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Sodium ion batteries (SIBs) are one of the most potential alternative rechargeable

batteries because of their low cost, high energy density, high thermal stability, and good

structure stability. The cathode materials play a crucial role in the cycling life and safety

of SIBs. Among reported cathode candidates, Na3V2(PO4)3 (NVP), a representative

electrode material for sodium super ion conductor, has good application prospects due

to its good structural stability, high ion conductivity and high platform voltage (∼3.4 V).

However, its practical applications are still restricted by comparatively low electronic

conductivity. In this review, recent progresses of Na3V2(PO4)3 are well summarized and

discussed, including preparation and modification methods, electrochemical properties.

Meanwhile, the future research and further development of Na3V2(PO4)3 cathode are

also discussed.
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INTRODUCTION

Lithium-ion battery (LIB), a kind of rechargeable battery, has been designed andmodified to power
portable electronic equipment, electric vehicle and even energy storage power station because of
its high energy density, high voltage, and environmentally friendly (Goodenough and Park, 2013;
Song et al., 2014a; Han et al., 2018; Yi T. F. et al., 2018; Fang R. et al., 2019; Li et al., 2019; Fang
et al., 2020; Nie et al., 2020a,b; Wang et al., 2020). However, large-scale energy storage applications
of LIBs could be hindered by the high cost of lithium minerals (Jiang et al., 2020; Yi et al., 2020).
Hence, finding an alternative and sustainable electrochemical battery is necessary (Yang et al., 2011;
Yabuuchi et al., 2014; Liu et al., 2018; Mao et al., 2018). Among the optional energy storage systems,
sodium ion batteries (SIBs) have strongly caught researcher’s attentions on account of abundant
sodium resources, high energy storage capacities and high electrochemical activity (Komaba et al.,
2011; Lee et al., 2011; Ponrouch et al., 2012; Tepavcevic et al., 2012; Chang et al., 2013; Slater et al.,
2013; Farbod et al., 2014; Li W. et al., 2014; Xie et al., 2014; Zhong et al., 2016; Zhu et al., 2016; Li
and Zhou, 2018; Nayak et al., 2018; Song et al., 2018; Vaalma et al., 2018). Though SIBs have similar
structure with lithium ion batteries (Figure 1) (Li et al., 2013; Palomares et al., 2013; Pan et al., 2013;
Kundu et al., 2015; Hwang et al., 2017; Zhao, 2019), Na ion has lager radium than lithium ion and
easily coordinate in crystalline materials. Therefore, exploring appropriate host materials or other
high energy density cathode materials are necessary for the developing of SIBs.

Suitable cathode materials should allow rapid Na-ion transport but also maintain structural
stability and against the structural distortion/volume change in the process of Na ion
extraction/insertion (Qi et al., 2015; Fang et al., 2016; Lee et al., 2016; Liu et al., 2016). The cathode
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FIGURE 1 | Principe diagram of sodium ion battery work.

materials of SIBs mainly include lamellar materials (Komaba
et al., 2010; Kim et al., 2011, 2012; Liao et al., 2013; Tu et al., 2017;
Xiao Y. et al., 2018), polyanionic materials (Ong et al., 2011; Fang
et al., 2017) and polymer materials (Hwang et al., 2017; Deng
et al., 2018). Among them, layered NaxMnO2 (Caballero et al.,
2002) and NaxCoO2 (Samin et al., 2012), as well as phosphates-
based NaMPO4 (M = Fe, Co, Ni, Mn) (Oh et al., 2012; Zhu
et al., 2012; Hasa et al., 2014) have been deeply studied. Especially,
sodium super ion conductor (NASICON) structured composite,
such as Na3V2(PO4)3 (NVP) is likely to be the best candidate,
because it has high theoretical energy storage capacities (117.6
mAh g−1), and rich Na-ion transport channels resulting from
its open three-dimensional (3D) framework. However, the NVP
has low electronic conductivity, which is not good for the
migration of electrons. In order to solve this issue, many
efforts have been done. For example, preparing nano-scaled
Na3V2(PO4)3 to reduce the diffusion path of Na+ and accelerate
its transportation. In addition, coating NVP with conductive
carbon/polymer materials, or modifying Na3V2(PO4)3 with
heterogeneous elements are also valid means to improve the
electric conductivity of NVP.

In this minireview, the recent progresses of NVP are well
summarized and discussed, including preparation methods,
modification means (nanostructure, carbon coating, element
doping) and their effects on the electrochemical property of
NVP cathode.

STRUCTURE OF NA3V2(PO4)3

Served as a greatly hopeful cathode material of SIBs, NVP
crystallizes have trigonal system and belong to R-3c space group.
As shown in Figure 2, VO6 octahedra and PO4 tetrahedra
interlink mutually to construct a 3D [V2(PO4)3] frame via
sharing corners (Kabbour et al., 2011; Kang et al., 2012; Shen
et al., 2015a; Lavela et al., 2018), in which sodium ion occupies

two different positions of Na(1) and Na(2), respectively. The
desorption process of sodium ion relates to the transformation
from Na3V2(PO4)3 to NaV2(PO4)3, it is generally considered
that all the outer sodium ions come from the Na(2) position
while the Na(1) position is unchanged. Though two sodium are
stripped, the frame of NVP can still be maintained due to the
strong covalent effect of (PO4)

3−, leading to a high capacity of
117.6 mAh g−1 (Zheng et al., 2018).

SYNTHETIC METHODS OF NA3V2(PO4)3

Synthetic methods play an important role in controlling the
morphology and particle size of electrode materials, which
will further affect their electrochemical performance. Several
approaches to synthesize Na3V2(PO4)3 electrode materials for
SIBs, such as sol-gel method (Lim et al., 2012; Pivko et al., 2012;
Li et al., 2015a; Wang S. Y. et al., 2015; Klee et al., 2016a; Song
et al., 2016), hydrothermal method (Li H. et al., 2014; Nie et al.,
2014; Ren et al., 2016), solid-state method (Gopalakrishnan and
Rangan, 1992; Zatovsk, 2010; Du et al., 2013; Zhu et al., 2014; Klee
et al., 2016b), and electrospinning method (Kajiyama et al., 2014;
Li et al., 2015b) are summarized as follow.

Sol-Gel Method
Sol-gel method is the most common method to synthesize
Na3V2(PO4)3, which converts colloidal suspension (sol) into a
whole 3D network (gel) with submicron scale pores. Compared
with other approaches, Sol-gel method has lower operating
temperature and the preparation process is easy to control.
However, it usually needs high cost and complex preparation
routes. Hence, it does not always meet the industrial demands
(Zhou et al., 2009; Rui et al., 2014; Wang D. X. et al., 2015).

Wang et al. (2019) have successfully prepared a Na3V2(PO4)3
cathode material by a typical sol-gel method using citric acid
as complexant. The as-obtained Na3V2(PO4)3 sample exhibits
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FIGURE 2 | Structure scheme of Na3V2 (PO4)3.

FIGURE 3 | (A,B) The SEM images of NVP/C, (C) constant-current charge/discharge of NVP-based electrodes material at 1C, (D) C-rate test of Na3V2 (PO4)3-based

electrodes.

a high initial discharge capacity of 107 mAh g−1 and high
reversible capacity (97.1 mAh g−1) after 150 cycles at 0.2 C.
A Na3V2(PO4)3 cathode material coated by carbon has been

prepared by standard sol-gel method, which shows particles
size range from 10 to 20µm (Figures 3A,B) (Böckenfeld
and Balducci, 2014). Results from galvanostatic intermittent
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FIGURE 4 | (A) Schematic illustration ofthe fabrication of NVP/C materials, (B) rate performance of NVP/C, (C) cycle performance of the NVP/C cycled at 10C for

1,000 cycles, (D) SEM image of the NVP/C at 10C for 1,000 cycles.

titration technique (GITT) and cyclic voltammetry (CV) test
reveal the apparent diffusion coefficient of sodium ions in the
rhombohedral NVP. It ranges from 6 × 10−13 to 2 × 10−15

cm2 s−1, following an alike tendency that lithium ions behave
in monoclinic Li3V2(PO4)3, indicating that the potential in ion
extraction/insertion is minimum. Figure 3C shows the cycling
performance over 100 cycles at 1 C. As described, the cathode
material displays a discharge capacity of 92 mAh g−1 at the first
cycle and 85 mAh g−1 at the 100th cycle, corresponding to a
capacity retention rate of 92%. It also presents good rate behavior
(Figure 3D). When cycled from 0.1 to 0.5 C (corresponding to
currents of 11.9 to 59.5 mAh g−1), and values in the order of
95 mAh g −1.

Hydrothermal Method
Hydrothermal method is a liquid chemical synthesis approach
that can guarantee a homogeneous particle size distribution and
high purity. Therefore, the hydrothermal method becomes one of
the most common methods to synthesize the electrode materials.
However, it should be noted that the hydrothermal method is not
easily detected because the reactions are carried out in a kettle,

thus making the process difficult to monitor (Liu et al., 2004; Gao
et al., 2013).

Wang (2019) have obtained Na3V2(PO4)3 by one-step
hydrothermal method. According to their report, the as-
synthesized Na3V2(PO4)3 has a discharge specific capacity of
89.3 mAh g−1 at the first cycle, and after 30 cycles, the capacity
increases to 91 mAh g−1, signifying a good cycling performance.
Ruan (Ruan et al., 2017) also successfully synthesizes a new
kind of chrysanthemum structure Na3V2(PO4)3 and carbon
composite (NVP/C) cathode material, and corresponding
fabrication process is presented in Figure 4A. During the sodium
ion diffusion process, scattering nanosheets in chrysanthemum
petals are good for reducing energy consumption, while
the carbon-coated layer can obviously boost the entirety
electrochemical behavior. As a result, the sample shows an
excellent electrochemical property because of its characteristic
structure. It processes a premier discharge capacity of 117.4
mAh g−1 at 0.05 C and an ultra-high specific capacity of 101.3
mAh g−1 at 10C (Figure 4B). Furthermore, it can maintain a
high discharge capacity of 87.5 mAh g−1 after 1,000 cycles at
10C, as displayed in Figure 4C. Figure 4D shows the scanning
electron microscope(SEM) image of the NVP/C after cycling,
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FIGURE 5 | (A) SEM images of NVP/C, (B) cycle performance of the NVP/C, (C) cycle performance of the NVP/C cycled at a rate of 5C for 1,000 cycles.

it clearly exhibits that the chrysanthemum structure can still
be maintained even after 1,000 cycles at 10C. Therefore, the
improved electrochemical property of NVP/C can be attributed
to its excellent structure stability.

Solid-State Method
Solid-state method, a traditional method of preparing electrode
materials, is widely used in large-scale industrial application
because of controllable reaction conditions, low cost and simple
operation process. It should be noted that solid-state method
still faces many challenges, such as anomalous morphologies and
inhomogeneity of products.

A carbon-coated Na3V2(PO4)3 cathode material (NVP/C)
is prepared through the simple and easy-to-operate solid-
state method (Zhu, 2019). The as-prepared NVP/C composite
exhibits some porous network structure (Figure 5A), which are
good for increasing specific surface area, promoting electrolyte
infiltration, and facilitating transmissions of sodium ions. As
a consequence, the electrochemical performances of NVP after
modification are significantly enhanced. NVP/C cathodematerial
shows an initial discharge capacity of 95.6 mAh g−1 at 0.5 C
(Figure 5B), signifying a good cycling performance.When cycled
at 5 C, it can still deliver a high capacity of 71.39 mAh g−1

and go through 1,000 cycles with a capacity retention of
72.3% (Figure 5C). Jian (2012) also reports a carbon-coated
Na3V2(PO4)3 material made by one-step solid phase method,

which manifests a discharge capacity 107.1 mAh g−1 at 0.1 C and
obtains a lifespan over 80 cycles with a retention of 92.9%.

Other Synthesis Methods
Except for the technologies mentioned above, electrospinning
is a method to fabricate fiber structure electrode materials.
Compared with other methods, electrospinning can satisfy
the large-scale industrial preparation and able to prepare
uniform materials. Liu et al. (2014) use 20–30 nm NVP
nanoparticles and citric acid as reactants to prepared a framework
Na3V2(PO4)3/carbon (NVP/C) composite material by a simple
electrostatic spinning and subsequent carbonization strategy.
Figure 6A shows the SEM image of the final composite, it
is obvious that NVP/C nanofibers interweave each other to
form a 3D network. Figure 6B shows the transmission electron
microscopy(TEM) images of NVP/C, where NVP are coated
uniformly by thin carbon layer and form composite fiber
with diameters about 200 nm. Ascribing to the 3D crosslinked
conductive network, the as-obtained cathode material exhibits
high charge (discharge)capacity of 103(101) mAh g−1 at 0.1 C
(Figure 6C) and manifests a stable discharge capacities of 77, 58,
39, and 20mAh g−1 at 2, 5, 10, and 20C, respectively (Figure 6C).

In summary, synthesis methods can obviously affect the
structure and morphology of NVP cathode materials and further
determine their electrochemical performance. Sol-gel method is
widely used for obtaining electrode materials with homogeneous
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FIGURE 6 | (A) SEM image of NVP/C, (B) low-magnification TEM image, (C) the first Charge-discharge curve at 0.1C rate, (D) cycling performance of the NVP/C

cathode at different current densities.

TABLE 1 | Electrochemical performances of NVP prepared by different methods.

Synthetic methods Rate/CCycles Capacity/

mAh g−1

Sol-gel method (Kajiyama et al., 2014) 0.2 150 97

Sol-gel method (Li et al., 2015b) 1 100 85

Hydrothermal method (Wang D. X. et al., 2015) 0.2 30 91

Hydrothermal method (Wang et al., 2019) 10 1,000 87.5

Solid-state method (Böckenfeld and Balducci, 2014) 5 1,000 52

Solid-state method (Liu et al., 2004) 0.1 80 99.5

particle size. Hydrothermal treatment can guarantee high specific
surface area and high purity. Solid-state method has the merits
of low cost and simple operation process. Electrospinning is
suitable to large-scale industrial preparation and able to prepare
the uniform materials. Herein, the electrochemical performances
of NVP prepared by different methods are compared and listed
in Table 1.

As shown, Na3V2(PO4)3 with excellent electrochemical
property should have homogeneous particle size distribution and
high specific surface area, which are convenient to the diffusion
of Na+. In this respect, hydrothermal method behavior much
better than other preparing technologies, however, considering

the industrial application, this methods need to be improved or
coordinated with other approaches.

MODIFICATION APPROACHES OF
NA3V2(PO4)3

In other way, modification approaches including element doping
(Aragón et al., 2015a,b; Fang et al., 2015; Shen et al., 2015b;
Xu and Sun, 2016; Zhou W. D. et al., 2016; Chen L. F. et al.,
2017; Zheng Q. et al., 2017; Li et al., 2018; Xiao H. et al., 2018;
Zhao et al., 2018; Zhu et al., 2018; Fang J. Q. et al., 2019), and
nanostructures (Huang et al., 2002; Li S. et al., 2014; Li et al.,
2015c; Chu and Yue, 2016; Chen S. Q. et al., 2017;Wei et al., 2017;
Zhang C. Z. et al., 2017) can also deeply influence the cycling life
and rate performance of NVP.

Element Doping
Adding heterogenous ions with larger ionic radius into the
Na3V2(PO4)3 crystaline is an effective way to increase crystal
volume, thereby expanding the tunnel for the diffusion of Na+.
Furthermore, this method can also increase active sites. Hence,
element doping is usually considered as a useful way to improve
the performance of electrode materials.

Lim et al. (2014) use K as heterogeneous element to
enlarge the diffusion accesses of Na+ and maintain the
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FIGURE 7 | (A) XRD patterns of NVP/C doped with K+, (B) initial charge-discharge curve, (C) cycle property of NVP/C doped with K+, (D) rate capabilities of NVP/C

doped with K+.

NASICON framework during repeated cycling process, obtaining
a significant improvement of electrochemical performance.
The XRD patterns in Figure 7A reveal that the addition of
K+ cannot change the crystal structure of NVP. Even there
are no obvious difference in initial charge/discharge capacity
between undoped NVP/C and doped NVP/C (Figure 7B),
the cycling stability and rate performance of doped NVP/C
cathode material with doping content of 0.09 and 0.12 increase
significantly (Figures 7C,D).

Shen et al. (2015a) utilize B doped carbon to coat
Na3V2(PO4)3 with different B source (BC3, B4C, BCO2,
and BC2O). It shows that the more BC2O and BCO2 in
the Na3V2(PO4)3/carbon composite, the best electrochemical
property can be achieved, especially high-rate capability and
cyclic stability. This can be attributed to the increased external
defects and active sites derived from BC2O and BCO2 doping,
which accelerate the migration of Na+ in the carbon layer.

Chen et al. (2018) synthesize F-doping and V-defect
Na3V1.98(PO4)3−xF3x/C composites by solid-state reaction route.
F-doping is advanced to short the pathway of Na+ diffusion.
The Na3V1.98(PO4)2.9F0.3/C composite delivers an initial charge
capacity as high as 143.5 mAh g−1 at 0.1 C. After 100 cycles at
1 C, a reversible capacity is 100.6 mAh g−1.

Besides, transition metal elements are also commonly
used to doping NVP to improve the electrochemical
performance. Liu et al. (2019) use Fe element to prepare
Fe-doped Na3V2(PO4)3@C cathode material. The as-obtained
Na3V1.85Fe0.15(PO4)3@C shows a high capacity of 103.69
mAh g−1 and retain a capacity of 94.45 mAh g −1 after 1,200
cycles at 20 C.

Nanostructure
Reducing particle size of NVP to nanometer scale is another
way to shorten Na+ diffusion distance, and expand the
effective contact area between electrolyte and the active material
(Wu et al., 2019). Therefore, cycling performance as well as
rate capabilities of Na3V2(PO4)3 can be enhanced. However,
nanomaterials are easy to agglomerate, leading to an irreversible
capacity loss.

As Figure 8A presented, Yang et al. (2015) have embed
parts of NVP nanoparticles into carbon nanofibers to obtain
Na3V2(PO4)3/carbon nanofibers composite (NVP-CNF), which
has ultra-high power and excellent cycle performances due
to rapid migration of sodium ions along with the conductive
CNF. The XRD patterns of the prepared NVP-CNF composites
are displayed in Figure 8B. It shows that all the composites
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FIGURE 8 | (A) The formation process of the NVP-CNF composite by schematic diagram, (B) X-ray diffraction patterns of NVP-CNF-4 h and NVP-CNF-6 h, (C) SEM

image of NVP-CNF composite, (D) TEM image of NVP-CNF composite, (E) rate property plots of NVP-CNF-4 h and NVP-CNF-6 h, (F) cycle property of NVP-CNF-4 h

and NVP-CNF-6 h.

have NASICON structure, and belong to the R-3c space group.
Figures 8C,D reveal that the NVP nanoparticles have uniformly
embedded in the carbon nanofiber. As seen in Figures 8E,F, the
NVP-CNF composites have superior rate performances and high
capacity retention of∼93% at 1C after 300 cycles.

As demonstrated in Figure 9, nitrogen doped grapheme
(N-graphene) has been used as coating layer to modify
Na3V2(PO4)3 nanocrystal (NVP/C@N-graphene) (Liu and Guo,
2017). Figures 10A,B display the SEM images of NVP/C@N-
graphene, in which the NVP/C particles are anchored on the
surface of N-graphene and construct an ideal 3D conductive
network. Benefiting from this unique structure, the as-obtained
cathode material has an initial specific capacity of 115.2 mAh
g−1, amounting to about 97.6% of the theoretical capacity of NVP

(Figure 10C). In addition, Figure 10D reveals that the composite
material still have a high capacity after 1,000 cycles at 15C, which
can be ascribed to the enhanced conductivity by the cross-linked
network consisting of carbon-coating layer and N-graphene.

In general, Nano-structure is a promising method to decrease
the Na+ and electrons diffusion distance inside the NVP cathode
materials, thereby improving the electrochemical properties of
NVP materials.

Other Modification Ways
Except for the technologies mentioned above, some other
strategies can also enhance cycling stability as well as rate
capability of NVP, such as encapsulating NVP into conductive
materials (Jung et al., 2013; Tao et al., 2016) or coating it with
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FIGURE 9 | The formation process of the NVP/C@N-graphene composite by schematic diagram.

conductive materials (Hultman et al., 2003; Xiong et al., 2012;
Shen et al., 2013, 2016; Song et al., 2013, 2014b,c; Li G. et al., 2014;
Si et al., 2014; Guo et al., 2015; Rui et al., 2015; Li et al., 2016, 2017;
Xu et al., 2016; Zhou X. S. et al., 2016; Chen L. et al., 2017; Liang
et al., 2017; Zhang H. et al., 2017; Gu et al., 2018; Kim et al., 2018;
Yi H. M. et al., 2018).

A porous Na3V2(PO4)3/carbon(NVP/C) has been synthesized
by a new solution-based method (Saravanan et al., 2013).
As we can see from the field emission scanning electron
microscope (FESEM) images in Figures 11A,B, NVP/C particles
with irregular morphologies and uneven sizes ranging from 500
to 900 nm build up interlinked networks. The composite exhibits
initial charge capacity of 50 mAh g−1 at 0.2 C, and retains 85%
of its primal capacity at 10C. The first charge-discharge curves of
NVP/C at various current rates are shown in Figure 11C, which
implies low over potential and good rate behavior. As illustrated
in Figure 11D, the composite go through 30,000 cycles and just
lose 50% of its original capacity.

Jiang et al. (2015) have impregnated NVP nanoparticles
coated by carbon into a ordered 3D mesoporous interconnected
CMK-3(NVP@C@CMK-3). Figure 12A displays that
NVP@C@CMK-3 has a rod-like shape, NVP@C particles
are encapsulated in the pores of CMK-3. The outer carbon
layer could greatly enhance the conductivity of the NVP. As a
result, the NVP@C@CMK-3 demonstrates long lifespan over
2,000 cycles and high remaining capacity of 78 mAh g−1 at 5 C

(Figure 12B), indicating good cycling performances. Compared
with bare NVP, faster diffusion of Na+ owing to rich porous
structure of the NVP@C@CMK-3 improves the cycle capability.

The electrochemical performances of aforementioned NVP
cathode materials modified by different methods are compared
and listed in Table 2. It is clearly that nanostructured NVP
present much better electrochemical performance because they
can provide fast Na+/electrons migration pathway and more
active sites for electrochemical reactions.

CONCLUSIONS AND OUTLOOK

As one kind of SIBs cathode material, Na3V2(PO4)3 has many
merits including high energy storage capacities and excellent
structural stability. Unfortunately, its large scale applications are
impeded by some obstacles. The main challenge of Na3V2(PO4)3
is the poor electron conductivity. Besides, as similar as other
inserting materials, the volume of Na3V2(PO4)3 will change
during charge and discharge process. In addition, the crystal
structure of Na3V2(PO4)3 may change in low temperature.
Corresponding expressions have been added in the last part of
the revised manuscript.

This review summarizes some common preparing approaches
of Na3V2(PO4)3 cathode materials and analyzes their effects on
the electrochemical of NVP. Sol-gel method is widely used for
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FIGURE 10 | (A,B) SEM image of the NVP/C@N-graphene, (C) charge-discharge curve of NVP/C@N-graphene, (D) cycle property of the NVP/C@N-graphene

at 15C.

FIGURE 11 | (A) FESEM images at low, and (B) high magnification of NVP/C, (C) galvanostatic cycling of NVP/C at different current rates, (D) cycle property of the

material cycled at a rate of 40C for 30,000 cycles.
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FIGURE 12 | (A) SEM image of the NVP@C@CMK-3, (B) cycle properties of the NVP,NVP@C, NVP@CMK-3, and NVP@C@CMK-3 at 5C.

TABLE 2 | Cycle performances of NVP by various modification methods.

Modification method Rate/C Cycles Capacity/mAh g−1

B doped NVP (Huang et al., 2002) 0.2 40 96.6

Ti doped NVP (Chu and Yue, 2016) 10 200 95.8

Nanostructure (Chen S. Q. et al., 2017) 1 300 104.6

Nanostructure (Lim et al., 2014) 15 1,000 62.7

obtaining electrode materials with homogeneous particle size.
Hydrothermal treatment can guarantee high specific surface area
and high purity of products. Solid-state method occupies merits
of low cost and simple operation process. Electrospinning is
suitable to large-scale industrial preparation and able to prepare
the uniform materials. NVP cathode materials prepared by all
of these methods have various properties, which make the NVP
have good prospects for development.

Many kinds of conductive carbon materials are used as
coating layer to improve the conductivity of NVP. Various
of nanostructured NVP are prepared to shorten the diffusion
distance of Na+/electrons. Some elements with larger ionic
radium are applied to replace Na+, for the sake of enlarging

volume of NVP and proving more reaction sites. All of
these approaches indeed help enhancing the electrochemical
performances of Na3V2(PO4)3 cathode materials

It is believed that low cost and large-scale material preparation
can be achieved by continuous in-depth researches, and
Na3V2(PO4)3 integrating stable structure, high surface specific
are, fast Na+/electrons migration channels will be developed. By
doing that, the industrial application of high performance NVP
cathode materials will be within reach.
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