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Abstract: The high dielectric constant ZrO2, as one of the most promising gate dielectric materials
for next generation semiconductor device, is expected to be introduced as a new high k dielectric
layer to replace the traditional SiO2 gate dielectric. The electrical properties of ZrO2 films prepared
by various deposition methods and the main methods to improve their electrical properties are
introduced, including doping of nonmetal elements, metal doping design of pseudo-binary alloy
system, new stacking structure, coupling with organic materials and utilization of crystalline ZrO2 as
well as optimization of low-temperature solution process. The applications of ZrO2 and its composite
thin film materials in metal oxide semiconductor field effect transistor (MOSFET) and thin film
transistors (TFTs) with low power consumption and high performance are prospected.

Keywords: high dielectric constant; gate dielectric layer; zirconia; MOSFET; TFT

1. Introduction

Since the invention of transistors, SiO2 has been the most practical choice of gate dielectric materials
for field effect transistors. It has several significant advantages, such as high compatibility with silicon
chip technology, uniform conformal oxide layer, high interface quality, good thermodynamic stability
in contact with Si, etc., which has dominated the silicon microelectronics industry for decades. As the
density of integrated circuit increases exponentially, the feature size of metal oxide semiconductor
field effect transistor (MOSFET) decreases rapidly, resulting in the thickness of the SiO2 layer presently
used as the gate dielectric becoming thinner. When the feature size of the device continues to shrink to
the nanoscale, the ultrathin SiO2 with low dielectric constant (k = 3.9) has reached the physical limit
and will eventually be hindered by the inability to reduce the oxide thickness to less than 1.3 nm [1,2].
For ultrathin SiO2, the tunneling current caused by the quantum effect will seriously affect the operation
of the device. The off-state leakage current will lead to the increase of device power consumption,
and even be broken down because of the strong electric field, which makes the gate oxide lose the
function of insulation and the device cannot work properly [3]. Therefore, relevant researchers have
proposed the application of insulating gates with high dielectric constant (high-k) materials, which can
increase their own physical thickness while ensuring the same channel control ability as ultrathin SiO2
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gate dielectrics, so as to restrain the large leakage current caused by the tunneling effect. As the core
component of the flat panel display, the thin film transistor (TFT) device plays an important role in
improving the performance of the flat panel display. The properties of the gate dielectric of the TFTs
directly affect the performance of the devices. However, the performance of TFTs based on traditional
SiO2 gate dielectric materials cannot meet the requirements of the increasing development of flat panel
display. Similar to the metal oxide semiconductor (MOS) devices, TFTs also suffer from tunneling
current. Although nitride SiO2 with improved dielectric constant has been used as the gate dielectric
layer in TFTs, it is still unrealistic for continuous scaling in the long term. In order to obtain more
compact performance and scaling size of TFTs, the gate dielectric with a high k value can be used in
TFT devices to obtain higher on/off current ratio, lower threshold voltage and lower leakage current,
which make it possible to drive TFT at low operating voltage [4,5].

High-k gate dielectric emerged into the market with Intel’s new generation 45 nm microprocessors
in 2007, in which silicon oxide-based insulator has been replaced by hafnium-based oxides [6]. In recent
years, Samsung and Intel have announced the development of the next generation 3D transistors with
high k dielectrics. This review focuses on high-k zirconium-based oxides, which are more abundant in
nature also have many excellent properties similar to hafnium-based oxides.

2. Zr-Based High-k Dielectrics

A high k gate dielectric layer provides lower equivalent oxide thickness (EOT) and higher gate
capacitance at the desired thickness. The EOT can be calculated as

EOT =

3.9
KhiK

thiK (1)

Here 3.9 is the dielectric constant of SiO2 and KhiK is the dielectric constant of gate oxide and thiK

is the thickness of the dielectric layer. Besides, it is vital that the potential barrier at conduction and the
valence band offset for Si is greater than 1 eV in order to effectively reduce the leakage currents [7]
(Figure 1). A sufficient band offset is required to block the additional current due to Schottky emission
and thermal emission as well trap-assisted-tunneling [8]. Electrically active defects are undesirable,
which give rise to electronic states in the band gap of the oxide. Charge trapped in defects scatter
carriers in the channel and lowers the carrier mobility [7]. The transport performance of the device
will be reduced due to impurity defects, remote interface phonons and interface roughness. Hence,
it requires additional source−drain (VDS) to source−gate (VG) bias (voltage) as compensation to achieve
a desired transistor current (IDS), which in turn increases power consumption [9].

Alternative high-k gate dielectric materials have been investigated, such as HfO2, ZrO2, Al2O3,
Y2O3 and La2O3. Among the high k gate dielectric materials studied at present, zirconia (ZrO2)
has an appropriate dielectric constant (theoretical value k = 25) with a wide band gap (5.8–7.8 eV)
and good thermodynamic stability in direct contact with the Si substrate [3,10,11], which is almost
similar as HfO2. Nevertheless, ZrO2 can be more easily stabilized in the form of cubic or tetragonal
polymorphs with enhanced effective dielectric constant value compared with HfO2 [12]. In addition,
its high melting point (2680 ◦C), good oxidation resistance, high refractive index (2.15–2.22) [13] and
low absorption from near ultraviolet (more than 240 m) to mid-infrared (below 8 µm) further highlight
its technical importance [10,14,15]. It is considered to be one of the most promising high-k dielectric
materials and has become a research hotspot. Hence, the purpose of this paper is to introduce the
research progress of ZrO2 and its composite materials as dielectric layers in recent years. Materials
and electrical properties of ZrO2 films prepared by several frequently used deposition methods are
described. The main approaches to improve their electrical properties and application prospects in
advanced MOSFET and TFT devices are introduced.
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Figure 1. Schematic of bandgap and band offsets of ZrO2 and carrier injection mechanism in its band
states. CB conduction band, VB valence band.

3. ZrO2 Thin Films Deposition

The preparation method of thin films is an important factor affecting the structure and properties
of ZrO2 gate dielectrics. ZrO2 has three kinds of crystal variants, monoclinic crystal (m-ZrO2, k = 20),
tetragonal crystal (t-ZrO2, k = 47) and cubic crystal (c-ZrO2, k = 37), while the average k value of
amorphous phase (a-ZrO2) is 22 [10,15,16]. As thin films, ZrO2 is usually deposited on the substrate in
crystalline form. However, amorphous ZrO2 films are preferred for microelectronic devices, because
the grain boundaries and defect vacancies in crystalline ZrO2 films can cause undesirable increased
leakage current as good conductive channels. With the different deposition methods, the ZrO2 thin
films show different crystal phase structure, which leads to the heterogeneity of the k value with the
film thickness, and changes the device performance. Different deposition temperatures and rates will
also affect the properties of ZrO2 films by affecting the surface roughness of the films. It can be seen
that the improvement of film properties depends on the optimization of the deposition process.

Up to now, many deposition processes have been applied to the preparation of Zr-based high-k
gate dielectrics, such as atomic layer deposition (ALD) [17], sol–gel process [18], chemical vapor
deposition (CVD) [19], sputtering [20], molecular beam epitaxy (MBE) [21], electron beam evaporation
(EBE) [22], pulsed laser deposition (PLD) [23] and so on. The following focused on several main
preparation methods.

3.1. Atomic Layer Deposition

The ideal growth process for ALD is by alternately exposing the substrate surface to different
precursors, which are strictly separated from each other in the gas phase [24]. The ALD deposition
process can be used to achieve large area uniform, dense and non-pinhole thin films, meanwhile
doping and interface modification is relatively facile. The size of the film grains can be reduced by
a selection of proper precursor chemicals to reduce the processing temperature. It is widely used to
precisely control the thickness of each cycle [25]. ZrCl4 and H2O are commonly used as reactants
(Figure 2). However, hydrogen impurities are introduced from H2O, which may combine with residual
chlorine impurities in the film to form hydrogen chloride and corrode the main metal oxide structure.
Therefore, the hydrogen free process is the first choice [26]. Hausmann et al. [27] used highly volatile
zirconia alkylamide precursors to realize the preparation of ZrO2 films by a smooth, pure and highly
conformal low-temperature ALD process. Although it can be deposited at a relatively low temperature,
ALD usually requires the equipment to achieve a high vacuum and a low deposition rate (0.43 Å/cycle).
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At the same time, impurities (chlorine or iodine from the precursor) can be mixed into the film and
reduce the dielectric properties of the film.

 

 
Figure 2. Schematic of the cyclic process of atomic layer deposition [7]. Reprinted with permission
from [7]; 2015 Elsevier.

3.2. Physical Vapor Deposition

For physical vapor deposition (PVD), many methods have been developed to deposit thin films,
which are mainly divided into two categories: vacuum evaporation coating and vacuum sputtering
coating (as shown in Figure 3). The basic principle is to make the source material evaporate or
eject from solid by heating or bombarding the target and finally impact (condense) on the substrate
surface [28]. Among them, sputtering is the most commonly used deposition method for ZrO2 thin
films, by which a good quality of the prepared film, a firm combination with the substrate and a
uniform thickness can be achieved [29]. However, sputtered oxides will have plasma-induced damage
and difficult to deposited complex shape. The properties of sputtered films mainly depend on the
deposition temperature, Ar/O2 ratio, sputtering pressure and post-treatment conditions [30,31]. It was
reported [32] that both the oxygen flow rate and post-annealing temperature affect the dielectric
constant and surface roughness of the film. In recent years, high-power impulse magnetron sputtering
(HiPIMS) systems have been used for high-rate reactive deposition of films (140 nm/min) as a result of
the PVD techniques enhancement [13].

 

 

 

Figure 3. Schematic drawing of two conventional physical vapor deposition (PVD) processes:
(a) sputtering and (b) evaporating using ionized argon (Ar+) gas [29].

3.3. Chemical Vapor Deposition

Chemical vapor deposition generally has a complex chemical system (Figure 4), which has a
relatively low processing temperature and reasonably high deposition rate to produce uniform thin
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films with good reproducibility and adhesion. CVD uses a volatile metal compound as a precursor,
which is introduced into the chamber and oxidized during deposition onto the substrate. The chemical
reactions of precursor species occur both in the gas phase and on the substrate [33]. Reactions
can be promoted or initiated by heat (thermal CVD) [19], higher frequency radiation such as UV
(photo-assisted CVD) [34] or a plasma (plasma-enhanced CVD) [35]. Moreover, it has capability to
mass produce components that are uniformly coated with complex shapes and deposited with good
conformal coverage. Furthermore, it has the ability to control the crystal structure, surface morphology
and orientation of thin film through well controlled process parameters [33]. A variety of chemical
precursors (i.e., halides, hydrides and organometallics) can be flexibly used to deposit target films.
ZrCl4 [33], zirconium acetylacetonate (Zr(acac)4) [36] and Zr(OC4H9)4 [37] are common precursors
used as gaseous sources of zirconium to deposit ZrO2 films. The oxidizing agent can be water vapor,
oxygen or binary mixtures, such as H2-O2 or H2-CO2 [38]. However, for the above CVD process,
the high temperature needed to prevent chlorine and carbon-based impurities from contamination
usually leads to the formation of highly crystalline thin films with obvious surface roughness [38].

 

 

Figure 4. Schematic diagram of chemical vapor deposition (CVD) deposition system [38]. Reprinted
with permission from [38]; 2003 Elsevier.

3.4. Sol–Gel Method

High quality oxide films can be obtained by traditional film preparation methods such as PVD,
CVD and ALD, but the equipment requirements and cost of the vacuum treatment are high. Sol–gel
chemistry is a method of synthesizing materials through phase transitions from a liquid precursor
to a sol (colloidal suspension) and finally to a gel (a network structure) [39], such as spin coating,
inkjet printing, spray pyrolysis, dip coating, gravure printing and so on [40]. There are three forms
of reaction product, including sol, gel and nanoparticle that can be prepared by controlling the
reaction temperature, reaction time, pH value and catalyst, as shown in Figure 5 [40]. By changing
the concentration of the precursor solution and deposition period, sol–gel can control the thickness of
films with the advantages of low cost, simplicity and high flexibility. Due to the high quality obtained
under a mild condition, it is generally used to deposit the relatively thick high k dielectric layer of
TFT [41]. It has also been reported that the sol–gel method was used to prepare ultrathin ZrO2 films for
MOSFET [42,43]. For the preparation of thin films by the solution method, attention should be paid to
the molar ratio of the precursor solution and the condition of the post-annealing treatment [44], which
are crucial to the properties of the films. Generally speaking, the properties of the films prepared by
the solution method are slightly worse than those of other traditional methods such as ALD. However,
sol–gel to prepare dense and uniform films that can meet the device requirements with the advantages
mentioned above, which is of great significance for mass production in the future, making the solution
method a promising film preparation method at present.
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Figure 5. Typical sol–gel metal oxide reaction products [40]. Reprinted with permission from [40];
2017 Elsevier.

4. Methods to Improve the Properties of ZrO2 Films

Compared with the traditional SiO2 layer, the low-temperature crystallization of ZrO2 will lead
to the formation of the polycrystalline structure in the annealing process and increase the leakage
current. The high k dielectric has a high rate of oxygen diffusion, resulting in a low k interfacial
layer that is formed inevitably between the silicon substrates in the O2 ambient, which can increase
the EOT. The interfacial properties are also much lower than that of the SiO2 layer grown on the
silicon substrate by thermal oxidation. Furthermore, the coulombic impurity scattering and surface
optical phonon scattering cause the problem of carrier mobility loss that limits its application in the
future complementary metal oxide semiconductor (CMOS) devices [45]. In this perspective, after
the utilization of high dielectric ZrO2 films, researchers optimized the properties of the derived
films by doping other elements or compounds, including the design of pseudo-binary alloy systems
by non-metallic elements and metal doping, adoption of new stacking structure, coupling with
organic materials and utilization of crystalline ZrO2 as well as improvement and optimization of the
low-temperature solution process.

4.1. Doping of Non-Metallic Elements

Although ZrO2 has good thermal stability in contact with Si, it is still difficult to prevent the
formation of the SiO2 interfacial layer with low k and high interface defects due to the diffusion of
oxygen during deposition and heat treatment, which usually grows in the post-deposition annealing
stage. In the early stage, it is found that the properties of the films have been improved through
doping Si, N into ZrO2. Lu et al. [46] studied the preparation of (ZrO2)x(SiO2)1−x silicate (Zr–Si–O) thin
films with different compositions on p-Si substrates by pulsed laser deposition. Compared with pure
ZrO2, Zr- silicate in direct contact with Si has higher crystallization temperature and superior thermal
stability [47]. X-ray photoelectron spectroscopy (XPS) analysis shows that the (ZrO2)0.5(SiO2)0.5 film is
still amorphous after rapid annealing in nitrogen at 800 ◦C for 60 s. Doping more Zr concentration in
(Zr–Si–O) silicate film can obtain a higher dielectric constant. However, with the further increase of Zr
concentration, obvious phase separation and precipitation of ZrO2 will occur in Zr-silicate, which will
worsen the interface between Si and Zr-silicate [48,49].

Many studies have been devoted to interface engineering solutions that introduce a high-quality
oxide or nitride reaction barrier layer with very low defect density between high-k oxide and Si
to separate the silicon channel from the dielectric [45,50] (Figure 6a). It can reduce the decrease of
carrier mobility due to remote scattering, but at the cost of increasing the thickness of the equivalent
oxide. In addition, nitrogen doping in the gate oxide layer is found to be beneficial to improving
the thermodynamic properties, effectively reducing the interface layer thickness and leakage current
density [35,51,52]. A further decrease of the diffusion coefficient of oxygen in the alloy, thus reduces
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the crystallization rate significantly, so that the silicate can withstand the high temperature required by
doping activation steps in the MOS process [53].

 

 
Figure 6. Schematic diagram of the (a) Z3NAN and (b) ZAO gate stacks [50]. Reprinted with permission
from [50]; 2016 Elsevier.

4.2. Metal Elements Doping

The high bandgap (8.9 eV) of Al2O3 makes it have good thermodynamic stability with a moderate
relative permittivity of 9. Incorporation of Al2O3 into ZrO2 gate dielectrics combines the advantages of
constituent dielectrics and markedly increases the crystallization temperature [54], which produce
devices with improved performance and stability compared to the pure ZrO2 film. In addition,
the doping of small-size Al atoms into ZrO2 that have greater densification can reduce the oxygen
vacancy and smooth the gate dielectric interface [55,56]. Thereby, reducing the interface defects and gate
leakage current as well as weakening the carrier mobility reduction effect caused by surface roughness
scattering. Liu et al. [57] incorporated Al2O3 into ZrO2 to optimize and adjust its electrical properties
such as capacitance and leakage current. Our group also reported a high-k Zr–AlOx dielectrics were
fabricated by sol–gel spin coating at a low temperature annealing process, which can be applied to the
preparation of high performance TFT [58]. By adjusting the k value of the gate dielectric from 11.3 to
an appropriate value (8.1), a reasonable tradeoff is achieved between the gate screening effect on the
Coulomb-impurity scattering and the surface optical phonon scattering [57], thus greatly improving
the carrier mobility of the device. It has been reported that the mobility of Zr0.5Al0.5Oy sample was
41% higher than that of the control sample (40.6 cm2/V·s) [57]. In reference [50,59], it is proposed that
Al2O3 can be used as a transition layer to effectively block the diffusion of oxygen to the matrix and the
interfacial reaction, so as to ensure the stability of the Zr-Al interface (Figure 6). Therefore, the quality
of the gate dielectric layer can be effectively improved by using Al2O3 as the buffer layer or doping it
into other high k materials.

In addition to the usual modification of doped Al, rare earth elements such as lanthanum (La) [60],
gadolinium (Gd) [61], hafnium (Hf) [62] and yttrium (Y) [63] have also been studied to improve the
performance of ZrO2 films, which can effectively restrict the formation of low-k silicon oxides and
obtain denser gate dielectric films with high-quality interfaces. The overall dielectric constant of
pseudo-binary alloys may be lower than that of pure metal oxides, but this compromise is acceptable
in order to improve stability. At present, the design of pseudo-binary alloy modified films by doping
non-metal or metal elements is a mature way to improve the properties, which is the most promising
structure for large-scale application in the industry.

4.3. Coupling with Organic Materials

In recent years, the development of organic–inorganic hybrid thin film materials for dielectric gate
applications has aroused great interest of researchers [64]. In theory, organic materials for dielectric
gate applications offer a smooth surface and good compatibility, but their low dielectric constant lead
to low capacitance [9,65]. On the other hand, the high processing temperature of inorganic dielectric
materials with high k values is not compatible with deposition on flexible plastic substrates required
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in flexible electronics [66,67]. Accordingly, the appropriated incorporation of organic and inorganic
phases in organic–inorganic hybrid materials, stalwartly bonded at the molecular level, is a new
approach to develop dielectric materials with enhanced performance and broad application. However,
it is still a challenge to deposit these materials as smooth films at temperatures compatible with flexible
plastic substrates. Shang et al. [68] reported the application of bilayer poly (methyl methacrylate)
(PMMA)/ZrO2 gate dielectrics in copper phthalocyanine (CuPc) field effect transistor (FET; Figure 7a).
Owing to the deposition of PMMA layers on ZrO2, the dielectric leakage is reduced by an order of
magnitude compared with single-layer ZrO2, resulting in a high-quality interface between organic
semiconductors and composite insulators. The device combines the advantages of polymer and high k
inorganic materials to achieve high mobility and low threshold voltage. It is reported that the typical
field-effect mobility of bilayer dielectric field-effect devices is 5.6 × 10−2 cm2/V·s and the threshold
voltage is 0.8 V [68].

In addition, there are reports on the application of ZrO2 doped polymer modified thin films in the
dielectric gate of metal oxide thin film transistor (MOTFT) [69,70] (Figure 7b) and organic thin film
transistor (OTFT) [67,71,72] (Figure 7c). Among them, many of these hybrid materials can be obtained
by the sol–gel method, which is a solution, low-temperature process compatible with deposition on
large-area substrates. The performance of these hybrid films, including interface quality and dielectric
properties, can be adjusted by controlling the content of organic and inorganic components. It can
be seen that Zr-based organic hybrid films have great potential applications in a variety of large area
printing flexible electronic applications such as displays, sensors and electronic bar codes [66,73].

 

−

 

−

α

Figure 7. (a) Schematic structure and dimensions of the Organic Field Effect Transistors (OFET) with
the PMMA/ZrO2 bilayer as dielectrics [68]; (b) Schematic structure and dimensions of the metal oxide
thin film transistor (MOTFT) with a ZnO semiconductor layer and PMMA−ZrO2 hybrid films as gate
dielectric [69]; (c) Schematic structure and dimensions of the organic thin film transistor (OTFT) with
the PαMS/ZrO2 bilayer as dielectrics [72].

4.4. Crystalline ZrO2 Dielectric

Recently, crystalline ZrO2 has attracted considerable attention due to the tetragonal (47) and
cubic (37) phase of ZrO2 having a much higher k value than amorphous ZrO2. However, the grain
boundaries may serve as the leakage current paths, which will cause a dramatic leakage current in the
dielectric gate layer application. Moreover, the tetragonal and cubic phase of ZrO2 are only stable in
bulk form above 1170 and 2297 ◦C respectively, which is not suitable for ultra-large-scale integration
(ULSI) technology [15,74]. Hereby, reducing the film thickness or grain size or doping impurities such
as Si, Ge and La [14,74,75] into the lattice had been exploited to decrease their stable temperatures.
The tetragonal/cubic phase of ZrO2 can be formed by post-metallization annealing (PMA) at a low
temperature of 450 ◦C to provide a high gate oxide dielectric constant [76]. Ge-induced stable ZrO2

crystals can be formed by co-evaporation of Ge and ZrO2 or thermally diffused into ZrO2 films by
Ge substrates, thus stabilizing the high-k tetragonal phase [75,77–79]. What is more, as a channel
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material, Ge has many advantages, such as higher carrier mobility than traditional Si and compatibility
with the Si process. In addition, some research [76,80,81] has reported that nitriding can effectively
passivate grain boundaries and reduce leakage current density. On the other hand, the thermal stability
is enhanced through post-deposition annealing (PDA) treatment at 800 ◦C (Figure 8) and the hysteresis
problem affecting the threshold voltage stability is reduced to the maximum extent.

 

 

−

≥

Figure 8. Nitriding treatment and GeO2 thermal decomposition into the ZrO2 layer to form a stable
crystal state [78]. Reprinted from [78]; 2013 AIP Publishing.

Even so, how to reduce the leakage current density of the single crystalline ZrO2 layer is still a great
challenge. At present, many studies will utilize novel gate stack structures such as t-ZrO2/Al2O3 [80],
ZrO2/Ge/ZrO2/Y2O3 [75] or the crystallized ZrO2/AlN [50] buffer layer to further reduce the leakage
current and density of interface states. As a gate dielectric layer, crystalline ZrO2 can significantly
increase the carrier mobility and the transistor driving current with reduction of the equivalent capacitor
thickness (CET) because of a high k value. The results demonstrate that the utility of crystalline ZrO2 is
a favorable technique to improve the electrical properties and gate dielectric performances. It opens up
a new way for the development of possible applications as charge storage capacitors for active matrix
display devices with high-k dielectric.

4.5. Low-Temperature Solution Process

The sol−gel process has been widely reported as a result of low processing consumption, simple
and flexible operation. However, the common disadvantage of the solution process is that a higher
annealing temperature (≥400 ◦C) is required to remove most of the solvents and impurities, and convert
the precursors into dense oxide films [82] (Figure 9). The high-temperature annealing hinders the
application of the plastic substrate in flexible electronic devices, and causes huge energy consumption.
In recent years, due to the increasing demand for a low thermal budget and flexible electronic
devices, the research on the low temperature annealing solution process has aroused extensive
interest. Approaches including the sol–gel on chip process [83], high pressure annealing [84], aqueous
solution [85], combustion [86,87], the light wave/microwave annealing method [88] and ultraviolet
ozone irradiation [89,90] have been used to effectively reduce the processing temperature of oxide
films prepared by the solution process. Our group developed an ink system for drop-on-demand
(DOD) printing high performance ZrO2 film at a low temperature [91]. In particular, ultraviolet ozone
(UVO) can be employed to prepare oxide TFTs in fully solution-processed at room temperature [92].
ZrO2 films were prepared by spin coating of zirconium acetylacetonate (ZrAcAc) precursors with high
UV absorption (Figure 10). The report indicated that the film’s surface became significantly smooth and
led to a reduction of the oxygen vacancy defects. Moreover, the analysis revealed it could effectively
facilitate the formation of metal-oxygen (M–O) bonds with high k dielectric properties (k = 13). It is
found that the leakage current with UVO treatment at room temperature was significantly lower than
that of ZrO2 films treated by annealing at high temperature (Figure 11). The development of low
temperature solution technology has obtained the advantages of energy saving, simplicity and low
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cost compared with the traditional vacuum process. It has a great application prospect in the facile
low-temperature solution production of high-quality flexible oxide electronic devices.

 

 

 

Figure 9. A schematic of densifying a sol–gel metal oxide film from as-spun xerogel via high-temperature
thermal annealing [40]. Reprinted with permission from [40]; 2017 Elsevier.

 

 

 

Figure 10. Schematic diagram of ZrAcAc sol–gel transformation mechanism under ultraviolet ozone
(UVO) irradiation [92]. Reprinted with permission from [92]; 2017 Elsevier.

 

 

 

Figure 11. Comparison of leakage current in ZrO2 films after annealing by UVO and high-temperature
(HT) [92]. Reprinted with permission from [92]; 2017 Elsevier.

Table 1 shows the comparison of the properties of ZrO2 and its optimized composite materials
mentioned in this paper.
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Table 1. Comparison of relevant properties of ZrO2 and its composite material.

Material
Structure

Leakage
Current
Density
(A/cm2)

EOT
(nm)

Carrier
Mobility
(cm2/V·s)

Density of
States

(eV−1cm−2)

k

Value

Threshold
Voltage

(V)

Deposition
Method

Application Ref.

ZrO2 – – 28 – 25 3.2
RF

magnetron
sputtering

TFT [4]

N2 + ZrO2 10−9~10−8 – 22.5 7.06 × 1012 0.1 EBE and
PECVD TFT [35]

HfZrO2 3.6 × 10−5 1.6~1.8 – – 29~37 – ALD MIM [62]
ZrO2/Si-N - 1.6 – 5 × 1012 11.5 – ALD MIM [53]

ZrAlO 6.2 × 10−7 19.3 40.6 3.30 × 1012 19.67 0.71 ALD FET [57]
t-ZrO2/

Al2O3
3.43 × 10−5 1.09 – 3.35 × 1011 21 – Remote

plasma ALD MOS [81]

PMMA-
ZrO2

10−6~10−5 – 0.48 - 4~12 3.3 Sol−Gel TFT [69]

Gd-ZrO2 1.8 × 10−6 4.9 – 1.34 × 1011 10.3 – Sol−Gel MOS [61]
ZrHfO2-
PMMA 7.7 × 10−6 – 2.45 – 7.2~9.4 1.2 Sol−Gel TFT [66]

PMMA-
ZrO2

3 × 10−9 – 5.7 × 10−2 7.5 × 1010 – 0.8 EBE and
Sol−Gel OFET [68]

Y-ZrO2 1.14 × 10−7 0.67 68 1.2 × 1012 30~33 – co-sputtering FET [63]

5. Conclusions

In summary, ZrO2 is one of the most promising materials to replace traditional SiO2 and Si3N4

dielectric layers due to its notably properties highlighting a (i) high dielectric constant, (ii) the capability
of the room temperature process, (iii) high melting point, (iv) large band gap offset and (v) good
thermal stability of contact with silicon and process compatibility. ZrO2 and its optimized composite
materials prepared by various deposition methods not only effectively reduced the leakage current
and threshold voltage of the device, but also improved the on-to-off ratio of the device and the ability
of the gate to control the current between the source and drain. It has great potential in CMOS and TFT
devices and metal-insulator-metal (MIM) capacitor applications. However, there are still a series of
problems to be solved to make it really practical. For example, the gate depletion effect of poly-Si will
form a high resistance gate, and the interface mismatch between poly-Si gate and high k dielectric lead
to the decrease of carrier mobility. The interface states caused by high k dielectric material will also
cause a Fermi level pinning phenomenon, which leads to the shift of the gate voltage threshold and
shows the need to find a suitable metal gate to replace the polysilicon gate electrode [24]. At the same
time, the optimized and improved Zr-based films should conform to the trend of flexible, low-cost,
low-temperature and printable electronic applications in the future.

The challenge that the new generation of scientists and engineers will face is not only to optimize
and improve these new materials in the laboratory, but also to merge with the mature silicon process
and Zr-based gate dielectric films in order to meet the requirements of the semiconductor industry.
It can be expected that in the near future, the improved Zr-based and its composite gate dielectric
films as high-k materials will first enter a practical stage in high-performance TFTs, and then will be
used as the next generation of high-k materials in MOSFETs with the development and maturity of
related technologies.
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