(�) ∈ [1, -] ∩ Z is an issue
to be discussed later:

��� ← ��� + rand (−1, 1) ⋅ (��� − ��� ) ,
", �, 	 ∈ [1, -] ∩ Z, � ∈ [1, �*] ∩ Z, � ̸= 	. (8)

�is equation is slightly di
erent from (6), aiming to
promote swarm diversity during the global exploration pro-
cedure.�en, the greedy selection procedure is conducted so
as to select better position.

A�erwards, the onlookers carry on the searching process.
In the IF-ABC, each of the employed bees is given a chance
to be followed by an onlooker regardless of the fact that they
are “quali	ed” or not, pursuing to bring about more chances
(i.e., more dynamics and diversity) for evolution and to 	ght
against premature convergence as well. In IF-ABC, a new idea
is introduced to evaluate the quali	cation of a bee.

Now that the roulette selection strategy is discarded in IF-
ABC; then the onlookers directly choose their corresponding



6 Computational Intelligence and Neuroscience

0 100 200 300 400 500 600 700 800 900 1000

Cycle of iteration

M
ea

n
 o

f 
th

e 
b

es
t 

fu
n

ct
io

n
 v

al
u

es 104

102

100

10−2

10−4

10−6

ABC

IF-ABC

Figure 6: Comparative simulations for minimization of 5 (dim =50).
employed bees to search locally using (9), where the com-
panion X� and the element item � are randomly selected.
A�erwards, the greedy selection is implemented:

��� ← ��� + Z (�) ⋅ rand (−1, 1) ⋅ (��� − ��� ) ,
� ̸= 	, �, 	 ∈ [1, -] ∩ Z, � ∈ [1, �*] ∩ Z, (9)

where

Z (�) = exp{− [trial (�) − 1] ⋅ ln 10- − 1} . (10)

For each of the employed bees, together with the cor-
responding onlookers, the parameter trial represents the
number of ine�cient searching times before even one better
position is derived. If the �th employed bee or the �th onlooker
bee 	nds a better position, trial(�) is directly reset to 1;
otherwise, it adds 1. If trial(�) is greater than -, the current�th position X� should be replaced by a reinitialized position
using (5).

Since 1 ≤ trial(�) ≤ -, it is expected that as many as
trial(�) out of the - elements in a candidate feasible solution
involve in the exploration process. But when it comes to
the onlooker bees, only one element is changed, because
it is believed that multicrossover process contributes little
to local search ability. Note that a convergence factor Z(�)
appears in (9), which is carefully designed to manipulate the
exploitation accuracy according to the current convergence
status of the �th employed bee.As shown in (10), Z(�)decreases
exponentially to 0.1 as trial(�) gradually approaches -. Here,
0.1 is a user-speci	ed lower boundary of convergence scale,
but the selection of such constant can be �exible according to
the users. In this sense, the exploitation around one certain
employed bee is gradually intensi	ed before it is eventually
discarded bymeans of reinitialization (when trial exceeds-).

To brie�y conclude, trial in IF-ABC works to manipulate
the searching intensity in local exploitation and to determine
the searching scale in global exploration. In the author’s view-
point, convergence performances of the bees are measured
not only by the corresponding objective function values but
also by the factswhether they are better than the previous one.

Such change intends to provide more possibilities for the so-
called unquali	ed employed bees to be exploited locally by
onlooker bees.

�e pseudocode of IF-ABC for constrained optimization
problems is given in Algorithm 1. MCN denotes the prede-
	ned maximum cycles of iteration.

4. Effectiveness Validation of IF-ABC for
Numerical Optimization

In this section, ABC and IF-ABC are tested on a number of
classical benchmark functions [30].�e concerned functions
are listed in Table 1, together with the pre-de	ned optimiza-
tion domains, optimums, and optimal solutions. In this table,
dim stands for the dimension of feasible solutions. 1 is
unimodal and 2, 3, 4, and 5 are multimodal.

All the simulations were implemented in MATLAB
R2010a and executed on an Intel Core 2 Due CPU with 2GB
RAM running at 2.53GHz. Each kind of experiment repeated
itself 50 times with di
erent random seeds. �e maximum
cycle number MCN is set to 1000 for all the cases involved in
this section, the swarm population (i.e., 2 ⋅ �*) is constantly
set to 40, and Limit is set to 200. Two indexes that re�ect
the convergence performances (i.e., the mean and standard
deviation of benchmark function values) are listed in Table 2.
Figures 2, 3, 4, 5, and 6 illustrate some typical simulation
results to illustrate the signi	cant advantage of IF-ABC.

As can be seen in Figures 2–6, the iteration process
converges slower when using IF-ABC than it does when
using ABC in the early cycles of iteration. But IF-ABCmakes
it catch up and be surpassed later. Initially, it is generally
easy to evolve, regardless of the di
erences in algorithms.
In other words, when more than one element of a feasible
solution is involved in the crossover procedure, it does not
necessarily lead to a better result in comparison with the
case in which only one element is involved. However, as the
iteration moves on, the internal feedback strategy begins to
take e
ort.�erefore, it is believed that IF-ABC sacri	ces part
of its initial convergence capability for dynamics and diversity
in the bee swarms. A complete comparison concerning these
two algorithms is listed inTable 2, where IF-ABCperforms far
better (within 1000 cycles of iteration) in most of the cases.

�e author noticed that many remedies for the conven-
tional ABC come from the outside world (e.g., [18, 19]),
ignoring utilizing the convergence status inside the iteration
system. In this sense, IF-ABC intends to emphasize and
advocate the great importance of fully utilizing internal
status as feedback messages. In the event that IF-ABC really
performs not so good as some existing X-ABCs, it does
not mean that the internal feedback strategy is of no use.
�erefore, the author preliminarily compared IF-ABC with
ABC in all the experiments and simulations of this work.

5. Simulations for Gold Price
Forecasting Scheme

�e quantities of supply and demand, the prosperity of eco-
nomics, and the environment of international politics mainly
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a
ect the gold price or may be regarded as good re�ections of
gold price in the future [3, 31, 32]. In this work, sevenmacroe-
conomic indexes are considered principal re�ections of the
long-term gold price in the future (i.e., gold price in the next
year), namely, Dow Jones Industrial Average Index (DJIA),
Consumer Price Index (CPI), US dollar nominal e
ective
exchange rate (NEER), US federal funds rate (FFR), US dollar
index (USDX), the world’s gold reserves (WGR), and the
world’s crude oil price (COP) [33, 34]. �e long-term predic-
tionnetwork structure is demonstratively given in Figure 7. In
this case, four sensitive-about-time macroeconomic indexes
are taken as principal re�ections of the short-term gold price
in the future (i.e., gold price in the next month), namely,
DJIA, CPI, USDX, and COP.�en, the short-term prediction

network structure is demonstratively given in Figure 8. Rel-
evant historical data were collected from IHS Global Insight
Inc (see http://www.ihs.com/index.aspx), website of the US
Department of Labor (see http://www.bls.gov), website of
the US Federal Reserve (see http://www.federalreserve.gov),
and website of the International Monetary Fund (see
http://www.imf.org/external/index.htm).

Each single type of experiment was repeated 50 times
with randomly initialized conditions so as to guarantee
the signi	cant initial di
erences in statistics. It is set that �* =20 and Limit = 200. All the connection weights in WNN
(i.e., � and 
) range from 0 to 1, any � ranges from 0.0001 to
10, and any � ranges from−1 to 1.�edetermination of hidden
layer node number 	 is theoretically unavailable. In general,
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Figure 10: Comparative convergence curves when optimizing
short-termWNN prediction models utilizing historical data of past
80 months.
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Figure 11: Monthly historical and future forecasting trends of gold
price from April 1982 to August 1990 (case 1 in short-term).
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Figure 12: Monthly historical and future forecasting trends of gold
price from September 1990 to April 2007 (case 2 in short-term).
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Figure 13: Yearly historical and future forecasting trends of gold
price from 1973 to 2011 (a case in long-term).

if 	 is too large, the over	tting trouble inevitably occurs, and,
conversely, if 	 is too small, the derived model will re�ect
anything but the true facts. In this work, 	 is selected using
the following equation:

	 = √� ⋅ � + 1.6799 ⋅ � + 0.9298 ⋅ �, (11)

where � and � denote the number of input and output layer
nodes, respectively [28]. Besides, all data put into the WNN
model (i.e., economic indexes and the corresponding gold
prices) should be linearly standardized in the range [0, 1] as
a preprocessing step, and the resultsworked out byWNN(i.e.,
the predicted future gold prices) involve an inverse process.

First, two cases were studied to compare the convergence
performances of IF-ABC and ABC when optimizing a short-
term forecastingmodel. In the 	rst case, the predictionmodel
was trained using four macroeconomic indexes from April
1982 toAugust 1985 (as long as 60months), and the optimized
WNN model was tested on the data in each of the coming
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40 months (i.e., from September 1985 to August 1990). In
the second case, the prediction model was trained using four
macroeconomic indexes from September 1990 to April 1997
(as long as 80 months), and the optimized WNN model was
tested on the data in each of the coming 120 months (i.e.,
from May 1997 to April 2007). �e comparative convergence
curves are illustrated in Figures 9 and 10. As can be seen in the
following Figures 11 and 12, the trend of gold price predictions
derived by the IF-ABC-WNN model is closer to the actual
gold price data.

In the long-term, such training methodologies are inef-
fective or invalid, since the principle how themacroeconomic
indexes a
ect the gold price may be varying signi	cantly. To
con	rm this point of view, an experiment was carried out
in this work as well (see Figure 13). In this example, annual
macroeconomic indexes from 1987 to 2000 are regarded as
the training data. �e derived WNN model is tested by
forecasting the gold price trends from 1973 to 1986 and from
2001 to 2011. Figure 13 clearly depicts that the trained model
only 	ts the actual gold prices well from 1987 to 2002. �at
is to say, the generalization ability of WNN is too weak to
forecast the long-term gold price.

6. Conclusion

In this work, a modi	ed version of ABC named IF-ABC
is applied to optimize the WNN model in the gold price
forecasting scheme. Series of numerical experiments con	rm
that IF-ABC is more e
ective than conventional ABC in the
capability to train WNNmodels.

IF-ABC is applied in this work to advocate the viewpoint
that, apart from the quality of a nectar source (i.e., the
objective function value), the true convergence e�ciency
may also be re�ected by the fact that whether a bee does
	nd a position better than the previous one it stays at. �e
author believes that the internal feedback strategy in the IF-
ABC algorithm may be applied to modify some other swarm
intelligence algorithms.

Besides, further investigations into the relationship
between the gold price and other key in�uencing variables,
especially in the long-term, will be the future work.
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