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Artificial intelligence (AI) research has explored a variety
of problems and approaches since its inception, but for
the last 20 years or so has been focused on the prob-

lems surrounding the construction of intelligent agents —
systems that perceive and act in some environment. In this
context, the criterion for intelligence is related to statistical
and economic notions of rationality — colloquially, the abil-
ity to make good decisions, plans, or inferences. The adop-
tion of probabilistic representations and statistical learning
methods has led to a large degree of integration and cross-
fertilization between AI, machine learning, statistics, control
theory, neuroscience, and other fields. The establishment of
shared theoretical frameworks, combined with the availabil-
ity of data and processing power, has yielded remarkable suc-
cesses in various component tasks such as speech recogni-
tion, image classification, autonomous vehicles, machine
translation, legged locomotion, and question-answering sys-
tems.
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n Success in the quest for artificial
intelligence has the potential to bring
unprecedented benefits to humanity,
and it is therefore worthwhile to inves-
tigate how to maximize these benefits
while avoiding potential pitfalls. This
article gives numerous examples (which
should by no means be construed as an
exhaustive list) of such worthwhile
research aimed at ensuring that AI
remains robust and beneficial.
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As capabilities in these areas and others cross the
threshold from laboratory research to economically
valuable technologies, a virtuous cycle takes hold
whereby even small improvements in performance
have significant economic value, prompting greater
investments in research. There is now a broad con-
sensus that AI research is progressing steadily, and
that its impact on society is likely to increase. The
potential benefits are huge, since everything that civ-
ilization has to offer is a product of human intelli-
gence; we cannot predict what we might achieve
when this intelligence is magnified by the tools AI
may provide, but the eradication of disease and
poverty is not unfathomable. Because of the great
potential of AI, it is valuable to investigate how to
reap its benefits while avoiding potential pitfalls.

Progress in AI research makes it timely to focus
research not only on making AI more capable, but
also on maximizing the societal benefit of AI. Such
considerations motivated the AAAI 2008–09 Presi-
dential Panel on Long-Term AI Futures (Horvitz and
Selman 2009) and other projects and community
efforts on AI’s future impacts. These constitute a sig-
nificant expansion of the field of AI itself, which up
to now has focused largely on techniques that are
neutral with respect to purpose. The present docu-
ment can be viewed as a natural continuation of
these efforts, focusing on identifying research direc-
tions that can help maximize the societal benefit of
AI. This research is by necessity interdisciplinary,
because it involves both society and AI. It ranges
from economics, law, and philosophy to computer
security, formal methods, and, of course, various
branches of AI itself. The focus is on delivering AI
that is beneficial to society and robust in the sense
that the benefits are guaranteed: our AI systems must
do what we want them to do.

This article was drafted with input from the atten-
dees of the 2015 conference The Future of AI: Oppor-
tunities and Challenges (see Acknowledgements),
and was the basis for an open letter that has collect-
ed nearly 7000 signatures in support of the research
priorities outlined here.

Short-Term Research Priorities
Short-term research priorities including optimizing
AI’s economic impact, research in law and ethics, and
computer science research for robust AI. In this sec-
tion, each of these priorities will, in turn, be dis-
cussed.

Optimizing AI’s Economic Impact
The successes of industrial applications of AI, from
manufacturing to information services, demonstrate
a growing impact on the economy, although there is
disagreement about the exact nature of this impact
and on how to distinguish between the effects of AI
and those of other information technologies. Many

economists and computer scientists agree that there
is valuable research to be done on how to maximize
the economic benefits of AI while mitigating adverse
effects, which could include increased inequality and
unemployment (Mokyr 2014; Brynjolfsson and
McAfee 2014; Frey and Osborne 2013; Glaeser 2014;
Shanahan 2015; Nilsson 1984; Manyika et al. 2013).
Such considerations motivate a range of research
directions, spanning areas from economics to psy-
chology. Examples include the following.

Labor Market Forecasting:
When and in what order should we expect various
jobs to become automated (Frey and Osborne 2013)?
How will this affect the wages of less skilled workers,
the creative professions, and various kinds of infor-
mation workers? Some have have argued that AI is
likely to greatly increase the overall wealth of
humanity as a whole (Brynjolfsson and McAfee
2014). However, increased automation may push
income distribution further towards a power law
(Brynjolfsson, McAfee, and Spence 2014), and the
resulting disparity may fall disproportionately along
lines of race, class, and gender; research anticipating
the economic and societal impact of such disparity
could be useful.

Other Market Disruptions
Significant parts of the economy, including finance,
insurance, actuarial, and many consumer markets,
could be susceptible to disruption through the use of
AI techniques to learn, model, and predict human
and market behaviors. These markets might be iden-
tified by a combination of high complexity and high
rewards for navigating that complexity (Manyika et
al. 2013).

Policy for Managing Adverse Effects
What policies could help increasingly automated
societies flourish? For example, Brynjolfsson and
McAfee (2014) explore various policies for incen-
tivizing development of labor-intensive sectors and
for using AI-generated wealth to support underem-
ployed populations. What are the pros and cons of
interventions such as educational reform, appren-
ticeship programs, labor-demanding infrastructure
projects, and changes to minimum wage law, tax
structure, and the social safety net (Glaeser 2014)?
History provides many examples of subpopulations
not needing to work for economic security, ranging
from aristocrats in antiquity to many present-day cit-
izens of Qatar. What societal structures and other fac-
tors determine whether such populations flourish?

Unemployment is not the same as leisure, and there
are deep links between unemployment and unhappi-
ness, self-doubt, and isolation (Hetschko, Knabe, and
Schöb 2014; Clark and Oswald 1994); understanding
what policies and norms can break these links could
significantly improve the median quality of life.
Empirical and theoretical research on topics such as
the basic income proposal could clarify our options
(Van Parijs 1992; Widerquist et al. 2013).
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Economic Measures
It is possible that economic measures such as real
GDP per capita do not accurately capture the benefits
and detriments of heavily AI-and-automation-based
economies, making these metrics unsuitable for pol-
icy purposes (Mokyr 2014). Research on improved
metrics could be useful for decision making.

Law and Ethics Research
The development of systems that embody significant
amounts of intelligence and autonomy leads to
important legal and ethical questions whose answers
affect both producers and consumers of AI technolo-
gy. These questions span law, public policy, profes-
sional ethics, and philosophical ethics, and will
require expertise from computer scientists, legal
experts, political scientists, and ethicists. For exam-
ple:

Liability and Law for Autonomous Vehicles
If self-driving cars cut the roughly 40,000 annual U.S.
traffic fatalities in half, the car makers might get not
20,000 thank-you notes, but 20,000 lawsuits. In what
legal framework can the safety benefits of
autonomous vehicles such as drone aircraft and self-
driving cars best be realized (Vladeck 2014)? Should
legal questions about AI be handled by existing (soft-
ware- and Internet-focused) cyberlaw, or should they
be treated separately (Calo 2014b)? In both military
and commercial applications, governments will need
to decide how best to bring the relevant expertise to
bear; for example, a panel or committee of profes-
sionals and academics could be created, and Calo has
proposed the creation of a Federal Robotics Commis-
sion (Calo 2014a).

Machine Ethics
How should an autonomous vehicle trade off, say, a
small probability of injury to a human against the
near certainty of a large material cost? How should
lawyers, ethicists, and policymakers engage the pub-
lic on these issues? Should such trade-offs be the sub-
ject of national standards?

Autonomous Weapons
Can lethal autonomous weapons be made to comply
with humanitarian law (Churchill and Ulfstein
2000)? If, as some organizations have suggested,
autonomous weapons should be banned (Docherty
2012), is it possible to develop a precise definition of
autonomy for this purpose, and can such a ban prac-
tically be enforced? If it is permissible or legal to use
lethal autonomous weapons, how should these
weapons be integrated into the existing command-
and-control structure so that responsibility and lia-
bility remain associated with specific human actors?
What technical realities and forecasts should inform
these questions, and how should meaningful human
control over weapons be defined (Roff 2013, 2014;
Anderson, Reisner, and Waxman 2014)? Are
autonomous weapons likely to reduce political aver-
sion to conflict, or perhaps result in accidental battles

or wars (Asaro 2008)? Would such weapons become
the tool of choice for oppressors or terrorists? Final-
ly, how can transparency and public discourse best
be encouraged on these issues?

Privacy
How should the ability of AI systems to interpret the
data obtained from surveillance cameras, phone
lines, emails, and so on, interact with the right to pri-
vacy? How will privacy risks interact with cybersecu-
rity and cyberwarfare (Singer and Friedman 2014)?
Our ability to take full advantage of the synergy
between AI and big data will depend in part on our
ability to manage and preserve privacy (Manyika et
al. 2011; Agrawal and Srikant 2000).

Professional Ethics
What role should computer scientists play in the law
and ethics of AI development and use? Past and cur-
rent projects to explore these questions include the
AAAI 2008–09 Presidential Panel on Long-Term AI
Futures (Horvitz and Selman 2009), the EPSRC Prin-
ciples of Robotics (Boden et al. 2011), and recently
announced programs such as Stanford’s One-Hun-
dred Year Study of AI and the AAAI Committee on AI
Impact and Ethical Issues.

Policy Questions
From a public policy perspective, AI (like any power-
ful new technology) enables both great new benefits
and novel pitfalls to be avoided, and appropriate
policies can ensure that we can enjoy the benefits
while risks are minimized. This raises policy ques-
tions such as (1) What is the space of policies worth
studying, and how might they be enacted? (2)
Which criteria should be used to determine the mer-
its of a policy? Candidates include verifiability of
compliance, enforceability, ability to reduce risk,
ability to avoid stifling desirable technology devel-
opment, likelihood of being adoped, and ability to
adapt over time to changing circumstances.

Computer Science Research for Robust AI
As autonomous systems become more prevalent in
society, it becomes increasingly important that they
robustly behave as intended. The development of
autonomous vehicles, autonomous trading systems,
autonomous weapons, and so on, has therefore
stoked interest in high-assurance systems where
strong robustness guarantees can be made; Weld and
Etzioni (1994) have argued that “society will reject
autonomous agents unless we have some credible
means of making them safe.” Different ways in
which an AI system may fail to perform as desired
correspond to different areas of robustness research:

Verification: How to prove that a system satisfies
certain desired formal properties. (Did I build the sys-
tem right?)

Validity: How to ensure that a system that meets
its formal requirements does not have unwanted
behaviors and consequences. (Did I build the right
system?) 



Security: How to prevent intentional manipulation
by unauthorized parties.

Control: How to enable meaningful human control
over an AI system after it begins to operate. (OK, I
built the system wrong; can I fix it?)

Verification
By verification, we mean methods that yield high
confidence that a system will satisfy a set of formal
constraints. When possible, it is desirable for systems
in safety-critical situations, for example, self-driving
cars, to be verifiable.

Formal verification of software has advanced sig-
nificantly in recent years: examples include the seL4
kernel (Klein et al. 2009), a complete, general-pur-
pose operating system kernel that has been mathe-
matically checked against a formal specification to
give a strong guarantee against crashes and unsafe
operations, and HACMS, DARPA’s “clean-slate, for-
mal methods-based approach” to a set of high-assur-
ance software tools (Fisher 2012). Not only should it
be possible to build AI systems on top of verified sub-
strates; it should also be possible to verify the designs
of the AI systems themselves, particularly if they fol-
low a componentized architecture, in which guaran-
tees about individual components can be combined
according to their connections to yield properties of
the overall system. This mirrors the agent architec-
tures used in Russell and Norvig (2010), which sepa-
rate an agent into distinct modules (predictive mod-
els, state estimates, utility functions, policies,
learning elements, and others), and has analogues in
some formal results on control system designs.
Research on richer kinds of agents — for example,
agents with layered architectures, anytime compo-
nents, overlapping deliberative and reactive ele-
ments, metalevel control, and so on — could con-
tribute to the creation of verifiable agents, but we
lack the formal algebra to properly define, explore,
and rank the space of designs.

Perhaps the most salient difference between verifi-
cation of traditional software and verification of AI sys-
tems is that the correctness of traditional software is
defined with respect to a fixed and known machine
model, whereas AI systems — especially robots and
other embodied systems — operate in environments
that are at best partially known by the system design-
er. In these cases, it may be practical to verify that the
system acts correctly given the knowledge that it has,
avoiding the problem of modelling the real environ-
ment (Dennis et al. 2013). A lack of design-time knowl-
edge also motivates the use of learning algorithms
within the agent software, and verification becomes
more difficult: statistical learning theory gives so-called
ε – δ (probably approximately correct) bounds, mostly
for the somewhat unrealistic settings of supervised
learning from i.i.d. data and single-agent reinforce-
ment learning with simple architectures and full
observability, but even then requiring prohibitively
large sample sizes to obtain meaningful guarantees.

Work in adaptive control theory (Åström and Wit-
tenmark 2013), the theory of so-called cyberphysical
systems (Platzer 2010), and verification of hybrid or
robotic systems (Alur 2011; Winfield, Blum, and Liu
2014) is highly relevant but also faces the same diffi-
culties. And of course all these issues are laid on top
of the standard problem of proving that a given soft-
ware artifact does in fact correctly implement, say, a
reinforcement learning algorithm of the intended
type. Some work has been done on verifying neural
network applications (Pulina and Tacchella 2010;
Taylor 2006; Schumann and Liu 2010) and the
notion of partial programs (Andre and Russell 2002;
Spears 2006) allows the designer to impose arbitrary
structural constraints on behavior, but much remains
to be done before it will be possible to have high con-
fidence that a learning agent will learn to satisfy its
design criteria in realistic contexts.

Validity
A verification theorem for an agent design has the
form, “If environment satisfies assumptions ϕ then
behavior satisfies requirements ψ.” There are two
ways in which a verified agent can, nonetheless, fail
to be a beneficial agent in actuality: first, the envi-
ronmental assumption ϕ is false in the real world,
leading to behavior that violates the requirements ψ;
second, the system may satisfy the formal require-
ment ψ but still behave in ways that we find highly
undesirable in practice. It may be the case that this
undesirability is a consequence of satisfying ψ when
ϕ is violated; that is, had ϕ held the undesirability
would not have been manifested; or it may be the
case that the requirement ψ is erroneous in itself. Rus-
sell and Norvig (2010) provide a simple example: if a
robot vacuum cleaner is asked to clean up as much
dirt as possible, and has an action to dump the con-
tents of its dirt container, it will repeatedly dump and
clean up the same dirt. The requirement should focus
not on dirt cleaned up but on cleanliness of the floor.
Such specification errors are ubiquitous in software
verification, where it is commonly observed that
writing correct specifications can be harder than writ-
ing correct code. Unfortunately, it is not possible to
verify the specification: the notions of beneficial and
desirable are not separately made formal, so one can-
not straightforwardly prove that satisfying ψ neces-
sarily leads to desirable behavior and a beneficial
agent.

In order to build systems that robustly behave well,
we of course need to decide what good behavior
means in each application domain. This ethical ques-
tion is tied intimately to questions of what engineer-
ing techniques are available, how reliable these tech-
niques are, and what trade-offs can be made — all
areas where computer science, machine learning, and
broader AI expertise is valuable. For example, Wal-
lach and Allen (2008) argue that a significant consid-
eration is the computational expense of different
behavioral standards (or ethical theories): if a stan-
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dard cannot be applied efficiently enough to guide
behavior in safety-critical situations, then cheaper
approximations may be needed. Designing simplified
rules — for example, to govern a self-driving car’s
decisions in critical situations — will likely require
expertise from both ethicists and computer scientists.
Computational models of ethical reasoning may
shed light on questions of computational expense
and the viability of reliable ethical reasoning meth-
ods (Asaro 2006, Sullins 2011).

Security
Security research can help make AI more robust. As AI
systems are used in an increasing number of critical
roles, they will take up an increasing proportion of
cyberattack surface area. It is also probable that AI
and machine-learning techniques will themselves be
used in cyberattacks.

Robustness against exploitation at the low level is
closely tied to verifiability and freedom from bugs.
For example, the DARPA SAFE program aims to build
an integrated hardware-software system with a flexi-
ble metadata rule engine, on which can be built
memory safety, fault isolation, and other protocols
that could improve security by preventing
exploitable flaws (DeHon et al. 2011). Such programs
cannot eliminate all security flaws (since verification
is only as strong as the assumptions that underly the
specification), but could significantly reduce vulner-
abilities of the type exploited by the recent Heart-
bleed and Bash bugs. Such systems could be prefer-
entially deployed in safety-critical applications,
where the cost of improved security is justified.

At a higher level, research into specific AI and
machine-learning techniques may become increas-
ingly useful in security. These techniques could be
applied to the detection of intrusions (Lane 2000),
analyzing malware (Rieck et al. 2011), or detecting
potential exploits in other programs through code
analysis (Brun and Ernst 2004). It is not implausible
that cyberattack between states and private actors
will be a risk factor for harm from near-future AI sys-
tems, motivating research on preventing harmful
events. As AI systems grow more complex and are
networked together, they will have to intelligently
manage their trust, motivating research on statistical-
behavioral trust establishment (Probst and Kasera
2007) and computational reputation models (Sabater
and Sierra 2005).

Control
For certain types of safety-critical AI systems — espe-
cially vehicles and weapons platforms — it may be
desirable to retain some form of meaningful human
control, whether this means a human in the loop, on
the loop (Hexmoor, McLaughlan, and Tuli 2009;
Parasuraman, Sheridan, and Wickens 2000), or some
other protocol. In any of these cases, there will be
technical work needed in order to ensure that mean-
ingful human control is maintained (UNIDIR 2014).

Automated vehicles are a test-bed for effective con-

trol-granting techniques. The design of systems and
protocols for transition between automated naviga-
tion and human control is a promising area for fur-
ther research. Such issues also motivate broader
research on how to optimally allocate tasks within
human–computer teams, both for identifying situa-
tions where control should be transferred, and for
applying human judgment efficiently to the highest-
value decisions.

Long-Term Research Priorities
A frequently discussed long-term goal of some AI
researchers is to develop systems that can learn from
experience with humanlike breadth and surpass
human performance in most cognitive tasks, thereby
having a major impact on society. If there is a non-
negligible probability that these efforts will succeed
in the foreseeable future, then additional current
research beyond that mentioned in the previous sec-
tions will be motivated as exemplified next, to help
ensure that the resulting AI will be robust and bene-
ficial.

Assessments of this success probability vary wide-
ly between researchers, but few would argue with
great confidence that the probability is negligible,
given the track record of such predictions. For exam-
ple, Ernest Rutherford, arguably the greatest nuclear
physicist of his time, said in 1933 — less than 24
hours before Szilard’s invention of the nuclear chain
reaction — that nuclear energy was “moonshine”
(Press 1933), and astronomer Royal Richard Woolley
called interplanetary travel “utter bilge” in 1956
(Reuters 1956). Moreover, to justify a modest invest-
ment in this AI robustness research, this probability
need not be high, merely nonnegligible, just as a
modest investment in home insurance is justified by
a nonnegligible probability of the home burning
down.

Verification
Reprising the themes of short-term research, research
enabling verifiable low-level software and hardware
can eliminate large classes of bugs and problems in
general AI systems; if such systems become increas-
ingly powerful and safety-critical, verifiable safety
properties will become increasingly valuable. If the
theory of extending verifiable properties from com-
ponents to entire systems is well understood, then
even very large systems can enjoy certain kinds of
safety guarantees, potentially aided by techniques
designed explicitly to handle learning agents and
high-level properties. Theoretical research, especial-
ly if it is done explicitly with very general and capa-
ble AI systems in mind, could be particularly useful.

A related verification research topic that is dis-
tinctive to long-term concerns is the verifiability of
systems that modify, extend, or improve themselves,
possibly many times in succession (Good 1965,
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Vinge 1993). Attempting to straightforwardly apply
formal verification tools to this more general setting
presents new difficulties, including the challenge
that a formal system that is sufficiently powerful can-
not use formal methods in the obvious way to gain
assurance about the accuracy of functionally similar
formal systems, on pain of inconsistency through
Gödel’s incompleteness (Fallenstein and Soares 2014;
Weaver 2013). It is not yet clear whether or how this
problem can be overcome, or whether similar prob-
lems will arise with other verification methods of
similar strength.

Finally, it is often difficult to actually apply for-
mal verification techniques to physical systems,
especially systems that have not been designed with
verification in mind. This motivates research pursu-
ing a general theory that links functional specifica-
tion to physical states of affairs. This type of theory
would allow use of formal tools to anticipate and
control behaviors of systems that approximate
rational agents, alternate designs such as satisficing
agents, and systems that cannot be easily described
in the standard agent formalism (powerful predic-
tion systems, theorem provers, limited-purpose sci-
ence or engineering systems, and so on). It may also
be that such a theory could allow rigorous demon-
strations that systems are constrained from taking
certain kinds of actions or performing certain kinds
of reasoning.

Validity
As in the short-term research priorities, validity is
concerned with undesirable behaviors that can arise
despite a system’s formal correctness. In the long
term, AI systems might become more powerful and
autonomous, in which case failures of validity could
carry correspondingly higher costs.

Strong guarantees for machine-learning methods,
an area we highlighted for short-term validity
research, will also be important for long-term safety.
To maximize the long-term value of this work,
machine-learning research might focus on the types
of unexpected generalization that would be most
problematic for very general and capable AI systems.
In particular, it might aim to understand theoretical-
ly and practically how learned representations of
high-level human concepts could be expected to gen-
eralize (or fail to) in radically new contexts (Tegmark
2015). Additionally, if some concepts could be
learned reliably, it might be possible to use them to
define tasks and constraints that minimize the
chances of unintended consequences even when
autonomous AI systems become very general and
capable. Little work has been done on this topic,
which suggests that both theoretical and experimen-
tal research may be useful.

Mathematical tools such as formal logic, probabil-
ity, and decision theory have yielded significant
insight into the foundations of reasoning and deci-

sion making. However, there are still many open
problems in the foundations of reasoning and deci-
sion. Solutions to these problems may make the
behavior of very capable systems much more reliable
and predictable. Example research topics in this area
include reasoning and decision under bounded com-
putational resources à la Horvitz and Russell (Horvitz
1987; Russell and Subramanian 1995), how to take
into account correlations between AI systems’ behav-
iors and those of their environments or of other
agents (Tennenholtz 2004; LaVictoire et al. 2014;
Hintze 2014; Halpern and Pass 2013; Soares and Fal-
lenstein 2014c), how agents that are embedded in
their environments should reason (Soares 2014a;
Orseau and Ring 2012), and how to reason about
uncertainty over logical consequences of beliefs or
other deterministic computations (Soares and Fallen-
stein 2014b). These topics may benefit from being
considered together, since they appear deeply linked
(Halpern and Pass 2011; Halpern, Pass, and Seeman
2014).

In the long term, it is plausible that we will want
to make agents that act autonomously and powerful-
ly across many domains. Explicitly specifying our
preferences in broad domains in the style of near-
future machine ethics may not be practical, making
aligning the values of powerful AI systems with our
own values and preferences difficult (Soares 2014b,
Soares and Fallenstein 2014a).

Consider, for instance, the difficulty of creating a
utility function that encompasses an entire body of
law; even a literal rendition of the law is far beyond
our current capabilities, and would be highly unsatis-
factory in practice (since law is written assuming that
it will be interpreted and applied in a flexible, case-
by-case way by humans who, presumably, already
embody the background value systems that artificial
agents may lack). Reinforcement learning raises its
own problems: when systems become very capable
and general, then an effect similar to Goodhart’s Law
is likely to occur, in which sophisticated agents
attempt to manipulate or directly control their reward
signals (Bostrom 2014). This motivates research areas
that could improve our ability to engineer systems
that can learn or acquire values at run time. For exam-
ple, inverse reinforcement learning may offer a viable
approach, in which a system infers the preferences of
another rational or nearly rational actor by observing
its behavior (Russell 1998, Ng and Russell 2000). Oth-
er approaches could use different assumptions about
underlying cognitive models of the actor whose pref-
erences are being learned (Chu and Ghahramani
2005), or could be explicitly inspired by the way
humans acquire ethical values. As systems become
more capable, more epistemically difficult methods
could become viable, suggesting that research on such
methods could be useful; for example, Bostrom (2014)
reviews preliminary work on a variety of methods for
specifying goals indirectly.
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Security
It is unclear whether long-term progress in AI will
make the overall problem of security easier or hard-
er; on one hand, systems will become increasingly
complex in construction and behavior and AI-based
cyberattacks may be extremely effective, while on the
other hand, the use of AI and machine-learning tech-
niques along with significant progress in low-level
system reliability may render hardened systems
much less vulnerable than today’s. From a crypto-
graphic perspective, it appears that this conflict
favors defenders over attackers; this may be a reason
to pursue effective defense research wholeheartedly.

Although the topics described in the near-term
security research section earlier may become increas-
ingly important in the long term, very general and
capable systems will pose distinctive security prob-
lems. In particular, if the problems of validity and
control are not solved, it may be useful to create con-
tainers for AI systems that could have undesirable
behaviors and consequences in less controlled envi-
ronments (Yampolskiy 2012). Both theoretical and
practical sides of this question warrant investigation.
If the general case of AI containment turns out to be
prohibitively difficult, then it may be that designing
an AI system and a container in parallel is more suc-
cessful, allowing the weaknesses and strengths of the
design to inform the containment strategy (Bostrom
2014). The design of anomaly detection systems and
automated exploit checkers could be of significant
help. Overall, it seems reasonable to expect this addi-
tional perspective — defending against attacks from
within a system as well as from external actors — will
raise interesting and profitable questions in the field
of computer security.

Control
It has been argued that very general and capable AI
systems operating autonomously to accomplish
some task will often be subject to effects that increase
the difficulty of maintaining meaningful human
control (Omohundro 2007; Bostrom 2012, 2014;
Shanahan 2015). Research on systems that are not
subject to these effects, minimize their impact, or
allow for reliable human control could be valuable in
preventing undesired consequences, as could work
on reliable and secure test beds for AI systems at a
variety of capability levels.

If an AI system is selecting the actions that best
allow it to complete a given task, then avoiding con-
ditions that prevent the system from continuing to
pursue the task is a natural subgoal (Omohundro
2007, Bostrom 2012) (and conversely, seeking uncon-
strained situations is sometimes a useful heuristic
[Wissner-Gross and Freer 2013]). This could become
problematic, however, if we wish to repurpose the
system, to deactivate it, or to significantly alter its
decision-making process; such a system would
rationally avoid these changes. Systems that do not

exhibit these behaviors have been termed corrigible
systems (Soares et al. 2015), and both theoretical and
practical work in this area appears tractable and use-
ful. For example, it may be possible to design utility
functions or decision processes so that a system will
not try to avoid being shut down or repurposed
(Soares et al. 2015), and theoretical frameworks could
be developed to better understand the space of
potential systems that avoid undesirable behaviors
(Hibbard 2012, 2014, 2015).

It has been argued that another natural subgoal for
AI systems pursuing a given goal is the acquisition of
fungible resources of a variety of kinds: for example,
information about the environment, safety from dis-
ruption, and improved freedom of action are all
instrumentally useful for many tasks (Omohundro
2007, Bostrom 2012). Hammond et al. (1995) give
the label stabilization to the more general set of cas-
es where “due to the action of the agent, the envi-
ronment comes to be better fitted to the agent as
time goes on.” This type of subgoal could lead to
undesired consequences, and a better understanding
of the conditions under which resource acquisition
or radical stabilization is an optimal strategy (or like-
ly to be selected by a given system) would be useful
in mitigating its effects. Potential research topics in
this area include domestic goals that are limited in
scope in some way (Bostrom 2014), the effects of
large temporal discount rates on resource acquisition
strategies, and experimental investigation of simple
systems that display these subgoals.

Finally, research on the possibility of superintelli-
gent machines or rapid, sustained self-improvement
(intelligence explosion) has been highlighted by past
and current projects on the future of AI as potential-
ly valuable to the project of maintaining reliable con-
trol in the long term. The AAAI 2008–09 Presidential
Panel on Long-Term AI Futures’ Subgroup on Pace,
Concerns, and Control stated that

There was overall skepticism about the prospect of an
intelligence explosion . . . Nevertheless, there was a
shared sense that additional research would be valu-
able on methods for understanding and verifying the
range of behaviors of complex computational systems
to minimize unexpected outcomes. Some panelists
recommended that more research needs to be done to
better define “intelligence explosion,” and also to bet-
ter formulate different classes of such accelerating
intelligences. Technical work would likely lead to
enhanced understanding of the likelihood of such
phenomena, and the nature, risks, and overall out-
comes associated with different conceived variants
(Horvitz and Selman 2009).

Stanford’s One-Hundred Year Study of Artificial Intel-
ligence includes loss of control of AI systems as an
area of study, specifically highlighting concerns over
the possibility that

… we could one day lose control of AI systems via the
rise of superintelligences that do not act in accordance
with human wishes — and that such powerful systems
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dx.doi.org/10.1109/ICSE.2004.1317470
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nologies. New York: W.W. Norton & Company.

Brynjolfsson, E.; McAfee, A.; and Spence, M. 2014. Labor,
Capital, and Ideas in the Power Law Economy. Foreign
Affairs 93(4): 44.

Calo, R. 2014a. The Case for a Federal Robotics Commis-
sion. Brookings Institution Report (May 2014). Washington,
DC: Brookings Institution.

Calo, R. 2014b. Robotics and the Lessons of Cyberlaw. Uni-
versity of Washington School of Law Legal Studies Research
Paper No. 2014.08. Seattle, WA: University of Washington.

Chalmers, D. 2010. The Singularity: A Philosophical Analy-
sis. Journal of Consciousness Studies 17(9–10): 7–65.

Chu, W., and Ghahramani, Z. 2005. Preference Learning
with Gaussian Processes. In Proceedings of the 22nd Interna-
tional Conference on Machine Learning, 137–144. New York:
Association for Computing Machinery. dx.doi.org/10.1145/
1102351.1102369

Churchill, R. R., and Ulfstein, G. 2000. Autonomous Insti-
tutional Arrangements in Multilateral Environmental
Agreements: A Little-Noticed Phenomenon in Internation-
al Law. American Journal of International Law 94(4): 623–659.
dx.doi.org/10.2307/2589775

Clark, A. E., and Oswald, A. J. 1994. Unhappiness and
Unemployment. The Economic Journal 104 (May): 648–659.
dx.doi.org/10.2307/2234639

DeHon, A.; Karel, B.; Knight Jr, T. F.; Malecha, G.; Montagu,
B.; Morisset, R.; Morrisett, G.; Pierce, B. C.; Pollack, R.; Ray,
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the SAFE Platform. In PLOS ’11: Proceedings of the 6th Work-
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York: Association for Computing Machinery. dx.doi.org/
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would threaten humanity. Are such dystopic out-
comes possible? If so, how might these situations
arise? . . . What kind of investments in research should
be made to better understand and to address the pos-
sibility of the rise of a dangerous superintelligence or
the occurrence of an “intelligence explosion”?
(Horvitz 2014)

Research in this area could include any of the long-
term research priorities listed previously, as well as
theoretical and forecasting work on intelligence
explosion and superintelligence (Chalmers 2010,
Bostrom 2014), and could extend or critique existing
approaches begun by groups such as the Machine
Intelligence Research Institute (Soares and Fallen-
stein 2014a).

Conclusion
In summary, success in the quest for artificial intelli-
gence has the potential to bring unprecedented ben-
efits to humanity, and it is therefore worthwhile to
research how to maximize these benefits while avoid-
ing potential pitfalls. The research agenda outlined
in this paper, and the concerns that motivate it, have
been called anti-AI, but we vigorously contest this
characterization. It seems self-evident that the grow-
ing capabilities of AI are leading to an increased
potential for impact on human society. It is the duty
of AI researchers to ensure that the future impact is
beneficial. We believe that this is possible, and hope
that this research agenda provides a helpful step in
the right direction.
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