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Abstract. Researchers from the same lab often spend a considerable
amount of time searching for published articles relevant to their current
project. Despite having similar interests, they conduct independent, time
consuming searches. While they may share the results afterwards, they
are unable to leverage previous search results during the search process.
We propose a research paper recommender system that avoids such time
consuming searches by augmenting existing search engines with recom-
mendations based on previous searches performed by others in the lab.
Most existing recommender systems were developed for commercial do-
mains with millions of users. The research paper domain has relatively
few users compared to the large number of online research papers. The
two major challenges with this type of data are the large number of di-
mensions and the sparseness of the data. The novel contribution of the
paper is a scalable subspace clustering algorithm (SCuBA1) that tack-
les these problems. Both synthetic and benchmark datasets are used to
evaluate the clustering algorithm and to demonstrate that it performs
better than the traditional collaborative filtering approaches when rec-
ommending research papers.

1 Introduction

The explosive growth of the world-wide web and the emerging popularity of e-
commerce has caused the collection of data to outpace the analysis necessary
to extract useful information. Recommender systems were developed to help
close the gap between information collection and analysis by filtering all of the
available information to present what is most valuable to the user [20].

One area of the web that has seen continued growth is the online publi-
cation of research papers. The number of research papers published continues
to increase, and new technology has allowed many older papers to be rapidly
digitized. A typical researcher must sift through a large quantity of articles man-
ually, relying on keyword-based searches or paper citations to guide them. The
search results of researchers with similar interests can help direct a more effective
search, but the process of sharing search results is often too cumbersome and
time consuming to be feasible. A recommender system can help by automatically
recommending papers based on the preferences of other researchers with similar
interests.
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There are two main branches of recommender systems; content based filter-
ing and collaborative filtering. Content based filtering (CBF) approaches create
relationships between items by analyzing inherent characteristics of the items.
Collaborative filtering (CF) systems do not analyze an items properties, but
instead take advantage of information about users’ habits to recommend poten-
tially interesting items. The analysis of user behavior patterns, allows collabo-
rative filtering systems to consider characteristics that would be very difficult
for content based systems to determine such as the reputation of the author,
conference, or journal. CF approaches are also well suited to handle semantic
heterogeneity, when different research fields use the same word to mean different
things.

The remainder of the paper is organized as follows. In Section 2 we discuss
the common challenges in the collaborative filtering process followed by a formal
definition of the problem we propose to solve. In Section 3 we give a detailed
description of our proposed algorithm. In Section 4 experimental results are
presented, including description of the dataset used, the evaluation metrics and
discussion. In Section 5 we discuss related work in the area of subspace clustering
and recommender systems. Finally Section 6 contains concluding remarks and
directions for future research.

2 Challenges, Definitions and Problem Statement

In spite of the success achieved by CF algorithms, there are limitations to such
systems [10] that arise in the research paper domain. In many domains, there is
an ever increasing number of users while number of items remains relatively sta-
ble. However, in research paper recommendation domain, the number of users
(researchers) is much less than the number of items (articles). Collaborative
filtering systems face two major challenges in the research paper domain: scal-
ability to high dimensional data and data sparsity. In a typical recommender
system there are many items. For example, Amazon.com recommends specific
books of interest from a large library of available books. Item-based approaches
that determine similarity measures between items do not perform well since
the item space is extremely large. A user based approach allows us to lever-
age the relatively small number of users to create an efficient algorithm that
scales well with the huge number of research papers published each year. An
intuitive solution used by early collaborative filtering algorithms is to find users
with similar preferences to the current user and recommend other items that
group of users rated highly. Even with a relatively small number of users, how-
ever, this approach is computationally complex. The use of clustering algorithms
to pre-determine groups of similar users has been used to significantly increase
performance [16].

Presence of sparsity poses a problem for user-based approaches because they
often rely on nearest neighbor schemes to map a new user to the existing user
groups. It has been demonstrated that the accuracy of nearest neighbor al-
gorithms is very poor for sparse data [4]. Subspace clustering is a branch of
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clustering algorithm that is able to find low dimensional clusters in very high-
dimensional datasets. This approach to clustering allows our system to find
groups of users who share a common interest in a particular field or sub-field
regardless of differences in other fields. Searching for similar users across all of
the items leads to finding users who share many common interests. We address
the issue of high-dimensionality and sparsity of the data space by proposing a
new approach to collaborative filtering utilizing subspace clustering principles.
Furthermore, we propose a novel subspace clustering algorithm suited to sparse,
binary data.

We define the data space in the research paper domain as an m × n matrix
such that there are m researchers R = { r1, r2, ..., rm } and n articles A = {
a1, a2, ..., an }. The row ri represents the interests of researcher i and consists of
a list of articles Ari which indicates the user’s interest in those articles. In the
research paper domain, this could indicate that the user has read or accessed a
certain article. For a given session there is an active researcher (ractive ∈ R) for
which the collaborative filtering algorithm would like to recommend new articles
that may be of interest to ractive based on the researcher’s interest in the current
session and the opinion of other like-minded researchers.

In order to predict which articles will be of high interest, we must have mod-
els of like-minded researchers. Given the m × n matrix, we can find like-minded
researchers by finding groups of researchers r ⊆ R who have expressed interest
in similar articles a ⊆ A. The problem of finding such groups can be transformed
into a problem of subspace clustering using the previously described binary ma-
trix as input. The result of subspace clustering would be clusters, of researchers
in corresponding subspaces of articles. Here, the underlying assumption is if a
group of researchers have similar interests then they usually access similar sets
of articles or vice-versa.

Problem Statement. Given a binary m × n matrix, where rows represent m
researchers (R = { r1, r2, ..., rm }) and columns represent n articles (A = {
a1, a2, ..., an }), find subspace clusters of researchers, r ⊆ R, defined in subspaces
of articles, a ⊆ A.

3 Proposed Algorithm

The access patterns of the researchers can be maintained by tracking the log
of research papers they access. From these access patterns, we can generate a
researcher/article data space as defined in the previous section. We infer that
people accessing a similar set of articles are interested in the topics represented
by the articles. Such a group is represented by a subspace cluster in the re-
searcher/article data space. Finding these experts will ultimately help us achieve
our goal of finding the groups of articles that form fields of interest.

Our proposed subspace clustering algorithm is a two-step process staring with
finding subspaces that form clusters, then post-processing to remove redundancy.
The output of these steps are sub-matrices of the original data matrix. Before
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discussing the above steps in detail, we will show how the proposed algorithm
addresses the challenges associated with sparse, high-dimensional, binary-valued
data in the research paper domain.

3.1 Challenges of the Domain - Addressed

Sparsity and Binary Data. High sparsity means that for a given ri, which is
a vector in n dimensional space, most of the entries in the vector are zeros. Since
we are only interested in the values which are not zeroes, the original vector is
transformed into a string containing positions of non-zero values. An example is
shown in Figure-1. The result of the transformation is compact representation
resulting in reduced memory requirements and less processing overhead.

High-Dimensional Data. In high dimensional data, the number of possible
subspaces is huge. For example, if there are N dimensions in the data, the num-
ber of possible subspaces is 2N . Hence, subspace clustering algorithms must
devise an efficient subspace search strategy [17]. Most existing algorithms will
work well when the number of dimensions is relatively small. In the research pa-
per domain there are thousands of dimensions and such approaches may become
impractical. For example, based on our work in [17], we chose an efficient repre-
sentative subspace clustering algorithm, MAFIA [7], to run on a data set with
1000 dimensions. The program ran out of memory because the algorithm was
designed to be very efficient for datasets with many rows but comparatively few
dimensions. In the research paper domain, we have a unique property that the
number of rows is significantly less than the number of dimensions. We overcome
this challenge of high-dimensional data by devising an algorithm that exploits
the row-enumeration space rather than the larger dimension space.

 1 2 3 4 5 6 7 8

row j = 1 0 1 0 0 0 0 1

after transformation

row j = 1 3 8

Fig. 1. Transformation: A row in the original matrix is transformed into a string con-
taining the position of the non-zero columns

By combining our exploitation of the row-enumeration space and compact
representation of binary sparse data, we convert the challenges into advantages
in our subspace clustering algorithm. The next two sections discuss the major
steps of our algorithm in more detail.

3.2 Find Subspaces That Form Clusters

Most straightforward way to find subspaces is to project the instance in all pos-
sible subspaces and find the ones in which clusters are formed. Such an approach
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is not feasible for data with a large number of dimensions since number of pos-
sible subspaces is exponential, O(2N ). Therefore, we propose a search strategy
which explores the smaller row-enumeration space.

Subspace Search: The result of the transformation (as shown in Figure-1) of
the high-dimensional data is a list of strings representing rows in the original
data. We call the new, transformed dataset D. An example is shown in Figure-2.

1 1 2 3 17
2 1 2 3
3 2 3 4 50
4 1 2 3
5 2 3 4
6 2 3
7 5 6 7 8 21
8 6 7 40
9 5 6 7 8 26

row id

Fig. 2. Transformed Data D after being compressed

The subspace search proceeds by comparing rowi with each successive row
(rowi+1, rowi+2, rowi+3, ..., rowm). For example, if we start at row1 in Figure-2,
we first find the intersection between row1 and row2. The result of the intersec-
tion is 1 2 3 which represents a subspace in dimension 1, 2 and 3 with row1 and
row2 as cluster members. 1 2 3 is stored as a key in a temporary hash table and
the number of cluster members is stored as the value in the table. In addition,
we also store the row-id as the values in the table in order to keep track of the
cluster members for a given subspace. Next, row1 is compared with row3 and
the intersection 2 3 is placed in the hash table. The intersection of row1 and
row4, 1 2 3, is already present in the table, so the count value is updated. At
the end of the pass for row1, the hash table will have two entries 1 2 3 and 2 3.
At this point, the entries in the temporary hash table are put in a global hash
table which only accepts entries which are not already present in the global table
and the temporary hash table is flushed. The rationale for having this rule is the
following. When the search commences at row2, it will find the intersection 1 2 3
and eventually it will update the global hash table with its local one. Notice here
that the subspace 1 2 3 has already been found during the search commencing
from row1. Therefore, there is no requirement to update the global table. At the
end of the search, the global hash table will have five entries, 5 6 7 8, 1 2 3, 2
3, 2 3 4 and 6 7. Notice that the subspace 2 3 is subsumed by the subspace 1
2 3 or 2 3 4. This redundant subspace is removed in the next step. The formal
description of the algorithm is shown in Figure-3.

Memory Usage: The main sources of memory consumption are the temporary
and global hash tables, and the transformed dataset. The hash table memory
requirement grows slowly since the temporary hash table is flushed every time
a new search commences and the global hash table only contains previously un-
found entries. Although use of a hash table may lead to some overhead of space
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due to unmapped entries, the advantage of constant time lookup greatly out-
weighs such overhead. Generally, it was noticed that the memory requirements
grew linearly and were stable during our experiments.

Time Complexity: The algorithm takes advantage of the fact that the number
of rows, m, is relatively small. As a result, the subspace search is performed on
the row enumeration space which is O(m2). It should be noted that in our
case, it is actually less than m2 because if we are at rowi, we only look at
rowi+1, rowi+2, ..., rowm. The algorithm also requires finding intersection of two
strings which is performed in O(k) time where the k is the length of the strings.
Notice that k is usually very small due to the high sparsity of the data. In
summary, the total complexity is O(m2k).

Input: Tranformed data D with number of rows m and minimum density
count.
Output: A set S of subspaces.

hash_table_temp;
hash_table_global;

for j = 0; j < m; j++
get row-j;
for k=j+1; k < m; k++

get row-k;
find_intersection(row-j, row-k);
put intersection in hash_table_temp;
update count in hash_table_temp;

if entries of hash_table_temp not in hash_table_global
put in hash_table_global;

for j = 0; j < hash_table_global.size(); j++
if count of an entry e  >= minimum density

S += e;
End

Fig. 3. Subspace Clustering Algorithm

3.3 Post-processing to Remove Redundancy

A larger subspace which contains several smaller subspaces covers more arti-
cles more articles within the same field of interest. Removing smaller subspaces
subsumed by larger ones helps in making recommendation process faster in the
absence of redundant subspace clusters.

The result from the previous step is a collection of subspaces, S. An example
of such a collection is shown in Figure-4. The subspaces connected with arrows
indicate two subspaces, one of which subsumes another. We must remove the
fourth subspace which is 6 7 since it is subsumed by subspace 5 6 7 8. In
general, to remove the redundant/subsumed subspaces in S, we perform the
following steps:
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List of subspaces found in step-1

1 5 6 7 8
2 1 2 3 sorted by

3 2 3 4 length

4 6 7
5 2 3

Fig. 4. Set of Subspaces S with redundancy. Subspaces marked with arrows are pairs
where one subspace is subsumed by another. For example, subspace 4 is subsumed by
subspace 1.

1. Sort the set S according to the size of each subspace in descending order.
The result of sorting is shown in Figure-4.

2. Take an element si from the set, S, and pass through si+1, si+2, ..., s|S| re-
moving any element if it is a subset of si .

By performing step one, we place the largest subspace as the first element
in S. Then performing step 2, starting with the first element of the set, we will
remove all subsets of s1, in the first pass. Since s1 is the largest subspace, without
loss of generality, we can assume that there will be a large number of subsets
of s1 in S. As a result, |S| will shrink considerably and the remaining passes
through S will be shorter, resulting in reduced running time.

The time complexity is O(|S|2 p) where p is the size of the subspaces when
computing subsumption between two subspaces. Notice that p is quite small
due to sparsity and |S| is shrinking with each iteration. The time complexity for
sorting is O(|S|lg|S|), so the overall complexity is still O(|S|2 p).

3.4 Finding Overlapping Subspaces

In real world data or data which is highly sparse, it might be possible that
subspace clusters in the form of sub-matrices will not be significant in number
and size. In that case, we relax our subspace search so that we can find clusters
of irregular shape as opposed to strict sub-matrices. These irregularly shaped
clusters are larger in size and cover more of the data. Overlapping of these
subspace clusters can represent extended or implicit relationships between both
items and users which might be more interesting to the user.

An example is shown in Figure-5. Four subspace clusters are grouped together
because they share a number of common subspaces. We apply a simple clustering
algorithm to cluster the subspaces. For each element in the list of subspaces, the
overlap between the given element and the other subspace clusters are found. The
degree of overlap is controlled by threshold parameter indicating the percentage
of dimensions that match. If the overlap is above the given threshold, the original
subspace cluster is selected as a member of the cluster and is considered the seed
of the cluster. For example in Figure-5, the seed of the new cluster found is the
subspace A B C D. The other members of this cluster have some degree of overlap
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Fig. 5. The subspaces are grouped to-
gether in one cluster if there is overlap
between subspaces

Fig. 6. Using the subspace clustering
model to generate recommendations

with A B C D. In this example, subspaces with at least one item in common
with the seed, are put into the new cluster. This process is repeated for each
element from the list of subspaces, resulting in large clusters of subspaces. The
user can control the threshold parameter depending on the domain and the data
characteristics. A feature of this clustering process is that we allow a subspace
to be member of several clusters as opposed to forming discrete partitions. This
allows us to find all of the relationships that a subspace may participate in,
instead of restricting it to one cluster membership.

3.5 Generating Recommendations

The process of generating recommendations illustrated in Figure-6 involves map-
ping a user’s query to the subspaces and making recommendations based on the
subspaces. The query represents the current selection of the active user. All of
the subspaces containing the query item are collected and the matching sub-
spaces are ranked based on the coverage of the query. Coverage is defined as the
number of query items present in the subspace. The subspace with the highest
coverage is ranked first and the ranked order of the subspaces determines the
ranking of the recommendations. The recommendations are the elements in the
subspace that are not part of the query. For example, in Figure-6 for the query
A B C, the subspace A B C D has the highest coverage so the recommendation
from that subspace, D, is ranked first. In the case of a tie while ranking, the
subspace with the higher strength is picked first where the strength is defined as
the number of cluster members present in the subspace. In Figure-6, subspaces
B C D E F and X Y A B have equal coverage. In this case, their ranking is
determined by their cluster strengths.

3.6 Fall-Back Model

Since the process of generating recommendations is dependent upon the success-
ful mapping of a query to the subspace clustering model, we consider the scenario
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where a query is not covered by the subspace clustering model. Although this
is a rare case (see Section 4.4), there must be a mechanism to handle such a
scenario if it arises.

The fall-back model utilizes the researcher/aricle matrix directly. For a given
query, the articles in the query are indexed in the matrix and the correspond-
ing rows(researchers) are found. The articles in the rows are ranked according
to their global frequency and the recommendations are made in the ranked or-
der. This approach is similar to the user-based approach where the items in the
nearest user-vector are recommended to the active user. Notice that the compu-
tational requirements of the fall-back approach are minimal, consisting mainly
of indexing the query articles and ranking according to the article frequency.
Article frequency information can be maintained in a table enabling inexpensive
look up cost.

Finally, recommender systems generally work under the principle that a
queried item exists in the user/item matrix. An interesting scenario is, when
a researcher selects an article that does not exist in the researcher/article ma-
trix. The consequence will be that both the fall-back model and the subspace
clustering model will not be able to cover the query. In this case, the top-N
frequent (or popular) articles are returned to the researcher. Here, the quality
of the recommendation will be poorer than the fall-back model but the goal of
covering the query will be satisfied.

4 Experiments

We first evaluate our subspace clustering algorithm using synthetic data and
then evaluate the recommendation approach with the benchmark data. With
synthetic data, we can embed clusters in specified subspaces. Since we know
these locations we can check whether the clustering algorithm is able to recover
the clusters. For evaluating the quality of recommendations, MovieLens [10]
benchmark dataset has been used. We compare our approach using SCuBA
with the baseline approach defined in Section 4.2. We present the experimental
details in the following subsections.

4.1 Clustering Evaluation on Synthetic Data

We have developed a synthetic data generator that allows us to embed clusters
in subspaces. We can control the number and the size of such clusters and also
size of the dataset. Apart from the clusters, the data space is filled with noise.
For each row we place x noise values at random positions where x = α × the
number of dimensions. We set α = 1%. An example of a synthetic data with
three clusters is shown in Figure-7.

For scalability, we measure the running time as we increase the number of
dimensions in increments of 1000. The number of rows is kept fixed at 1000.
We embed 5 subspace clusters. Each subspace cluster has 20 dimensions and
10 instances. Figure-8 shows the scalability of our algorithm as we increase the
dimensions in the data. Notice that the curve is linear since our subspace search
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dims
rows 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

subspace
clusters

Fig. 7. Example of synthetic data used
to evaluate the subspace clustering algo-
rithm. In this example, 3 subspace clus-
ters are embedded and noise is placed at
random positions.
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Fig. 8. Scalability with the number of di-
mensions in the data set

1000 8.1
2000 14
3000 21.3
4000 29.4
5000 34.1
6000 48
7000 57
8000 66
9000 73
10000 81
11000 89
12000 99.5
13000 108
14000 118
15000 128
16000 135
17000 145
18000 151
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Fig. 9. Scalability with dimensionality of the
embedded clusters. Size of the subspace (num-
ber of dimensions) is increased linearly with the
number of dimensions in the data set. Subspace
size, indicated in curly braces, is set to be 1%
of dimension size.
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Fig. 10. Scalability with dimension-
ality of the embedded clusters. Size of
the subspace(number of dimensions)
is increased linearly keeping the num-
ber of dimensions in the data set
fixed.

strategy is not dependent on the number of dimensions but rather it searches in
the row-enumeration space.

In second scalability graph, shown in Figure-9, we linearly increase the size
of subspaces with the number of dimensions in the data. In this case, we set the
size of the subspace to be 1 percent of the number of dimensions. For example,
when the number of dimensions is 5000, size of the subspace is 50. Here the
running time is negligibly higher than the previous case but the curve is still
linear. Higher running time is due to the computation of intersection, k, between
two strings to check for redundancy as mentioned in Section 3.3. As discussed
previously, the size of k is generally very small due to high sparsity of data.

In the third scalability experiment as shown in Figure-10, we check the be-
havior of SCuBA as the density of the dataset increases. Dimensionality of the
dataset is fixed to 2000 and the number of instances to 1000. We embed 5 sub-
space clusters each with 10 instances. The subspace size is increased from 20
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Table 1. Accuracy in recovering the embedded subspace clusters. Five datasets with
increasing number of dimensions. In all cases, the 5 embedded clusters are recovered.

Data Dimensions Recovery Accuracy
1000 5/5 100 %
2000 5/5 100 %
3000 5/5 100 %
4000 5/5 100 %
5000 5/5 100 %

to 200 in steps of 20. It can be observed that running time increases with the
density of the dataset but the curve remains linear.

We present accuracy results of our subspace clustering algorithm in Table-1.
Here, accuracy is defined by the number of true positives and true negatives
w.r.t. the recovered clusters. In all cases, the embedded clusters were completely
recovered as shown in Table-1. No extra clusters were reported even though
α = 1% of noise is present in the data.

4.2 Recommendations from Benchmark Data

Here we evaluate the quality of the recommendations made by the SCuBA ap-
proach on the MovieLens dataset. In Section 1, we reviewed two approaches in
CF and pointed out that memory-based approach produce high quality recom-
mendations by finding the nearest neighbors of a target user. We use this as our
baseline approach. It is quite practical to assume that users view or rate very few
articles of the thousands of available. Since we want to make recommendations
based on the few articles a user looks at, we show that when the number of
selected terms are few, our approach produces higher quality recommendations
than the baseline approach.

Precision and recall are widely used measures to evaluate the quality of infor-
mation retrieval systems. In our experiments, we define quality using precision
which is the ratio between number of relevant results returned and the total
number of returned results. We choose this measure for the following reasons.
The goal of a recommender system is to present a small amount of relevant in-
formation from a vast source of information. Therefore, it is more important to
return a small number of recommendations that contains relevant items rather
than giving the user a large number of recommendations that may contain more
relevant recommendations but also requires the user to sift through many ir-
relevant results. The ratio between the number of relevant results returned and
the number of true relevant results is defined as recall. Notice it is possible to
have very high recall by making a lot of recommendations. In the research paper
recommendation domain, a user will be more interested in reading papers that
really qualify for his interests rather than going through a huge list of recom-
mended papers and then selecting those which are of interest. Precision more
accurately measures our ability to reach our goal than recall.
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Experimental Setup: We divide the data into training and testing sets with
80% used for training and 20% for testing. For our subspace clustering approach,
we build subspace clustering models from the training data and for the baseline
approach we use the training data to find similar users and make recommenda-
tions based on those similar users. During the testing phase, for each user from
the test set we take a certain percentage of the items from the test row. We
call these query items. The rest of the items in the test row are called hidden
items. We make recommendations (using both approaches) for the user, based
on the query items. The list of recommended items are compared with the hid-
den items and the intersection gives the number of relevant recommendations
(results) returned. This forms the basis of our precision measure.
Results and Discussion: The precision curve in Figure-11 shows that we per-
form better than the baseline approach as we reduce the percentage of query
items. As the query items decrease, both relevant recommendations and total
recommendations also decrease. In SCuBA, the decrease in relevant recommen-
dations is less than the decrease in total recommendations which is not the
case with the baseline approach. Therefore an increase in the precision value
is observed. The results validates the discussion presented in Section 1 where
it was pointed out that although the user comparison approach produces very
high quality recommendations, it will not perform well in our domain where we
would like to make recommendations based on very few query terms. Moreover,
user comparison approach does not scale linearly with the number of dimensions
as shown in Figure-14. These results also verify the fact that more focussed
relations are captured using our approach.

The user comparison approach treats users as vectors and computes the sim-
ilarity between two vectors. The similarity calculations will be poor when there
are only a few terms in the test row. In other words, this approach requires large
user profiles (similar to e-commerce applications) to generate high quality rec-
ommendations which in turn warrants user-tracking and raises privacy issues. In
our case we do not require user-profiles that saves the overhead of user-tracking
and preserves privacy as well. At a given instant, a researcher may be inter-
ested in a new research topic(s), and if we use the researcher’s previous profile
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or likings, we will not find relevant articles matching his/her current interest(s).
With SCuBA approach we can overcome this challenge as shown in the precision
curve.

4.3 Model Building Times

In model-based approaches a model is created using item similarity [5]. Since, the
complexity of building the similarity table is dependent on the number of items,
this approach would be unnecessarily computationally expensive in the research
paper domain where we have large number of articles but much smaller number
of users. Our proposed solution takes advantage of the small number of users
and avoids dependence on the number of items. Hence, we would expect that the
time required to build models following the subspace clustering approach would
be much less than the above approach in [5].
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models with two approaches on Movie-
Lens Dataset.

Our claim is validated by the results shown in Figure-13 and Figure-14. Here,
we measure the time taken to build models from the two data sets used in the
experiments. The subspace clustering approach clearly outperforms the item-
item similarity approach.

4.4 Coverage Results

Here we present statistics on query coverage of the subspace clustering model. As
was discussed earlier, we anticipated the subspace clustering model will not be
able to provide complete coverage of queries and hence we proposed a fall-back
model. Results shown in Table-2 validate our hypothesis but more importantly
they show that percentage of queries not covered by subspace clustering model is
very low. This means fall-back model is rarely used and hence the overall quality
of recommendation will not suffer too much.

Table 2. Percentage of queries that were not covered by the subspace cluster model

Query Length 1 2 3 4 5
Miss Percentage % 8.5 0.5 0.5 0.5 0
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Experiment was performed with the MovieLens dataset. Here the query
length denotes the number of terms considered in the test row. The total num-
ber of test rows considered is 188 which is 20% of the complete dataset, 80% of
which was used to construct the subspace cluster model. For queries of length 1,
there were 16 test rows out of 188 for which no recommendation was made, or
the miss percentage is 8.5%. For query lengths greater than 4, miss percentage
become zero or some recommendation was made.

4.5 Comparing Subspace Cluster Model with Fall-Back Model

In Section 3.6, fall-back model was introduced which is used when there is no
mapping of query terms to the subspace cluster model. In these experiments we
try to show that the fall-back model is not a replacement for subspace clustering
model. The fall-back model helps to avoid those situations when subspace cluster
model fails to make recommendations and it should be used for that purpose
only. The experimental setup is kept the same as in Section 4.2. Again, we
compare Precision for both the models, SCuBA as well as the fall-back. The
precision curve in Figure-12 clearly shows SCuBA performs far better than the
fall-back model for different values of query terms considered. These results also
support the discussion in Section 3.6, the goal of the fall-back model is to provide
coverage for query items even if the quality of recommendations is compromised.

5 Related Work

Research paper recommendation systems are mainly content based systems, uti-
lizing a combination of text based analysis as well as the citations of each paper
to generate recommendations. Collaborative filtering algorithms have been very
successful in other domains, however, and their application to research paper rec-
ommendation has not been fully explored. Most collaborative filtering systems
generate models in order to scale up massive numbers of users and items. We
developed SCuBA, based on the principles of subspace clustering, to generate
the collaborative filtering models to recommend research papers. This section
explores related work in both recommender systems and subspace clustering.

5.1 Recommender Systems

Content Based recommender systems attempt to determine relationships be-
tween items by comparing inherent characteristics of items. In research paper
domain, the CiteSeer system utilizes the citation network between papers to find
related papers [8]. CiteSeer also utilizes text-based analysis, but as a separate
list of recommendations. Quickstep and FoxTrot both utilize ontologies of re-
search topics to assist in recommendation [15]. McNee et. al. propose a method
to combined the citation network with various existing CF algorithms [14].

Collaborative filtering approaches can be divided into user-based and model-
based approaches. The nearest neighbor, user-based approaches make recommen-
dations by examine the preferences of similar users. Model-based approaches at-
tempt to improve performance by building models of user and item relationships
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and using those models to make recommendations. Early CF systems compare
the active user to all of the other users and found the k most similar users [22].
Weights are then assigned to items based on the preferences of the neighbor-
hood of k users, using a cosine or correlation function to determine the sim-
ilarity of users. Recommendations are made using the weighted list of items.
The recommendations produced are high quality and the systems are easily able
to incorporate new or updated information, but the approaches do not scale
well.

To overcome the scalability issues, model based systems were developed.
These systems pre-build a user or item based model that is used to make rec-
ommendations for an active user. There are two major categories of models,
user based and item based. Aggarwal et. al. introduced a graph-based approach
where the nodes were users and the edges their similarity. Bayesian probabil-
ity networks also proved to be useful in building models [2]. Performance was
further improved by using dependency networks [9]. Using a bipartite graph,
Huang et. al. were able to find transitive associations and alleviate the sparsity
problem found in many recommender system datasets [12]. Hofmann was able to
discover user communities and prototypical interest profiles using latent seman-
tic analysis to create compact and accurate reduced-dimensionality model of a
community preference space [11]. Sarwar et. al. used correlations between items
to build models [21]. Recently, Demiriz borrows from clustering approaches and
uses a similarity measure to find rules, instead of an exact match [4].

5.2 Subspace Clustering Algorithms

Subspace clustering algorithms can be broadly categorized based on their search
method, top-down or bottom-up [17]. Top down approaches search in the full
dimensional space and refine the search through multiple iterations. Searching
in all of the dimensions first means they are not well suited for sparse data such
as that found with recommender systems. Bottom-up approaches first search for
interesting areas in one dimension and build subspaces. This approach is much
more suited to sparse datasets where clusters are likely to be found using fewer
than 1% of the dimensions.

CLIQUE was the first bottom-up algorithm and follows the basic approach
[1]. Adaptations to the basic method include ENCLUS which uses entropy in-
stead of measuring density directly [3] and MAFIA which uses a data-driven
adaptive method to form bins [7]. CLTree uses a decision tree algorithm to
determine the boundaries of the bins [13]. Each of these algorithms focus on
continuous valued data and do not perform well on categorical or binary data.
Recently there have been subspace clustering algorithms developed for binary
[18] and categorical data [19]. The few algorithms designed for both sparse and
binary high-dimensional data do not cluster in subspaces of the dataset [6].

6 Conclusions and Future Work

In this paper, we proposed a subspace clustering approach for recommender sys-
tems aimed at the research paper domain. A useful source of information when
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recommending research papers is the reading habits of other researchers who
are interested in similar concepts. Thus, we adopted a collaborative filtering ap-
proach which allows us to use data collected from other researchers browsing
patterns, and avoids issues with the interpretation of content. Such data con-
sists of a small number of users (researchers) and a very large number of items
(research papers). Our proposed approach takes advantage of the unique charac-
teristics of the data in this domain and provides a solution which is fast, scalable
and produces high quality recommendations.

In order to improve the perceived quality and usefulness of the recommenda-
tions, a more sophisticated ranking scheme could be developed as an extension
to the algorithm. The algorithm could also be extended to include the subjective
user ratings rather than treating them as binary values and categorize recom-
mendations as strong, mediocre and weak. A lot of work has been done in mixing
the two models, content based filtering and collaborative filtering, to generate a
hybrid model which tries to enhance the recommendation quality.
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