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INTRODUCTION

Seabirds have been the focus of human observation
for millennia and of scientific study and observation
for centuries (Charles Darwin, Tierra del Fuego, Jan
13, 1833:  ‘We were heavily labouring, it was cu rious
to see how the Albatross with its widely expand -
ed wings, glided right up the wind’. http:// darwin-

online.org.uk/). In more recent years, there has been
strong evidence of steady, and for some species dra-
matic, changes in seabird populations in many areas
(Schreiber & Burger 2002, Butchart et al. 2004). While
for some populations there has been rapid population
growth (e.g. northern fulmars Fulmarus glacialis in
the North Sea in the 1980s), many other seabird spe-
cies have demonstrated marked declines. Reported
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ABSTRACT: Seabirds are facing a growing number of threats in both terrestrial and marine habi-
tats, and many populations have experienced dramatic changes over past decades. Years of
seabird research have improved our understanding of seabird populations and provided a broader
understanding of marine ecological processes. In an effort to encourage future research and guide
seabird conservation science, seabird researchers from 9 nations identified the 20 highest priority
research questions and organized these into 6 general categories: (1) population dynamics, (2)
spatial ecology, (3) tropho-dynamics, (4) fisheries interactions, (5) response to global change, and
(6) management of anthropogenic impacts (focusing on invasive species, contaminants and pro-
tected areas). For each category, we provide an assessment of the current approaches, challenges
and future directions. While this is not an exhaustive list of all research needed to address the myr-
iad conservation challenges seabirds face, the results of this effort represent an important synthe-
sis of current expert opinion across sub-disciplines within seabird ecology. As this synthesis high-
lights, research, in conjunction with direct management, education, and community engagement,
can play an important role in facilitating the conservation and management of seabird populations
and of the ocean ecosystems on which they and we depend.
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seabird declines follow global patterns of biodiversity
loss, with between 10 and 50% of species in well-
studied higher taxonomic groups currently threatened
with extinction (MEA 2005, Schipper et al. 2008).
Seabirds are long-lived organisms that exhibit high
adult survival and a progressive recruitment to the
breeding population as immature individuals near
sexual maturity (Schreiber & Burger 2002). They
breed mostly in social structures (i.e. colonies, see Jo-
vani et al. 2008) commonly in coastal areas, and they
tend to be philopatric, especially once recruited to a
specific colony (Milot et al. 2008).

Many factors have been implicated in documented
changes in seabird populations, e.g. direct harvest,
incidental mortality in fisheries, fisheries closures
and changes in fishing practice, pollution, non-native
and invasive alien species, and changes in prey
availability as a consequence of fisheries or changing
ocean conditions. It is estimated that one quarter of
marine fish stocks on which seabirds depend are
overexploited by fisheries (Hilborn et al. 2003,
Roberts et al. 2007). Although fisheries serve as a
pervasive and global driver of change in marine
ecosystems, the effects of fisheries on seabirds are
not clearly understood (Watermeyer et al. 2008a,b).
Coincident with these factors, seabirds also exhibit
considerable variability in behavior, ecology, life his-
tory and demography (Garthe et al 1996, Hamer et al.
2002, Weimerskirch 2002) and respond to short-term
and long-term changes in ocean conditions (Aebis-
cher et al. 1990, Sydeman et al. 2009). Thus, one of
the central challenges to seabird research has been
untangling the differential impacts of environmental
variation and anthropogenic activities on seabird
population dynamics.

Seabirds are important indicators of the status and
structure of marine ecosystems, because as wide-
spread organisms, they inhabit all ocean systems
(from inshore to pelagic, polar to tropical) and are
relatively easy to monitor at large spatio-temporal
scales compared to other upper-trophic marine
organisms, (Furness & Camphuysen 1997, Durant et
al. 2009). By nature of their reliance on the marine
environment for food, and on terrestrial habitats for
breeding, research on seabirds provides a ‘window’
into both marine and terrestrial systems (Grémillet &
Charmantier 2010).

While ongoing research informs much of seabird
management strategies, identifying the most critical
knowledge gaps in seabird ecology that limit effective
seabird management and conservation is a timely and
important exercise. Following the initiatives of Suther-
land et al. (2006, 2009) and Hamann et al. (2010) that

identified key ecological questions relevant to biodi-
versity conservation and policy, a group of researchers
working in seabird biology, ecology and conservation
compiled a list of 20 high-priority research questions.
The present paper reflects the expertise of a group of
seabird researchers with a broad range of back-
grounds, and details the top priority conservation-re-
lated research questions for seabirds. Through this
process, we aim to strengthen the role of seabird re-
search in facilitating and improving the conservation
status of seabirds. Although this exercise focused par-
ticularly on seabirds, the threats and challenges to
seabird con servation are relevant to many other
marine top predators, such as sharks, tunas, marine
mammals and turtles (Heithaus et al. 2008).

METHODS

Using ISI Web of Science, the first 6 authors iden-
tified 180 candidate participants based on the num-
ber of publications between 2006 to 2009 for
‘(seabird or marine bird) and conservation’ (accessed
10 April 2009). From this list we selected 35 partici-
pants (30 male, 5 female) who represented the most
comprehensive geographic expertise across ocean
basins as well as technical subject expertise. Each
participant was asked to list the 10 most important
‘research questions that would assist in effective
seabird con servation over the next decade’. Twenty-
nine  researchers (25 male, 4 female) from 9 coun-
tries responded to the questionnaire (see Supple-
ment 2 at www.int-res.com/articles/suppl/n017p093_
supp. pdf. Responses were anonymous, with the
compilations only shared with the wider group once
all questions had been submitted.

The resulting 242 research questions were grouped
into broad categories by the first 6 authors, who cre-
ated a short-list of research questions that was
shared with all participants. The list of the top 20
research priorities was developed through partici-
pant discussions, based on the number of responses,
but does not reflect a relative ranking among priori-
ties. Once the list was finalized, small groups of par-
ticipants selected one of the broad research topics
and worked collaboratively to develop the support-
ing text. All authors reviewed the entire manuscript.

RESULTS

We identified 6 broad research topics that encom-
passed the specific research priorities identified by
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the participants. These topics represent the funda-
mental elements of seabird ecology, environmental
change and cumulative impacts of human activity on
seabirds and their ocean ecosystem.
1. Population dynamics
1.1. What are the key factors that regulate seabird

popu lations?
1.2. How prevalent and influential are demographic

anomalies or cycles, e.g. breeding failures, peri-
ods of decreased survival, disease outbreaks?

1.3. How can we best quantify demographic para-
meters, popu lation size, population trends and
risks of extinction per  species and per colony?

1.4. What is the form and importance of population
structure?

1.5. How do the interactions among seabird species
influence seabird populations?

2. At-sea spatial ecology
2.1. How can we address knowledge gaps in at-sea

distribution?
2.2. What habitat features delineate movement cor-

ridors or  residency areas and how can re -
searchers identify these  corridors and best
quantify movement behavior?

3. Trophic dynamics and community roles of sea -
birds

3.1. What are the roles of seabirds in communities
and food webs?

3.2. How can we define, identify and map key forag-
ing areas?

3.3. How do fisheries-mediated changes in trophic
structure influence seabirds?

4. Direct effects of fisheries
4.1. How can we obtain detailed, unbiased and

accurate measures of bycatch rates?
4.2. How do we evaluate bycatch risk to different

species or colonies in space and time?
4.3. What are the population-level effects of by -

catch?
4.4. What are the positive and negative effects of

discards in  provisioning seabirds?
5. Global change and population response to en -

vironmental variability
5.1. How resilient are seabirds to climate and related

environmental change?
5.2. What are the likely cascading trophic effects

on seabird  population from environmental
change?

5.3. How do interactions at different hierarchical
scales affect seabirds’ responses to environmen-
tal change?

6. Managing anthropogenic impacts (invasive spe-
cies, contaminants and protected areas)

6.1. What are the population-level impacts of inva-
sive species?

6.2. What is the population-level influence of conta-
minants and other pollutants?

6.3. How effective are protected areas in protecting
seabirds?

1. Population dynamics

Understanding the factors that regulate and influ -
ence populations is an essential component of sea bird
conservation. Demographics are key variables in as-
sessing extinction risk for populations and species
(IUCN Red List criteria, Mace et al. 2008). Demo-
graphic rates drive population trends, and accurate
estimation of demographic parameters facilitates the
diagnosis of environmental causes of population
change (Green 1995) and provides a framework for
predicting responses to management (Frederiksen et
al. 2004, Wanless et al. 2009). In general, seabirds
have high survival rates, low fertility and a progressive
recruitment with age, with an immature phase that
can last for several years. They mostly breed in
colonies and are philopatric to the natal site, although
dispersal (both natal and breeding) occurs. For
seabirds, estimation of underlying demographic rates
is particularly important because declines in breeding
populations can be influenced substantially by non-
breeders and immature birds (Grimm et al. 2005,
Votier et al. 2008a). The influence of non-breeders and
immature birds is particularly strong when populations
are density-dependent and large numbers of sexually
mature birds are queuing for recruitment; these birds
can rapidly integrate into the breeding population
when additive mortality occurs (Tavecchia et al. 2007,
Votier et al. 2008a). The capacity of nonbreeders to
mask, mitigate or exacerbate the effect of ecological
perturbations (both human and natural) is poorly un-
derstood because individuals cannot be easily moni-
tored once outside the breeding site (Oro et al. 2006b).

Changes in population size influence the persis-
tence of populations, and high levels of fluctuation,
particularly in small populations, are associated with
an increased probability of extinction (Engen et al
2005). Seabirds are long-lived organisms and, as
such, their population dynamics are most immedi-
ately sensitive to changes in adult survival, although
changes in reproductive success and juvenile sur-
vival are important over time (Weimerskirch 2002,
Finkelstein et al. 2010). Annual census information
on the number of nesting individuals, age at first
breeding, and mean fecundity are widely available
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for many seabird populations, e.g. for the ca. 275 spe-
cies of seabirds (including Sphenisciformes, Procel-
lariformes, Pelecaniformes and some Charadri-
formes); information on age at first breeding is
available for more than 60% of the species. However
other basic demographic information, including sur-
vival of younger age classes, percentage of non-
breeding birds in the population, fecundity following
mate loss, senescence, and the strength of natal and
breeding site fidelity are still lacking for many
seabird species. The percentage of species for which
adequate data exist decreases for these parameters:
ca. 20% of species have estimates of adult survival,
less than 5% of species have a known recruitment
curve, and fewer than 2% of seabird species have
estimates of juvenile survival. These data gaps must
be addressed if we are to understand seabird popula-
tion response to episodic environmental events and
the capacity of seabird populations to recover from
human-mediated and other environmental changes.

1.1. What are the key factors that regulate seabird 
populations?

Seabird populations fluctuate as a result of complex
interactions between environmental characteristics
and vital rates. Vital rates (e.g. survival, fecundity, re-
cruitment, dispersal) can also vary as a result of de-
terministic factors (many of them related to human
activities, e.g. human-mediated invasions) and also
by the effects of density-dependence, both negative
(e.g. Ruiz et al. 1998, Tavecchia et al. 2007) and posi-
tive (i.e. Allee effects, Oro et al. 2006b). As such, all of
these variables act as key factors regulating seabird
populations. Even though many of these factors have
been analyzed independently in the literature, their
relative importance is poorly documented and likely
changes over time. As with most species, seabird
populations are directly affected by predation (Gil -
christ 1999, Oro et al. 1999, Bonnaud et al. 2009), as
well as by food and habitat availability. Environmen-
tal fluctuations can indirectly drive all these factors
(Doherty et al. 2004, Bertram et al. 2005, Oro et al.
2010). Seabirds have evolved a life history strategy
that relies on iteroparity — repeated fecundity — over
a relatively long lifetime, and seabird population
growth is typically most sensitive to changes that re-
duce adult survival. However, the importance of
changes in productivity, including complete breeding
failures, can impact populations as well. Recent stud-
ies have shown that breeding success and
recruitment have a strong impact on fluctuations in

some populations (Jenouvrier et al. 2005a,b, Ezard et
al. 2006). Dispersal, undertaken by immatures and
adults as natal and breeding dispersal, respectively,
is also a key parameter in seabird population dynam-
ics as it can greatly influence population growth rates
and extinction risks (Spendelow et al. 1995, Inchausti
& Weimerskirch 2002, Cam et al. 2004). The metapop-
ulation paradigm, together with the proper estimation
of dispersal rates (see Section 1.4), highlights the dis-
crete distribution of colonies in space and the vulner-
ability of isolated populations with limited connectiv-
ity (Cam et al. 2004, Genovart et al. 2007).

1.2. How prevalent and influential are demographic
 anomalies or cycles, e.g. breeding failures, periods

of decreased survival, disease outbreaks?

Abiotic environmental perturbations leading to
population anomalies in seabirds include long-term
and short-term oceanographic shifts, such as the
Northern Atlantic Oscillation (NAO, e.g. Durant et
al. 2004), El Niño-Southern Oscillation (ENSO;
Schreiber & Schreiber 1984, Veit & Montevecchi
2006), the Pacific Decadal Oscillation (PDO) (Mantua
et al. 1997) or the Indian Ocean Dipole (Cai et al.
2009) changes in the Antarctic Polar Frontal Zone,
and also long periods of onshore atypical winds,
tsunamis and storms (Wilson 1991, Harris & Wanless
1996, Olsson & van der Jeugd 2002, Barbraud &
Weimerskirch 2003, Frederiksen et al. 2008, Devney
et al. 2009). These events can affect multiple demo-
graphic parameters at different time scales. The most
immediate response is likely to be detected in annual
breeding success because, as long-lived organisms,
seabirds skip breeding or abandon the nest if their
survival is jeopardized (Tavecchia et al. 2007, Le
Bohec et al. 2008). Adult survival, even though it is
the life-history trait most buffered against environ-
mental stochasticity, may also decrease as a result of
food shortages and reduced reproductive effort (Har-
ris & Wanless 1996, Olsson & van der Jeugd 2002,
Sanz-Aguilar et al. 2008). Even temporally limited
events, i.e. storms, can have dramatic effects on pop-
ulation dynamics. Harris & Wanless (1996) estimated
that a shag population, Phalacrocorax aristotelis,
affected by a winter storm would take 10 yr to
recover from a population crash which took it to its
lowest level in 35 yr. ENSO, a recurring multi-year
regime shift, has been linked to more marked popu-
lation responses, although many of the observed
declines reverse when ocean conditions revert (Mur-
phy 1923, Wilson 1991, Barbraud & Weimerskirch
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2003). Long-term, decadal ocean trends have been
linked to crashes in prey availability (Devney et al.
2009), which have resulted in reduced adult survival,
a sudden drop in breeding frequency, or complete
breeding failures (Montevecchi & Myers 1995).
Ocean changes triggered by large-scale oceanic
phenomena such as the ENSO and the NAO have
been linked to severe negative impacts on both tem-
perate and tropical seabird populations (Schreiber &
Schreiber 1984, Bertram et al. 2005, Oro et al. 2010).

Disease outbreaks represent a biotic type of demo-
graphic anomaly. Although seabirds seem to have
very competent immune systems (Esparza et al.
2004) and live in vector-poor environments, emer-
gent infectious diseases can cause chick mortality,
with apparent cyclic patterns among years, reducing
population growth rates (Weimerskirch 2004). Syner-
gistic effects between changing environmental con-
ditions and disease should be explored further (Rol-
land et al. 2009), especially as little is known about
factors affecting the circulation of infectious agents at
different spatial and temporal scales.

1.3. How can we best quantify demographic
 parameters, population status and risks of extinction

per species and per colony?

As discussed, for the majority of the world’s seabird
populations, demographic information is lacking. For
both extremely large colonies, such as some Southern
Ocean and northern ocean petrels) and for rare spe-
cies in urgent need of conservation action, the
number of individuals in a colony can lead to chal-
lenges in obtaining demographic data. There are sub-
stantial logistical obstacles to describing the demog-
raphy of tropical seabirds with protracted breeding
seasons (Ratcliffe et al. 2008), and with analyzing the
survival and recruitment of immature birds given (of-
ten unknown) immigration and emigration patterns
and population network structure, e.g. source-sinks.
This results in a bias towards data collection on tem-
perate/polar populations, and adult birds.

Recent progress in analytical approaches has led to
advances despite these challenges. Distance-sam-
pling, its extensions into capture-mark-recapture
(CMR), spatial modeling designs, and other recent re-
finements (Marques et al. 2007, Buckland et al. 2008,
Thomas et al. 2010) are improving estimations of pop-
ulation size and trend (Barbraud et al. 2009, Southwell
& Low 2009), and streamlining fieldwork programs
(Kendall et al. 2009). The use of meta-analysis and
surrogate taxa offers potential for rapid estimation of

key demographic parameters in poorly studied popu-
lations (Brooke et al. 2010). Ratcliffe et al. (2008)
demonstrated a promising approach, termed ‘virtual
seabird’ modeling, to estimating population size in a
tropical seabird with protracted breeding. The rapid
development of data modeling techniques that extend
CMR ideas into multi-state models (White et al. 2006,
Converse et al. 2009, Lebreton et al. 2009) and space-
state models (Gimenez et al. 2008, Patterson et al.
2008) opens new avenues for unbiased estimation of
demographic variables, including immature survival/ -
recruitment (Jenouvrier et al. 2008, Votier et al.
2008a, Tavecchia et al. 2009). Likewise, genetic ap-
proaches relevant at the spatiotemporal scale of popu-
lation demography are now being deployed to esti-
mate immigration/emigration rates (Milot et al. 2008,
Peery et al. 2008, Boessenkool et al. 2009). Genetic
techniques are also being employed to census data-
poor populations using a CMR approach (Lawrence et
al. 2008). Finally, electronic techniques for remote,
automated and passive data-gathering are rapidly de-
veloping (Wilson et al. 2002, Adams & Flora 2009).

1.4. What is the form and importance of population
structure?

Most seabird species are spatially structured in dis-
crete, patchy breeding sites or colonies. Although the
highly vagile nature of seabirds would suggest high
connectivity and thus little genetic differentiation
among subpopulations, other common features in
seabirds, such as strong site fidelity, or historical bar-
riers have led to substantial genetic structure in some
(Abbott & Double 2003, Dearborn et al. 2003, Friesen
et al. 2006), but not all, seabird populations (Burson
1990, Avise et al. 2000, Genovart et al. 2003, McCoy
et al. 2005a, Riffaut et al. 2005, van Bekkum et al.
2006, Schlosser et al. 2009). Many factors, both biotic
and abiotic, may shape population structure in
seabirds (Friesen et al. 2007), and it is these factors
that need to be examined within and among popula-
tion networks.

Despite a strong conceptual understanding of spa-
tial structure, the importance of seabird population
structure is unresolved for many populations. Popu-
lation structure is influenced by differences in habi-
tat quality between source and sink areas, which typ-
ically reflect high and low quality sites, respectively.
Although seabirds assess habitat quality of breeding
areas (Danchin et al. 1998), some apparent high-
quality areas have been shown to act as population
sinks (Ainley et al. 1990). Additionally, some studies
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have shown that adjacent colonies experiencing sim-
ilar environmental conditions can exhibit different
demographic responses (Tavecchia et al. 2008, Sanz-
Aguilar et al. 2009). Furthermore, even with knowl-
edge of spatial structure, colonies are often studied
as a discrete unit and not as a part of a larger net-
work. Ongoing research highlights the importance of
considering the hierarchical spatial structure at
which processes are occurring. Behavioral factors
affecting dispersal and recruitment among colonies
or sub-colonies are an important consideration,
notably in relation to the natural and changing pat-
terns of temporal variability of habitat suitability at
different spatial scales (Boulinier & Lemel 1996).

One of the central challenges to understanding
population structure in seabirds is being able to dif-
ferentiate movement from gene flow. Movement pat-
terns of banded birds may reveal a species’ dispersal
capabilities; however, movement per se does not
translate into gene flow, i.e. effective dispersal. Cau-
tion is also required when quantifying dispersal
ranges using marked individuals, because the aver-
age dispersal distances can be underestimated and
can be episodic (Koenig et al. 1996). Additionally,
many seabirds breed in remote or inaccessible
islands or cliffs so resighting data may be also biased
because of limited detectability. Molecular tools facil-
itate the estimation of the estimation of effective dis-
persal rates (Dieckmann et al. 1999, Hedrick 2001).

Population structure and connectivity among
colonies likely plays an important role in the viability
of seabird populations. Structure and connectivity
can increase overall population viability by either
allowing recolonization of suitable but unoccupied
colonies or re-colonizing locally extinct colonies
(Levins 1970, Dieckmann et al. 1999, Hanski & Gag-
giotti 2004). However, connectivity can also synchro-
nize local population dynamics across subpopula-
tions, and this has been found to increase the
likelihood of global extinction (Heino et al. 1997).
Additionally, dispersal, once treated as a fixed trait, is
now considered a flexible trait that may change with
time and space depending on environmental and
individual conditions (Clobert et al. 2001, Bullock et
al. 2002, Hanski & Gaggiotti 2004). Natural and
human-mediated environmental shifts (e.g. habitat
destruction, fisheries mortality, fishery-induced food
web changes, the introduction of invasive species,
climate change) may affect connectivity among
colonies and thus population viability. From a conser-
vation perspective, there is a strong need to develop
predictive models that include changes in connectiv-
ity under different environmental conditions.

1.5. How do the interactions among seabird species
influence seabird populations?

Many seabird species are sympatric with others,
sharing breeding and foraging habitats. Potential
competition among species for prey was identified
several decades ago (e.g. Ashmole 1968, Cody 1973)
and has since been studied in tropical, polar and tem-
perate ecosystems (Furness & Birkhead 1984, Fur-
ness & Barrett 1985, Weimerskirch et al. 1986, Cairns
1987, Ballance et al. 1997, Forero et al. 2004). Typi-
cally, there is some degree of ecological segregation
among seabird species even if they exploit similar
prey within a common location, for example in terms
of prey sizes, foraging depths (Thaxter et al. 2010) or
time of foraging (Arcos et al. 2001, Spear et al. 2007).
It is unclear, however, whether such segregation is
due to competitive exclusion or simply reflects
anatomical and behavioral adaptations to exploiting
subtly different prey (e.g. Whittam & Siegel-Causey
1981). When sympatric species are similar in size,
dietary overlap can be high and environmental sto-
chasticity seems to affect them similarly (Bryant &
Jones 1999). From a conservation perspective, over-
harvesting of marine organisms by fisheries can not
only decrease prey availability for seabird communi-
ties, but also alter the ecological relationships among
seabirds (Furness 2000, Montevecchi 2001, Votier et
al. 2004). Generalist species, exploiting fishing dis-
cards or dumps, have steadily increased, in some
cases, to the detriment of specialist seabirds because
of interference competition at breeding sites or den-
sity-dependent competition for foraging resources.
This is especially true when generalist species are
large and aggressive, e.g. large gulls or skuas, and
evidence suggests that human-induced changes
have already altered the structure of seabird commu-
nities, although the broader ecological consequences
of these shifts among conspecifics are unclear (Ain-
ley & Boekelheide 1990, Howes & Montevecchi 1993,
García Borboroglu & Yorio 2007, Oro et al. 2009).
Likewise, relatively little is known about the role of
competitive exclusion in breeding habitat selection
in seabird communities (Whittam & Siegel-Causey
1981, Ainley & Boekelheide 1990). Conservation
actions can alter nesting environments, favoring cer-
tain species more than others within the community,
and local extirpation of smaller seabirds by larger
seabirds has been reported as a result of competitive
exclusion in suitable nesting habitat (Oro et al. 2009).

Although predatory interactions among seabird
species are less well studied than competitive inter-
actions, they do occur (Gilchrist 1999, Votier et al.
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2004, Oro et al. 2006a, Oro & Martínez-Abraín 2007).
Large opportunistic species (e.g. gulls, giant petrels)
can be facultative predators on smaller seabird spe-
cies within the community, and population increases
of the former following the appearance of large
amounts of food from human activities may increase
the predation rates on vulnerable species (Regehr &
Montevecchi 1997, Votier et al. 2004, Oro et al.
2006a). Seabirds may also more or less share para-
sites and pathogens that are prevalent in their breed-
ing habitat, although the interactions involved are
likely complex. Host specialization has notably been
suggested for the common seabird tick Ixodes uriae
(McCoy et al. 2005b), which can transmit several
viruses and bacteria. Mutualism may also play an
important role within some seabird communities,
particularly in terms of prey detection (Jaquemet et
al. 2005, Ainley et al. 2009). Some species are partic-
ularly good indicators of fish location for other
seabird species, and changes in their numbers can
have consequences for the whole community (Catry
et al. 2009).

2. At-sea spatial ecology

Research on at-sea distributions of seabirds has
served to clarify the role of seabirds in marine com-
munities, identify important ecological areas and to
predict avian responses to environmental changes in
the marine environment. The central challenge is to
understand how seabird spatial and temporal dynam-
ics are linked to the spatial and temporal variability of
prey and related oceanographic features. The ‘classi-
cal’ age of at-sea investigation of seabirds occurred
during the 1970–90s, when extensive data from ship-
ping and other vessels were collected. During this pe-
riod, there were major discoveries of the association
of seabirds and seabird communities with specific
oceanographic features (Brown et al. 1975, Pockling-
ton 1979, Briggs et al. 1987, Wahl et al. 1989), and
frontal zones at large spatial scales (Schneider et al.
1987), as well as more fine-scale features (e.g. Hunt &
Schneider 1987, Louzao et al. 2006) at smaller scales
(Hunt & Harrison1990, Hunt 1991). The advances in
remote sensing, increased computation resources,
and major developments in tracking technology have
opened up even more opportunities to evaluate
seabird associations with dynamic marine features,
such that concurrent modeling of seabird and oceano-
graphic data in a dynamic geospatial environment is
possible (Tew Kai et al. 2009, Tremblay et al. 2009,
Wakefield et al. 2009).

2.1. How can we address knowledge gaps in 
at-sea distribution?

A lack of detailed knowledge about at-sea distribu-
tion of individuals across species, sex and age classes
has presented one of the most substantial challenges
to seabird ecology. Satellite and global location sensor
(GLS) devices deployed post-breeding have provided
information on sex-related specific movements for
adults (e.g. González-Solís et al. 2000). GLS logging
uses the timings of sunrise, sunset and the resultant
day length and timing of local noon to derive an esti-
mation of global position. Subadults, unlike adults,
spend years at sea, which precludes instrument re-
trieval, and as a result, little is known about their spa-
tial distribution, except when plumage separation of
age classes is possible (as for gulls, penguins, frigate-
birds; Ainley et al. 1984, Diamond & Schreiber 2002).
Nevertheless, recent long-term deployment of GLS
devices on juveniles may shed some light on this issue
in the near future. Alternatively, the use of intrinsic
markers, such as stable isotopes, genetics and trace
elements, can provide valuable information on the
broad-scale origin and movements of seabirds (Cherel
& Hobson 2007, Gómez-Díaz & González-Solís 2007).
Although data from intrinsic markers can provide
only coarse-scale information, these methods repre-
sent a robust approach to mapping the spatial distrib-
ution of immatures, non-breeders or species too small
for instrumentation. Information on at-sea distribu-
tions of seabirds has important applications. These
data have been instrumental in defining Important
Bird Areas (IBAs) and assessing potential interactions
with anthropogenic factors such as some fisheries,
shipping, oil spills or off-shore wind farms (Louzao et
al. 2009). Aggregated, these data have been used to
present the most comprehensive perspective on the
global nature of seabird species (BirdLife International
2004, Halpin et al. 2009).

Remotely sensed oceanographic traits data and
tracking technology also increase our understanding of
seabird ecology and have shed new light on how
seabirds associate with productivity gradients and bio-
physical discontinuities at several spatiotemporal scales
(Ballance et al. 1997, Spear et al. 2001, Hyrenbach et al.
2006, Bost et al. 2009). In addition to distribution and
movement, tracking devices can also be used to infer
feeding activity of birds through the analysis of high
resolution global positioning system (GPS) data, partic-
ularly when these data are combined with other de-
vices, such as depth and activity recorders or stomach
temperature loggers (Bost et al. 2008). Moreover, de-
ployment of miniaturized sensors on diving seabirds
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can also provide data on hydrographic conditions, such
as temperature and salinity, in foraging areas (Wilson
et al 2002, Bost et al. 2008, Durant et al. 2009).

Further progress towards understanding seabird
marine ecology will strongly depend on real-time
investigations of ocean dynamics, both biological and
physical. A sound theoretical framework considering
a hierarchy of spatial scales has been developed to
advance this research (Fauchald 2009). At-sea sur-
veys combined with intensive synoptic multi-discipli-
nary investigations of ocean processes and food web
dynamics, as well as tracking devices, can provide
comprehensive information about at-sea behavior,
and about what factors influence seabird distribution
at the population and the individual level (Chapman
et al. 2004, Ribic et al. 2008, Ainley et al. 2009). Pro-
jects such as GLOBEC exemplify this multi-discipli-
nary approach (www.globec.org).

2.2. What habitat features delineate movement corridors
or residency areas and how can researchers identify

these corridors and quantify movement behavior?

Seabird species vary in the extent and directionality
of their movement patterns from within-region move-
ment to long-distance migration. Networks of ob-
servers and radars have provided valuable multi-spe-
cies information on seabird movements and timing of
migration, although much of this information has
been limited to coastal areas and specific vantage
points (Mateos & Arroyo 2010). At-sea investigations
of seabird flight behavior can reveal movement pat-
terns with sufficient environmental data (Spear & Ain-
ley 1999, Shaffer et al. 2006). Defining movement cor-
ridors between breeding colonies and foraging
grounds or among breeding, staging and wintering
areas depends on the combined use of several track-
ing systems. Integrating concurrent information from
tracked individuals and remotely sensed ocean condi-
tions can be used to identify broad-scale seabird
movement (González-Solís & Shaffer 2009, González-
Solís et al. 2009, Adams & Flora 2010). The ongoing
challenge to this research is the need to link high-res-
olution seabird location data with real-time data on
physical and biological oceanographic conditions.

3. Trophic dynamics and community roles of
seabirds

As top predators, marine birds are influenced by
food web dynamics that can be changed and per-

turbed by both top-down and bottom-up influences
as well as by physical oceanographic shifts (e.g. Fred-
eriksen et al. 2007). Anthropogenic influences associ-
ated with fisheries can induce pervasive top-down
and indirect effects on food webs (e.g. Frank et al.
2005) and hence on apex avian predators. Seabird
data are often used as a signal of shifts in marine food
webs (Piatt et al. 2007). Synoptic vessel surveys,
tracking studies and stable isotope sampling are pro-
viding comprehensive new information about the dis-
tributions, movements, activities, physical environ-
mental measurements and foraging sites of seabirds
throughout the year. Analytical methods for delineat-
ing core habitat areas are being integrated and re-
fined. Risk analyses of anthropogenic factors associ-
ated with fishing, oil pollution, and shipping can be
used to identify problem areas and to help resolve
conflicts with adaptive management strategies.

3.1. What are the roles of seabirds in communities
and food webs?

Understanding the role that seabirds play in com-
munities and food webs is complicated by fluctua-
tions in the ocean environment, the great distances
covered by the seabirds and the associated difficulty
of observing interactions of seabirds and their prey
(Croxall et al. 1999). Consequently, the functional
relationships between seabirds and their biotic and
abiotic environments remain elusive (Grémillet et al.
2008). The technology to quantify habitat use by indi-
vidual seabirds now exists, but quantitative analyses
at appropriate scales are only just being used in
hypothesis testing that could improve our under-
standing of the processes linking seabird distribution
to their environment (Tew Kai et al 2009, Tremblay et
al. 2009, Wakefield et al. 2009).

The marine environment is also subject to a variety
of anthropogenic and natural stresses that affect
marine productivity, stochasticity and cyclicity (Hal -
pern et al. 2008, Grémillet & Boulinier 2009). Conse-
quently, marine food webs are often unstable and
prone to regime shifts and numerous bottom-up and
top-down controls so that any one event may have
multiple causes and consequences. There is evidence
of trophic cascades resulting from overfishing and the
removal of large mammals and large predatory fishes
in many open-ocean systems (Pauly et al. 1998, Frank
et al. 2005, Baum & Worm 2009). In the Ross Sea,
where an immense upper trophic level community is
built upon the high primary production of this region,
Ainley et al. (2004, 2006, 2007) showed that large
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numbers of competing top predators, including pen-
guins, flighted birds, seals and whales, can decrease
the available density of krill and fish prey species,
thus reducing the grazing pressure on phytoplankton.
As a result, a significant portion of phytoplankton re-
mains ungrazed and sinks to the benthos, thus enrich-
ing that food web (Ainley et al. 2007).

The degree to which seabirds serve as indicators of
trophic shifts within marine ecosystems varies with
the species of seabird and their degree of prey spe-
cialization and the variability of their foraging behav-
ior (e.g. Montevecchi & Myers 1995, Croxall et al.
1999, Hamer et al. 2007). Seabird species that are
dependent upon a limited array of prey species and
may have less varied feeding methods are likely to
exhibit more significant inter-annual variations in
breeding frequency and success than those seabirds
which feed on a wide variety of prey taken by a vari-
ety of feeding methods (Berrow & Croxall 1999).
However, trophic shifts triggered by intense large-
scale oceanic phenomena such as the ENSO and the
NAO have been linked to severe negative impacts on
both temperate and tropical seabird populations
(Schreiber & Schreiber 1984, Bertram et al. 2005; see
Section 1.2). In general, these impacts are attributed
to significant changes in productivity at lower trophic
levels, (Devney et al. 2009) which result in reduced
adult survival, a sudden drop in breeding frequency
and/or complete breeding failure. The robustness of
these studies indicates that, aside from catastrophic
impacts of large-scale oceanic phenomena, studies of
prey species composition, levels of prey harvest, and
foraging duration of seabirds can provide reliable
indices of prey abundance and thus serve as indica-
tors of trophic shifts (Montevecchi & Myers 1995,
Croxall et al. 1999).

3.2. How can we define, identify and map key
foraging grounds?

As discussed in Section 2.1, the earliest studies of
at-sea distributions of seabirds were derived from
ship-based surveys carried out opportunistically or
on dedicated cruises (Harrison 1982, Haney 1985).
Subsequent technological innovations have dramati-
cally improved the capacity to track movements of
individuals (Wilson et al. 2002, Phillips et al. 2007,
Burger & Shaffer 2008). Use of satellite-transmitters
and, in recent years, GPS loggers have thus provided
extensive, high-resolution distribution data from
many medium to large seabirds during the breeding
season. Increasing use of GLS technology has pro-

vided low-resolution but, for some species, year-
round data (Weimerskirch et al. 2002, Phillips et al.
2005, Rayner et al. 2008, Egevang et al 2010). Com-
plementing the telemetry innovations, recent track-
ing data analyses have highlighted the importance of
fronts, upwelling, eddies and other recurring ocean
features that are indicators of high quality habitat
with abundant sources of prey (Bost et al. 2009). With
increasing awareness of natural and anthropogenic
impacts on seabirds (e.g. the Convention on Biologi-
cal Diversity [CBD] call to identify ecologically or
biologically significant areas [EBSAs] in the high
seas), more effort has been focused on mapping and
characterizing key foraging grounds and resources.

A number of challenges have limited the ability to
identify foraging areas. The first challenge is method-
ological: What analyses should be used to determine a
foraging area? A suite of alternative approaches have
been proposed that include kernel density estimates,
track sinuosity, First Passage Time analysis and state-
space models (Wakefield et al. 2009). As with other re-
search questions, incorporating real-time remotely
sensed environmental information (with appropriate
measurement error) is an essential element to develop
improved frameworks for integrating vessel-based
and telemetric data, each of which suffers from
known constraints (Louzao et al. 2009). To do this re-
quires a range of device and data types, including im-
mersion loggers, time-depth recorders, stomach tem-
perature probes, accelerometers and multi-channel
loggers (Weimerskirch & Wilson 1992, Wilson et al.
2008), and experimental studies of the importance of
olfaction (Nevitt & Bonadonna 2005) in order to incor-
porate information on fine-scale behavior and sensory
perception into feeding site identification. In addition,
data on habitat accessibility and intra- and inter-spe-
cific competition (Grémillet et al. 2004) are needed to
track habitat use as well as habitat preferences, and
thus improve the capacity to predict spatial distribu-
tion of birds.

Identification of key prey resources is another com-
ponent to understanding foraging requirements of
seabirds (Pichegru et al. 2010). Conventional
approaches to diet determination, which include
visual observations of birds returning to colonies
with prey in their bill, and sampling of stomach con-
tents, pellets etc., are often effective during chick-
rearing, albeit with some inherent biases (Barrett et
al. 2007). Understanding prey preferences outside of
the breeding season is more challenging. With suffi-
cient tissue samples, recent developments in the
analyses of bulk and compound-specific stable iso-
topes, fatty acids, and other signature elements and
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compounds offer unprecedented opportunities to
characterize diet in high taxonomic detail (Cherel et
al. 2005, Connan et al. 2007, Käkelä et al. 2007,
2010). Seabirds offer high potential as indicators of
broad-scale environmental change and of processes
occurring at lower trophic levels, and therefore, by
improving identification and characterization of their
key areas, habitats and resources, seabird ecologists
can make a vital contribution to current global initia-
tives to improve protection and sustainable manage-
ment of the oceans.

3.3. How do fisheries-mediated changes in trophic
structure influence seabirds?

Fisheries can change, and have clearly changed,
and at times greatly perturbed marine food webs
(Jackson et al. 2001, Hilborn et al. 2003, Estes et al.
2006). The effects of fisheries on marine birds are
determined by the fisheries’ target species, as well as
the intensity, persistence and the spatial distribution
of fishing effort. Human-induced changes in trophic
structure can affect marine birds either negatively or
positively (Montevecchi 2001). Fisheries (a top-down
force) reduce the prey base and indirectly affect
marine birds through prey depletion, a negative
effect. However, fisheries may also reduce the num-
ber of competitors that rely on the same prey as
seabirds, and this may yield a positive effect. These
anthropogenic effects can interact with, and be
amplified by, bottom-up ocean climate changes
(Osterblom et al. 2007). Overfishing of large fishes
can lead to increases in the abundances of smaller
fishes. This is often evident when fisheries target
large predators that can include pelagic species
(Sherman et al. 1981), demersal species (Bundy 2005)
or large marine mammals (Springer et al. 2003, Estes
et al. 2006). Because it is the indirect relationships in
food webs that are often pervasive, complexity often
overrides straightforward rebounds of prey popula-
tions once predators are removed (Yodzis 2001).
Fisheries can also have direct positive effects by pro-
viding food in the form of discards and offal that
would otherwise be inaccessible to marine birds, yet
the positive effects of discards vary across and within
taxa (Garthe et al. 1996; see Section 4.4).

4. Direct effects of fisheries

As noted in Section 1, adult mortality has the
most immediate effect on the population trends of

seabirds. Incidental capture in fishing gear, called
bycatch, is one factor that causes adult mortality
and has been the focus of research and conserva-
tion concern since the late 1980s (e.g. Weimerskirch
& Jouventin 1987, Bartle 1991, Brothers 1991).
Longline, trawl, and gillnet fishing gear can all
lead to bird injury and mortality as birds forage for
bait fish and discards. Different fishing gear types
pose different threats to seabirds (Phillips et al.
2010). Birds scavenging or targeting baited longline
hooks may get hooked and dragged under while
the gear is at the surface. Trawl gear causes mor-
tality primarily by birds striking cables. Diving
birds may get entangled in gillnets while scaveng-
ing fish caught in the nets or pursuing forage
fishes. Discarded fish parts, commonly called offal,
may also provision some scavenging species, pro-
viding easily captured prey. Many researchers,
agencies and governments have worked closely
with industry to develop a wide range of seabird
bycatch mitigation devices (Cherel et al 1996,
Brothers et al. 1999, Melvin et al. 1999, 2001, 2004,
O’Toole & Molloy 2000, Boggs 2001, Robertson et
al. 2003, Gilman et al. 2005). When used together,
these devices have been shown to reduce seabird
bycatch by more than 90% in some fisheries (Cox
et al. 2007). Despite the increased awareness of the
influence fisheries can have on seabird species and
successful bycatch reduction by some fleets, basic
questions remain on the extent of the negative and
positive effects of fisheries on seabird populations.

4.1. How can we obtain detailed, unbiased and
accurate measures of bycatch rates?

One of the central challenges to understanding the
long-term effects of fisheries bycatch on seabird pop-
ulations is the lack of detailed data on bycatch rates
for individuals, species (versus taxa), colonies, as
well as for age and sex classes within colonies
(Gómez-Díaz & González-Solís 2007). Given the
importance of population sub-structure and move-
ment for many seabird species (see Section1.4),
understanding differential impact of fisheries
bycatch among colonies is an essential component to
understanding the magnitude and spatial extent of
bycatch effects. Likewise, although bycatch leads to
direct declines in survival rates, it may also have
strong effects on subsequent fecundity and sex ratios
(Mills and Ryan 2005).

Obtaining accurate estimates of bycatch rates per
species, colony and age or sex class requires direct

102



Lewison et al.: Research priorities for seabirds

measurement from dead individuals, but also proper
sampling design and statistical treatment (e.g. Laneri
et al. 2010). Carcass collection, identification and
analysis are instrumental in identifying species, sex-
ing and aging the birds, to the highest resolution pos-
sible. With carcasses in hand, samples can also be
collected for subsequent genetic analyses to further
classify individuals to specific colonies, at least for
species with clear population structure (Edwards et
al. 2001, Gómez-Díaz & González-Solís 2007). Exist-
ing carcass recovery programs point to sex-biased
mortality in some regions. Bycatch research around
the Prince Edward Islands found a strong adult male
bias in bycatch mortality (Nel et al. 2002, Ryan &
Boix-Hinzen (1999) for 3 species (white-chinned
petrel Procellaria aequinoctialis, grey-headed alba-
tross Thalassarche chrysostoma and Indian yellow-
nosed albatross T. carteri), whereas studies around
New Zealand, South Georgia and the Crozet Islands
have found adult female-biased bycatch mortality for
grey petrels Procellaria cinerea and wandering alba-
trosses Diomedea exulans (Weimerskirch & Jou-
ventin 1987, Croxall & Prince 1990, Murray et al.
1993). In some areas, the bias in capture is relative to
age of the individual; juvenile seabirds may be dis-
proportionately affected by gear interactions (Baker
et al 2007). Genetic and post-mortem analyses of
albatrosses carcasses from longline fishing gear in 2
New Zealand fishing areas illustrate the power of this
approach to identify the age of individual, species
caught, sex and colony of origin (Burg 2007).

The lack of widespread carcass-based work
reflects, for the most part, the challenges involved in
retaining large carcasses on space-limited fishing
vessels. As with other analyses that consider the
extent of mortality from a particular source, i.e.
bycatch, oil contamination or storm events, there are
also limitations from direct carcass measurements
associated with factors that can lead to biases in car-
cass recovery, e.g. undetected carcasses that drop off
or out of fishing gear (Ryan & Watkins 2008), carcass
degradation during gear deployments (Burg 2007),
and changes in currents and ocean patterns in the
case of beached carcasses (Lucas & MacGregor 2006,
Parrish et al. 2007). As with basic demographic para-
meter estimation, models provide one means of
addressing these biases and improving estimates of
total mortality (sensu Flint et al. 1999, Wiese &
Robertson 2004, Martínez-Abraín et al 2006, Veran et
al. 2007). However, given the current data used,
these models have limited ability to provide the high
resolution estimates of mortality per colony, age or
sex class.

4.2. How do we evaluate bycatch risk to different
species or colonies in space and time?

A variety of methods have been used to evaluate the
risk of fisheries bycatch to seabirds of different
species, colonies, sexes and age classes (Piatt et al.
1984, Prince et al. 1992, Brothers et al. 1997, Weimer-
skirch et al. 2000). Traditionally, these approaches
have included surveys of seabirds attending vessels by
observers who record data on species and age classes,
observations at colonies of information from banded
and color-marked individuals, and wildlife telemetry
which records individual-level data of tagged individ-
uals. Increasingly, new approaches are being devel-
oped to search for evidence of fishery-related subsidies
in seabird populations (e.g. stable isotopes; Votier et
al. 2010) and to identify the provenance of bycaught
individuals using genetics, morphometrics, or stable
isotopes (Gómez-Díaz & González-Solís 2007).

Following the fisheries management arena, the
evaluation of bycatch risk can focus on the assess-
ment of ‘inputs’ and ‘outputs’ into the system. Input
variables quantify the risk to a given species or pop-
ulation component by quantifying its spatio-temporal
overlap with fisheries effort. This approachhas 3 lim-
itations:  (1) it requires high-resolution concurrent
data on seabird dispersion and fishing effort; (2) it
relies on the underlying assumption that overlap is
proportional to bycatch risk; and (3) it yields scale-
dependent risk metrics (for example, the degree of
overlap and the statistical association between
seabirds and fisheries’ distributions vary with the
temporal and spatial scales of analysis). Thus, empir-
ical studies comparing these risk factors with actual
bycatch rates would provide valuable insights into
these underlying assumptions.

Output approaches quantify the effect of bycatch rel-
ative to population structure, e.g. age class, sex, and
the geographic provenance (e.g. colony of origin) of
bycaught individuals. While these data can, in theory,
provide an absolute metric of bycatch risk of a single
vessel, by comparing the contributions of different
population segments to the observed bycatch, they
cannot provide a comprehensive assessment of bycatch
risk across all vessels within or among fleets. Unfortu-
nately, the lack of fishery-independent data on seabird
abundance and the differential reliance on fisheries
among colonies and among age/sex classes limit the
ability to scale the observed impacts across all vessels.

Integrated approaches capable of merging these
input and output perspectives are critical to develop
standardized bycatch risk assessments. To this end,
studies should integrate input metrics (e.g. surveys of
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seabird distributions within fishing grounds, obser-
vations of vessel attendance) with output metrics
(e.g. bycatch rates by sex- and age-class) from the
same fisheries. In addition to determining the sex
and age of bycaught specimens with necropsies,
novel tracers are used to determine the provenance
of bycaught individuals (Gómez-Díaz & González-
Solís 2007). Efforts to develop an integrated picture
of bycatch risk for specific seabird population compo-
nents will benefit from the implementation of carcass
retention and necropsy programs, and from the
development of signature profiles for individual
colonies. The final step of this integrated assessment
entails ground-truthing population models with the
bycatch composition data from the field (Moloney et
al. 1994, Tuck et al. 2001).

New techniques and comprehensive applications
are needed to effectively study the effects of fisheries
on seabirds and other large marine predators. Inte-
gration of vessel surveys of birds at sea with mapping
analyses derived from animal-borne tracking devices
on free-ranging seabirds (Louzao et al. 2009) will
provide the best means of understanding avian
oceanic distributions and occupancy of sites. These
space/time distributions have to be integrated with
global databases and maps of fishing activities and
catches to better identify ocean biological hotspots
(Roberts et al. 2002) and to execute risk analyses
involving areas of overlap, interaction and potential
conflict (Karpouzi et al. 2007). These analyses need to
be pursued on global, ocean-basin and regional
scales (Bartumeus et al. 2010).

4.3. What are the population-level effects of
bycatch?

As discussed in Section 1.1, the population-level
impacts of incidental mortality are influenced by the
species-specific life-history characteristics, including
the sensitivity of population growth rate (lambda) to
demographic parameters (adult survivorship vs.
reproductive success), and by the differential suscep-
tibility of different age classes and sexes to this mor-
tality (Russell 1999, Weimerskirch 2002). Thus, popu-
lation models consistently conclude that fisheries that
preferentially kill breeding adults are expected to
have a more drastic effect on lambda, since this age
class has the highest survivorship rate and current
reproductive value is the most influential on lambda
(Piatt et al. 1984, Moloney et al. 1994, Cousins 2001).

In turn, the susceptibility of different sexes and age
classes to bycatch is expected to be influenced by dif-

ferential rates of interaction with fisheries. There is
mounting evidence that different age classes (e.g.
Suryan et al. 2007) and sexes (e.g. Nel et al. 2002)
within a species differ in their overlap with fisheries,
due to the segregation of at-sea distributions and dif-
ferences in foraging ecology. While the influence of
this ecological segregation on bycatch risks has been
documented, especially for sexually dimorphic species,
(e.g. Prince et al. 1992, González-Solís et al. 2007), the
degree to which different age classes rely on fisheries
is not well understood (but see Bartumeus et al. 2010,
Votier et al. 2010). In particular, it is essential to know
whether young birds are more susceptible to fishing
gear, and whether this higher susceptibility is caused
by their lack of experience or by a higher likelihood for
younger birds to forage at fishing vessels.

An improved assessment of population-level effects
of bycatch requires 3 ingredients. First, these impacts
need to be evaluated in a population-level context.
This requires an understanding of the magnitude
(number of individuals as a proportion of the total pop-
ulation) and data on the differential risk to certain in-
dividuals (i.e. birds that specialize on fisheries) or age
classes (i.e. young of year). This information is critical
for developing population metrics of bycatch risk
using data on spatial overlap (Prince et al. 1992) or
vessel attendance (Weimerskirch et al. 2000). Second,
it is imperative to place these species-specific bycatch
risks in a broader demographic context by balancing
the resulting bycatch mortality against the benefits of
food subsidies, which may be critical food resources
for inexperienced birds during their first years at sea
or during periods of low prey productivity. Third, be-
cause the degree of vessel attendance and the benefits
versus costs associated with this behavior are likely in-
fluenced by the presence of competitors, it is critical to
investigate how seabird−fishery interactions, such as
access to baited hooks and foraging success, are influ-
enced by the presence and density of other species.
Without this community-level understanding, bycatch
mitigation measures attempting to minimize the take
of one protected species may cause unintended im-
pacts on other species. For instance, night-time sets
designed to avoid the competitively dominant large-
bodied albatrosses, appear to increase the bycatch of
petrels and shearwaters (Cherel et al. 1996).

4.4. What are the positive and negative effects of
discards in provisioning seabirds?

It is estimated that 7.3 million t of fish are discarded
annually by marine fisheries throughout the world
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(Kelleher 2004). Although this estimate is lower than
in previous decades (Alverson et al. 1994), when con-
sidered in conjunction with associated overfishing,
discards are likely to exert significant impacts on
seabirds (Furness 2003). A common and overabun-
dant food source, discards have artificially inflated
scavenging seabird populations (Furness et al 1992,
Garthe et al 1996), probably due to improved body
condition and breeding performance (Bunce et al.
2002, Oro et al. 2004, Votier et al. 2008a). Docu-
mented increases in northern fulmars in the North
Sea have been ascribed, in part, to food subsidies
from fisheries discards (Camphuysen & Garthe 1997,
Thompson 2006).

Although discards may serve as an important
resource for some seabird populations, they have
also been documented to have a negative influence
on other seabird populations (Kitaysky et al. 2006,
Pichegru et al. 2007, Österblom et al 2008, Grémillet
et al. 2008, Navarro et al. 2009). The long-term
impacts of discards on seabirds, both positive and
negative are still emerging (Arcos et al. 2008, Bar-
tumeus et al. 2010). The proportion of foraging indi-
viduals or age classes relying on discards is unclear
(but see Navarro et al. 2010), as is whether species
are developing discard specialization. As discussed
in Section 1.2, generalist species that exploit fishing
discards have steadily increased, in some cases, to
the detriment of specialist seabirds. A combination of
diet studies, biomarkers (e.g. fatty acids, stable iso-
topes) and field studies is needed to effectively study
how discards are influencing demographic parame-
ters and population dynamics.

5. Global change and population response to
environmental variability

Human-induced disruption of ocean resources has
had a profound effect on ocean food webs and com-
munities, although the magnitude of these effects is
not easily detected (Pauly 1995, Pitcher 2001, Pauly &
Maclean 2003). Even the carrying capacity of once
rich areas has been severely reduced (Christensen &
Richardson 2008, Watermeyer et al. 2008a,b). In this
context, global-scale environmental changes, partic-
ularly rising temperatures, retreating sea ice and
ocean acidification, are expected to be the dominant
anthropogenic pressures on marine ecosystems in
the next decades (Harley et al. 2006). These effects
are exacerbated by the simplification of food webs
owing to fish depletion (Cury et al. 2000, Osterblom
et al. 2007, Watermeyer et al. 2008a,b). Current and

projected changes are rapid and large, and condi-
tions are likely to shift to entirely novel states
(Solomon et al. 2007). Understanding how seabird
populations are affected by changing conditions is
therefore critical to support the development of effi-
cient conservation efforts. Research needed to
advance understanding of these issues includes inte-
grated comparisons across study sites, eco-physio-
logical studies, and collaborations with researchers
working on other trophic levels and on physical vari-
ables (e.g. physical oceanographers, climatologists).

5.1. How resilient are seabirds to climate and
related environmental change?

Meaningful conservation efforts for seabirds in the
21st century need to take into account how resilient
populations and species are to climatic and other
oceanographic changes. Will seabirds be able to
change their breeding and non-breeding ranges, for-
aging habitats, diets etc. sufficiently quickly to keep
up with the increasing pace of change (Grémillet &
Boulinier 2009)? Can change through phenotypic
plasticity facilitate adapation, or will evolutionary
processes make seabird survival possible? These
questions cannot profitably be addressed for all
seabirds, because species differ widely in life history
characteristics, exposure to other stressors and, thus,
in resilience. A wide variety of research tools,
applied at different organizational levels, will be nec-
essary to provide answers for seabird species, com-
munities and ecosystems.

At the individual level, we need to understand to
what extent seabirds can adapt to the direct, e.g.
increasing temperatures, and indirect effects of envi-
ronmental change from changes in prey availability.
Ecophysiological studies play an important role, both
in an experimental, captive setting and for free-rang-
ing birds in their natural environment (Gaston et al.
2009). Empirical studies of energy balance, e.g.
including experimental manipulation of food supply,
can provide information on the limits of phenotypic
plasticity in terms of adapting to changing food avail-
ability and quality (Enstipp et al. 2007). Energetics
modeling has also been demonstrated as a viable
means of assessing the impact of environmental
change on seabird energy balance (Fort et al. 2009).
Likewise, studies of thermal tolerance will allow the
construction of species-specific Scholander curves,
characterising the lower and upper critical tempera-
ture thresholds as well as the temperature comfort
zone (Scholander et al. 1950).
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In order to affect populations, impacts of environ-
mental change on seabirds must manifest themselves
as changes in demographic parameters (reproduc-
tion, survival and dispersal). Estimating realized
changes in these parameters requires data from
long-term studies, preferably of marked individuals
(Barbraud & Weimerskirch 2003, Frederiksen et al.
2004). Although such studies are by their nature cor-
relational and cannot be used to draw strong conclu-
sions about causal relationships, they allow inference
about processes on a temporal and spatial scale that
is unattainable for experimental studies. In particu-
lar, combining data from several geographically sep-
arated populations allows a degree of replication and
has the potential to provide information on a range-
wide scale (Grosbois et al. 2009). Data on at-sea dis-
tributions can be treated in a similar way, although
the specific statistical methods differ.

There is an increasing realization that evolutionary
processes commonly occur on an ecologically rele-
vant time scale, and in order to assess how organisms
adapt to directional environmental change, an
understanding of selection pressures and associated
responses is necessary. However, estimating heri-
tability and separating phenotypic plasticity from
microevolution in wild animals is challenging, partic-
ularly because detectability (e.g. recapture or
resighting probability) is generally less than one
(Gimenez et al. 2008). The most promising approach
is based on long-term studies with extensive pedi-
gree information, but such studies are rare (Doligez
et al. 2009, Ozgul et al. 2009).

To predict the consequences of environmental
change on distribution, abundance or viability of
whole species or communities, modeling tools are
needed (Watermeyer et al. 2008a,b). At the simplest
and most phenomenological level, climate envelope
and similar models predict future breeding or non-
breeding distributions based on current empirical
associations between the presence of a particular
species and various aspects of climate (Guisan &
Thuiller 2005). Such models may be more suitable
for non-breeding distributions where detailed infor-
mation about individuals is limited, particularly if
they can be linked to models of the future distribu-
tion of important prey organisms (see Section 5.2),
or for species breeding on low-lying islands threat-
ened by sea level rise. A more mechanistic
approach uses matrix-based population models,
which are parameterized with the results of demo-
graphic studies, including any observed relation-
ships between demographic performance and cli-
mate (Caswell 2001). Finally, the most complex

approach uses the results of studies of individual
behavior, diet, and energetics directly to predict
the fate of individuals constituting virtual popula-
tions (Sutherland & Norris 2002, Fort et al. 2009).
Such behavior-based (or agent-based) models are
potentially highly realistic, but also very difficult
and resource-demanding to parameterise. The
choice of modeling approach should depend on the
specific questions and the data at hand.

5.2. What are the likely cascading trophic effects on
seabird population from environmental change?

Marine ecosystems are and will be strongly
affected by increasing temperatures and acidifica-
tion due to increasing atmospheric CO2 concentra-
tions. Increasing temperatures lead to changes in
ocean currents, primary productivity (Behrenfeld et
al. 2006), decreasing ice coverage in polar regions
and distribution of key species at lower trophic levels
(Richardson & Schoeman 2004, Perry et al. 2005). The
long-term biological consequences of acidification
are still poorly understood, but organisms reliant on
calcium carbonate exoskeletons are likely to be
severely impacted as pH decreases (Orr et al. 2005).
In polar regions, the physical changes related to the
gradual disappearance of sea ice are also likely to
have far-reaching ecological implications (Hunt et al.
2002, Stempniewicz et al. 2007, Gaston et al. 2009).
All these expected changes will mean that the
favoured prey organisms of many seabirds will
change in abundance or shift their distributions, and
this will inevitably affect seabird energy balance,
demography and ultimately abundance and distribu-
tion. In temperate and polar regions, such indirect
effects are likely to be more important than direct
physiological effects for most species, and seabird
responses to climate change may vary according to
diet (Kitaysky & Golubova 2000).

It is often assumed, in the present state of the world
ocean, that bottom-up control is the most important
mechanism structuring marine ecosystems (but see
Pauly & Maclean 2003). However, top-down control
is likely to also be important under certain condi-
tions, and indeed it is possible that climatic changes
may affect the balance between these 2 mechanisms
(Hunt et al. 2002). This implies that changing seabird
and other upper predator populations under some
circumstances can affect the abundance and/or dis-
tribution of their prey, and that this can have far-
reaching ecological implications, even those that
deviate from traditional trophic cascade patterns
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(Cury et al 2000, Nicol et al. 2010). It is therefore
important that model representations of trophic
effects rely on empirical information on the relative
importance of bottom-up and top-down control,
rather than on standard assumptions.

Understanding these trophically mediated effects
and predicting their consequences requires collabo-
ration with researchers working in physical and bio-
logical oceanography, marine ecology and fisheries
science. Unfortunately, in many parts of the world
there is a lack of relevant long-term, large-scale in
situ data sets, although there are notable exceptions
(e.g. the Continuous Plankton Recorder survey, Reid
et al. 2003). Satellite telemetry data can partly fill this
gap, as they allow estimation of, for example, pri-
mary productivity with a high spatial resolution and
coverage (Behrenfeld & Falkowski 1997). Appropri-
ate statistical modeling tools such as Bayesian
approaches are needed to establish the strength of
trophic links and predict consequences for seabirds
(Clark 2005).

5.3. How do interactions at different hierarchical
scales affect seabirds’ responses to environmental

change?

Interactions with conspecifics in seabird colonies
are widely viewed as accruing net fitness benefits,
for example through enhanced protection from
predators (Birkhead 1977). Under conditions of low
prey availability, parents may need to forage simulta-
neously, leaving their offspring temporarily unat-
tended (Regehr & Montevecchi 1997). Except in can-
nibalistic species (Hamer et al. 1991), such
unattended chicks may be expected to gain protec-
tion within colonies from the proximity of neighbour-
ing birds, providing parents with a buffer against
adverse foraging conditions. However, recent evi-
dence has indicated that in the absence of cannibal-
ism, chicks left unattended by their parents may
nonetheless be attacked and killed by adults from
neighbouring sites (Ashbrook et al. 2008) in addition
to being attacked by non-breeders attempting to
usurp sites (Anderson et al. 2004, Hamer et al. 2007).
These data indicate potential shifts in the cost-bene-
fit of breeding at high density (Danchin & Wagner
1997), especially when food conditions are poor and
suggest a growing need to understand how environ-
mental changes affect behavioral and social interac-
tions within colonies.

Some of the most powerful data concerning
responses of seabirds to different environmental

pressures have derived from long-term studies of
focal populations (e.g. Frederiksen et al. 2004, Gros-
bois & Thompson 2005, Österblom et al 2007, Mon-
tevecchi 2009). Few studies, however, have consid-
ered responses to environmental forcing in the
context of interactions within population networks,
which may have important population dynamic con-
sequences (see Coulson 1991 for an exception). For
instance, Sandvik et al. (2008) reported a positive
relationship between sea surface temperature (SST)
and the breeding success of a wide range of North
Atlantic seabirds. For several of the species included
in this analysis, however, warming also had a nega-
tive effect on annual adult survival (Grosbois &
Thompson 2005, Sandvik et al. 2005, Votier et al.
2005). In a circumpolar analysis of breeding murre
populations, Irons et al. (2008) demonstrated that the
Arctic species, thick-billed murre Uria lomvia,
responded most positively when SST warmed
slightly and that the temperate species, common
murre U. aalge, exhibited rapid increases when SST
cooled moderately. Most interestingly, both species
responded negatively to large shifts in SST regard-
less of whether the change was in the positive or neg-
ative direction.

Sites with high breeding success are likely to be
attractive to prospecting non-breeders (Danchin et
al. 1998), although this may not lead to reproductive
success after recruitment if these birds experience
relatively low survivorship post-recruitment. For
seabirds, adult survival has much greater elasticity
than annual breeding success, which suggests that
some breeding sites may act to some extent as popu-
lation sinks (Hamer 2010), notably if predators affect
the survival of individuals at some locations. For
instance, a recent study in Alaska, USA, found a pos-
itive relationship between SST and the breeding suc-
cess of piscivorous auks (Alcidae) but a simultaneous
decline in breeding population sizes (Slater & Byrd
2009). It is not clear whether these declines occurred
despite increased recruitment from other colonies.
This suggests that meta-population and source-sink
dynamics will become increasingly important fea-
tures of seabird conservation efforts in the future
(Lebreton et al. 2003, Cam et al. 2004, Zador et al.
2009).

An additional challenge to understanding the
effect of climate change on seabirds is the differen-
tial rates of environmental change in marine and
terrestrial environments. For instance, impacts of
climate change on prey availability at sea and direct
physiological impacts on birds at the nest may show
different patterns of temporal and spatial variation,
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leading to an increasing disparity between where
and when birds can nest and where and when they
can locate sufficient prey to feed themselves and
their offspring (Grémillet & Charmantier 2010).
Direct physiological effects have typically been
viewed as relatively unimportant (Durant et al.
2004) but are likely to increase in prominence with
continuing climatic warming in most regions, lead-
ing to a growing need for combined studies of both
types of effect and their synergistic interactions to
predict how the geographical distributions of differ-
ent species are likely to alter in response to continu-
ing climate change (Oswald et al. 2008). For
instance, several statistical approaches are available
to describe the climate envelopes of different spe-
cies and predict how these envelopes will shift
under different climate change scenarios (Huntley
et al. 2007). Further work is required, however, both
to refine the models themselves, i.e. to include both
direct and indirect effects, and to refine their pre-
dictions by incorporating information on dispersal,
recruitment and colony formation processes in addi-
tion to other factors likely to impede or facilitate
geographical range shifts (Mustin et al. 2007,
Grémillet & Boulinier 2009). In marine systems with
relatively low productivity, annual stochasticity in
river flows is known to influence the population
dynamics of small pelagic fish, which are the main
prey for many seabird species (Lloret et al. 2004).
Hence, in such systems the interactions between cli-
mate change, human perturbations in terrestrial
ecosystems (e.g. presence of dams and pollutants in
major rivers) and seabirds may be particularly
strong. Integrated research which takes into consid-
eration the natural and altered patterns of spatio-
temporal variability of the environment as well as
the mechanistic processes of population responses
(including ecophysiology, demography, and behav-
ior) is required.

6. Managing anthropogenic impacts (invasive
species, contaminants and protected areas

As a consequence of the increasing intensity and
diversity of threats that they face both on land and at
sea, seabirds have become increasingly threatened
at a faster rate than any other bird group in recent
decades (Boersma et al. 2002, Butchart et al. 2004).
One of the most relevant direct threats at sea, fish-
eries, was covered in Section 4. However, there are
other anthropogenic impacts that also have a sub-
stantial effect on seabird populations, namely inva-

sive species and pollution. Here, we also focus partic-
ular attention on one important conservation tool
used to address many of these threats, the implemen-
tation of protected areas.

6.1. What are the population-level impacts of
invasive species?

That seabirds have not evolved to respond to
 terrestrial predation by vertebrate predators is a
well-known phenomenon. Most seabirds breed on
islands or isolated patches to avoid terrestrial pre -
dators. Unfortunately, alien fauna associated with
humans and marine traffic trade has accessed iso-
lated breeding areas; this has led to drastic reduc-
tions, and extinctions, in some seabird populations.
Direct predation by non-native animals (mainly rats,
feral cats and other carnivores) is the most studied
type of invasive species; however, there are others
less known but equally deleterious, such as invasive
grazers or plants, which can also have negative
impacts on breeding habitat suitability by causing
changes in vegetation structure, trampling of nests or
erosion (see review in Boersma et al. 2002).

Several factors influence the level of impact of non-
native species on seabirds:  first, the body size of both
the predators and the seabirds. Feral cats or other
medium-sized carnivores (such as Mustelidae) can
prey on a large range of seabird species (including
adults) from storm petrels to albatrosses, and thus
can have a drastic effect on their populations (Cour-
champ et al. 2003). Because they are able to gain
access to small burrows, rats and mice can have a
greater impact on smaller species, e.g. terns and
smaller petrels, by preying on nests and adults, and
the presence of non-native carnivores is incompati-
ble with viable populations of these seabirds (Martin
et al. 2000, Angel et al. 2009). Rats and mice (Cuth-
bert & Hilton 2004, Wanless et al. 2009) can also prey
on eggs and small chicks of larger seabirds — even
albatrosses — although many of these populations
are able to buffer this impact. The best example of
seabird resilience to an invasive predator is the
cohabitation of shearwaters and rats on Mediter-
ranean islands (Ruffino et al. 2009). The world’s
largest colony of Leach’s storm petrel Oceanodroma
leucorhoa on Baccalieu Island in the northwest
Atlantic has been co-inhabited by red foxes Vulpes
vulpes for about a century (Montevecchi & Tuck
1987). The foxes prevent large ground-nesting gulls,
which also take a large toll of storm petrels (Sten-
house et al. 2000), from nesting on the island.
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Knowing which life-history stage is most affected
by the presence of an invasive species is also crucial
to determining the rate and severity of the impact on
seabird population dynamics:  invasive plants, graz-
ers (such as rabbits, or cattle) or rodents mainly affect
reproduction (through reduced nest site availability
and/or quality or decreased breeding success), and
their impact tends to be relatively low compared to
that of alien species which reduce adult survival (see
Section 1.1). Some species can buffer such distur-
bances by dispersing to safer sites, particularly those
species with nomadic strategies, such as some gulls
and terns (Oro et al. 1999), whereas less plastic spe-
cies may be less able to react to predators (Igual et al.
2007, but see Bonnaud et al. 2009). Finally, the
breeding habitats of seabirds can also influence the
impact of non-native species:  burrowing species,
compared to open-habitat species, are better pro-
tected against mice, rats and relatively large carni-
vores (Igual et al. 2006, Bourgeois & Vidal 2007).
Cliff-nesting species are the best protected against
all types of invasive species owing to their relative
large and inaccessible nests.

Seabirds are similarly threatened by invasive plant
species, which have been documented to negatively
impact breeding activity (Van der Wal et al. 2008). In-
vasive plants reduce nesting success by decreasing
available nesting habitat, entrapping or obscuring
chicks, and by increasing the abundance of insects
that may threaten eggs or chicks. In addition to pre-
venting breeding or curtailing the success of breeding
birds, by reducing seabird abundance in general both
plant and mammal invasive species can alter nutrient
content and soil composition, causing widespread ef-
fects across an entire area (Hawke & Clark 2010).

The best means of controlling alien species is to
reduce their numbers, or when possible, to eradicate
them (Courchamp et al. 2003). To assess the success
of these programs, studies evaluate correlated
changes in seabird parameters such as breeding out-
put and adult survival, with different densities of
alien species. This can be based on direct observa-
tion (Nogales et al. 2004, Igual et al. 2006) or can use
non-invaded sites as controls (Ratcliffe et al. 2010).
Because of the complex community interactions
involved, eradications of invasive species may have
unexpected results, e.g. the substitution of an eradi-
cated predator by an ecological competitor occupy-
ing the same niche (Courchamp et al. 2003,
Martínez-Abraín et al. 2004, Rayner et al. 2007).
Nonetheless, eradication and invasive species con-
trol remains an important conservation issue for
seabird colonies worldwide.

6.2. What is the population-level influence of conta-
minants and other pollutants?

Human activities generate a range of pollutants
that are widely distributed across the seas, because
of the unfettered nature of transport in aquatic envi-
ronments (see Halpern et al. 2008). Pollutants include
hydrocarbons, heavy metals, hydrophobic persistent
organic pollutants (POPs), and small plastic debris.
Since seabirds are at or near the top of marine food
webs, they are particularly sensitive to these pollu-
tants (see review in Burger & Gochfeld 2002). For the
same reason, seabirds are excellent tools to monitor
temporal and spatial trends of pollutants in the
marine environment (Furness 1993).

Oil spills are a prevalent common cause of anthro-
pogenically caused mass mortality in seabirds.
Munilla et al. (2007) reported as many as 20 ship-
wrecks involving the release of oil or other hazardous
products into the Atlantic waters of the Iberian
Peninsula from 1957 to 2002. Since 1948, at least 13
major petroleum spills have caused direct mortality
in at least 500 African penguins (Underhill 2007).
Some of these catastrophes have had dramatic
effects on breeding seabird populations due to direct
mortality and depletion of food sources (Velando et
al. 2005a,b, Votier et al. 2005, 2008b, Martínez-
Abraín et al. 2006).

Pollutants affect seabirds in many different ways,
at both individual and population levels (Burger &
Gochfeld 2002). Direct mortality is the most obvious
effect, particularly when it is related to point-source
pollution such as oil spills and illegal discharges of
oily bilge water and tank flushings, which can kill
large numbers of birds in a short time period (Piatt et
al. 1990). However, sub-lethal effects can also be
very important, affecting development, physiology
and behavior, and ultimately reproductive perfor-
mance and survival rates (Finkelstein et al. 2006).
Pollutants can also affect seabirds indirectly by alter-
ing their habitat structure and prey availability.
Assessing sub-lethal effects on an individual requires
a combination of laboratory and field studies. Exam-
ining the toxic residues, their metabolites and bio-
chemical markers indicating the stress and tissue
damage is a useful tool (Burger & Gochfeld 2002).

Assessing the impact of pollutants on seabirds at
the population level is also extremely challenging.
The population decreases seen in some seabird spe-
cies are believed to be associated with exposure to
high levels of dichlorodiphenyl dichloroethylene
(DDEs) and polychlorinated biphenyls (PCBs) in
North America during 1950s and 1960s (Hatch &
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Kubiak et al 1989, Weseloh 1999, Nisbet 2002),
although direct tests are lacking. Even in the case of
acute pollution events causing large numbers of
casualties it is difficult to directly link a pollutant to
mortality because of compensatory changes in
recruitment, reproductive and survival rates (Wiens
1996) and changes in prey availability caused by
such acute events (Peterson et al. 2003, Velando et al.
2005a). The analysis of long-term population data
sets can shed some light on this topic (Votier et al.
2005, 2008b, Martínez-Abraín et al. 2006), especially
those studies that have focused on vulnerability to
different levels of pollution of POPs and plastics
(Finkelstein et al. 2006, Young et al. 2010).

6.3. How effective are protected areas in protecting
seabirds?

Historically, seabirds have received protection in
many of their breeding colonies across the world, and
have benefited greatly from it (Grémillet & Boulinier
2009). Indeed, the designation of seabird nesting
sites as protected areas has prevented direct human
impacts such as harvest and habitat destruction.
Moreover, active management focused on some of
these places has also helped to reduce threats posed
by non-native and invasive species, human visita-
tion, and disease introduction (Weimerskirch 2004,
Rauzon 2007). This has resulted in positive effects at
the population level (Furness & Monaghan 1987,
Grandgeorge et al. 2008), although current seabird
declines worldwide related to threats at sea demon-
strate that complementary conservation strategies,
including the implementation of Marine Protected
Areas (MPAs), are necessary (Hyrenbach et al. 2000,
Grémillet & Boulinier 2009).

The protection of marine areas for seabirds has
lagged behind terrestrial sites, with efforts so far con-
centrated in the areas adjacent to seabird colonies
(Airamé et al. 2003, Wilson et al. 2008, Yorio 2009,
Pichegru et al. 2010) and, to a lesser extent, in coastal
and/or shallow areas for highly aggregated winter-
ing species (Skov et al. 2007). However, the rapid
development of tracking technologies, along with the
proliferation of boat-based seabird surveys and the
development of analytical tools to assess distribution
patterns and habitat preferences, has recently
attracted attention to MPA design for seabirds and
other marine megafauna, particularly in pelagic
water (see Section 2, Hooker & Gerber 2004, Hyren-
bach et al. 2006, Louzao et al. 2006, 2009, Skov et al.
2008, Game et al. 2009). Ongoing research has been

aided by the international commitment to protect at
least 10% of each representative habitat of the globe
by 2010/2012, including the high seas, under the
CBD (Coad et al. 2009). Within this framework,
BirdLife International has chosen as a priority the
extension of its IBA Programme to the marine envi-
ronment (BirdLife International 2004), providing an
excellent opportunity for the inventory of seabird
hotspots at a global scale. Pioneering examples are
the recently completed inventories of marine IBAs in
Portugal and Spain (Ramírez et al. 2008, Arcos et al.
2008). Protecting marine areas outside of national
jurisdictions, i.e. ‘high seas areas’, however, re mains
a huge problem.

Given the high mobility of seabirds, MPAs cannot
guarantee their complete protection at sea (Boersma
& Parrish 1999). However, seabirds often show high
predictability, foraging recurrently in the same areas
at mid-scale (Davoren et al. 2003, Weimerskirch
2007); hence protecting their most relevant foraging
areas by restricting or mitigating fishing activities is
expected to benefit seabird populations. To date, the
limited number of MPAs in high-seas areas utilized
by seabirds has hampered the ability to evaluate
their efficacy for seabird conservation (but see
Pichegru et al. 2010)

The high mobility of seabirds makes it necessary to
work on a large-scale, network perspective, combin-
ing the efforts from different national and interna-
tional jurisdictions (Boersma & Parrish 1999, Lewison
et al. 2005, Lipcius et al. 2005, Croxall 2008, Yorio
2009). It is also crucial to integrate MPAs into a wider
view of marine ecosystem management and conser-
vation (Boersma & Parrish 1999, Hyrenbach et al.
2000). In this context, Marine Spatial Planning allows
a more integrated approach, as it includes an inter-
linked system of plans, policies and regulations of re-
sources and spaces with strategies that apply beyond
the traditional MPA boundaries (Gubbay 2004, Ehler
& Douvere 2009). Likewise, it is important to consider
how the protection of land and at-sea areas can be
designed to directly support seabird conservation in
the context of annual and long-term changes in habi-
tat suitability and potential range shifts (Grémillet &
Boulinier 2009).

DISCUSSION

Seabirds are often referred to as biological indica-
tors or sentinel species because they exhibit clear
and relatively rapid responses to large-scale environ-
mental variability and human disturbances of marine
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ecosystems (Piatt et al. 2007). Decades of seabird
research have strengthened our ecological under-
standing of the role of seabirds in marine ecosystems,
through the development of long time series of pro-
ductivity, population abundance, and demography
(e.g. Thompson et al. 1995, Frederiksen et al. 2004,
Sydeman et al. 2009). Additionally, novel conceptual
and technological advances have revolutionized our
ability to monitor these animals both over fine-scales
using GPS technology and over large scales using
GLS loggers (see review by Burger & Shaffer 2008).

Despite a rich history of seabird research and
increasingly more sophisticated research tools, pro-
tecting and conserving seabird populations is limited
by a lack of fundamental ecological knowledge
across a range of research questions. Using a geo-
graphically and epistemologically diverse group of
seabird experts, the present exercise was designed to
identify the most important information gaps as a
way of prioritizing future research for seabird popu-
lations and to increase the applicability of seabirds to
the management of marine systems. Recent articles
by Sutherland et al. (2006, 2009) highlight the value
of expert opinion for identifying pertinent research
questions that may facilitate and guide wildlife con-
servation, and similar efforts with other species
groups have been fruitful (Hamann et al. 2010). This
exercise confirms the notion that our ability to
respond to seabird declines is hampered by data
gaps, but also by a limited understanding of the inter-
play between spatio-temporal variability of the envi-
ronment, notably at large spatial scales, and the
demographic, behavioral and ecophysiological
responses of populations.

As indicated by the list of the topics identified,
seabird research priorities span several disciplines:
population ecology, geospatial mapping and analy-
sis, resource management, and biological and physi-
cal oceanography. The breadth of knowledge and
expertise required to tackle these questions high-
lights the need for collaboration across disciplines.
Furthermore, many of these questions and subques-
tions are fundamentally linked conceptually or logis-
tically. The connections and overlap among the
research priorities underscores the breadth of knowl-
edge and expertise required to tackle these ques-
tions and highlights the need for integrated research
approaches and synthesis. By engaging in multi-dis-
ciplinary research projects, seabird ecologists can
integrate the diverse range of datasets required to
tackle these complex questions. Integrative research
efforts contextualize research questions by bringing
together disparate datasets to assess large-scale pat-

terns or trends (e.g. OBIS-SEAMAP) and facilitate
the development of novel conceptual and quantita-
tive approaches. Integrative research can also facili-
tate the implementation of specific experimental
approaches and the design of large-scale replicated
studies to allow stronger inference about the causal
links between variables of interest (Yoccoz et al.
2001). There is evidence of a similar trend towards
interdisciplinary research in related fields (Hart &
Hyrenbach 2009).

Rather than provide a comprehensive evaluation of
the long-term research priorities for seabird conser-
vation, the list generated here is a ‘snapshot’ of the
research needs of today’s seabird populations. Given
the dynamic nature of seabird populations and their
environment, our expectation is that the priorities
themselves will also change. There is also likely to be
regional variability in the relative importance among
the priorities. So rather than provide a fixed ‘recipe’,
this exercise serves as a starting point for more
focused analyses to rank the priorities across regions
and habitats. It is our assumption that the relative
importance and current understanding of each prior-
ity will vary among regions (e.g. polar, sub-polar,
temperate, tropical), and ocean domains (e.g. coastal
waters, continental shelves, oceanic waters).

While natural and social science plays an important
role in addressing fundamental knowledge gaps, it
does not replace the need for directed management
and policy to protect seabird populations. The syn-
ergy of applied research and conservation manage-
ment is an essential ingredient to help ensure the
viability of seabird populations and global ocean
ecosystems around the world. It is our hope that any
future research which tackles the priorities identified
here will serve as an important complement to man-
agement plans, policy and legislation.
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