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Background: Genetic influences are ubiquitous as virtually all phenotypes and most exposures typically classified
as environmental have been found to be heritable. A polygenic score summarises the associations between millions of
genetic variants and an outcome in a single value for each individual. Ever lowering costs have enabled the
genotyping of many samples relevant to child psychology and psychiatry research, including cohort studies, leading
to the proliferation of polygenic score studies. It is tempting to assume that associations detected between polygenic
scores and phenotypes in those studies only reflect genetic effects. However, such associations can reflect many
pathways (e.g. via environmental mediation) and biases. Methods: Here, we provide a comprehensive overview of the
many reasons why associations between polygenic scores, environmental exposures, and phenotypes exist. We
include formal representations of common analyses in polygenic score studies using structural equation modelling.
We derive biases, provide illustrative empirical examples and, when possible, mention steps that can be taken to
alleviate those biases. Results: Structural equation models and derivations show the many complexities arising from
jointly modelling polygenic scores with environmental exposures and phenotypes. Counter-intuitive examples
include that: (a) associations between polygenic scores and phenotypes may exist even in the absence of direct
genetic effects; (b) associations between child polygenic scores and environmental exposures can exist in the absence
of evocative/active gene–environment correlations; and (c) adjusting an exposure-outcome association for a
polygenic score can increase rather than decrease bias. Conclusions: Strikingly, using polygenic scores may, in
some cases, lead to more bias than not using them. Appropriately conducting and interpreting polygenic score
studies thus requires researchers in child psychology and psychiatry and beyond to be versed in both epidemiological
and genetic methods or build on interdisciplinary collaborations. Keywords: Polygenic scores; phenotypes;
environment; epidemiology; biases.

Introduction
A polygenic score aims to capture individuals’ genetic
predispositions for a phenotype. Most often, a
weighted sum is computed, with weights obtained
from a Genome-Wide Association Study (GWAS),
resulting in a single value per individual and a single
variable per sample (e.g. the polygenic score for
height). The first (complementary) article of this issue,
Allegrini, Baldwin, Barkhuizen, and Pingault (2022),
provides a formal definition of polygenic scores, a
thorough discussion of the methods available to
compute them, and examples of applications in
longitudinal settings. Once computed, polygenic
scores can be tested for associations with any variable
of interest in an independent sample. First, polygenic
scores can be associated with their corresponding
traits. For example, the polygenic score for height
currently explains around 20% of the variance in
height (Yengo et al., 2018). Cross-trait associations
can also be tested. For example, the current polygenic

score for attention-deficit hyperactivity disorder
(ADHD) not only predicts around 1% of the variance
in ADHD symptoms throughout childhood and ado-
lescence but also predicts body mass index (BMI),
with some evidence that the link is stronger in
adolescence (Liu et al., 2021). Polygenic scores have
been shown to be associated with many developmen-
tal outcomes. For example, the polygenic score for
ADHD is associated with age at walking (Hannigan
et al., 2021). Other developmental outcomes pre-
dicted by their respective polygenic scores include age
at first sexual intercourse or age at first birth (Mills
et al., 2021). Intriguingly, polygenic scores for indi-
vidual traits also predict variables considered to be
environmental influences shaping child and adoles-
cent development. For example, a polygenic score for
educational attainment computed in children pre-
dicts environmental exposures such as maternal
education, breastfeeding, or watching television (Kra-
pohl et al., 2017). In addition, polygenic scores for
depression, schizophrenia, and neuroticism are asso-
ciated with being adopted in childhood, while poly-
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intelligence predict exposure to bullying victimisation
in early adolescence (Lehto et al., 2020; Schoeler
et al., 2019). In sum, polygenic scores are not only
used to predict their corresponding phenotype but
also related phenotypes, intermediate phenotypes, or
environmental exposures (e.g. the polygenic score for
schizophrenia predicts schizophrenia but is also
associated with substance use, brain structures,
and urbanicity) (Newbury et al., 2020). In this review,
we discuss the mechanisms that can generate these
observed associations and the challenges associated
with interpreting them. Several of the challenges of
polygenic score research we discuss below, such as
measurement error, confounding, mediation, and
collider bias, are not specific to genetics but shared
with many quantitative sciences, including psychol-
ogy, psychiatry, and epidemiology. This is because
polygenic scores are variables that often share fun-
damental limitations with other variables typically
used in those fields. For example, we may only have
inaccurate measures of the phenotype we are inter-
ested in, leading tomeasurement error (e.g. ratings on
a questionnaire for ADHD only provide a noisy
approximation of the true levels of ADHD symptoms);
or the measure we have may not only capture what
was intended (e.g. parental ratings of ADHD may also
reflect parental biases rather than simply child
ADHD).

Because a polygenic score is derived from a linear
combination of effect alleles for a given phenotype, it
is tempting to assume it captures the genetic liability
for this phenotype. Although polygenic scores aim to
and can capture genetic effects, several limitations
must be acknowledged. First, polygenic scores cur-
rently capture only a fraction of SNP-heritability,
which is a measure of heritability due to the effects of
all measured common Single Nucleotide Polymor-
phisms (SNPs) (Campos, Sorensen, & Gianola, 2015;
Yang, Zeng, Goddard, Wray, & Visscher, 2017). This
gap between the variance captured by polygenic
scores and heritability estimates can be conceptu-
alised as measurement error (Pingault, Rijsdijk,
et al., 2021; Tucker-Drob, 2017). For example, the
SNP heritability of ADHD is 21.6% but the polygenic
score for ADHD explains a maximum of 5.5% of the
variance in ADHD (Demontis et al., 2019). This gap
is partly due to the imperfect estimation of the
associations between SNPs and phenotype in the
original GWAS, for example, because of the limited
sample size. The resulting noise carries over when
the estimates are used as weights in the construction
of the polygenic score. As a consequence, the
observed null associations between the resulting
polygenic scores and outcomes of interest may
reflect false negatives (i.e. where a true association
exists). Second, statistical biases common to epi-
demiological studies such as attrition or collider bias
can also affect polygenic scores’ outcome associa-
tions (Akimova, Breen, Brazel, & Mills, 2021). Third,
polygenic scores are also afflicted by biases common

to many genetic association studies, which are
detailed below (Blanc & Berg, 2020). This can lead
to false-positive findings, that is, polygenic scores
predicting outcomes in the absence of a true under-
lying association. Fourth, even when none of these
biases are present, the association between poly-
genic scores and outcomes can be complex to
interpret. For example, part of the association
between polygenic scores and predicted phenotypes
can be mediated (see Figure S1 for an explanation of
mediation) by environmental variables (in the same
way that genetic effects on lung cancer can occur via
smoking) (Gage, Smith, Ware, Flint, & Munafò,
2016; Munafò et al., 2012). Acknowledging this
complexity is essential to conduct and interpret
polygenic score studies.

Here, we aim to provide a comprehensive overview
of factors and biases that can affect associations
between polygenic scores, environmental risk, and
phenotypes. We provide a formal representation of
different issues and how they affect association
estimates and interpretation. Where possible, we
also provide a brief overview of methods and designs
that can be used to deal with those issues.

Direct genetic effects and measurement error

The direct effect of a SNP on a phenotype can be
conceived as a causal effect in the sense that a change
in the SNP, for example by gene editing, should
theoretically lead to a change in the phenotype
(Lynch, 2021; Pingault, Richmond, Richmond, &
Smith, 2021). Additive heritability captures the addi-
tion of all such direct genetic effects. In Figure 1A,
direct genetic effects are captured by βG*Y*, from an
additive genetic factor (latent variable G*) to a per-
fectly measured phenotype (latent variable Y*). In a
standardised model, the square of βG*Y* equals addi-
tive heritability. However, a simple regression of a
measured phenotype Y on a polygenic score G (Fig-
ure 1B) does not capture βG*Y*, because of measure-
ment error. Measurement error can exist for the
phenotype (e.g. teacher reports of child anxiety may
not reflect the true extent of child anxiety): Y* is
imperfectly associated with Y (i.e. the standardised
loading lY from Y* to Y in Figure 1A, is inferior to 1). In
other words, Y* explains a limited percentage of the
variance in Y, that is equal to the reliability l2Y,
resulting in measurement error (1 − l2Y, i.e. the
standardised variance of Y minus the reliability).
The polygenic score G can also be conceived as a
measure of the true additive genetic factor with
substantial measurement error (G* explains l2G of
the variance in G, resulting in measurement error:
1 − l2G). The fact that polygenic scores are an imper-
fect measure of the true genetic values has consider-
able implications for polygenic score studies. As
depicted in Figure 1, the fitted parameter of a linear
regression of Y on G (bGY) is a biased approximation of
βG*Y*. As shown in the Appendix S1, we have:
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bGY ¼ lY lGβG∗Y ∗

Therefore, bGY is attenuated as a function of the
imperfect measurement of both Y* and G*. The bias,
that is, thefittedparameterminusthe trueeffect is thus:

BiasGY ¼ bGY � βG∗Y ∗ ¼ βG∗Y ∗ lY lG � 1ð Þ

If lY = lG = 1, there is no measurement error, and the
bias is null. Conversely, if the polygenic score or the
outcome is pure noise (lY or lG = 0), then the bias is
−βG*Y* and the observed association will be null. As a
numerical example, consider a highly heritable trait
as the outcome, that is,

β2G∗Y ∗ ¼ 0:902 ¼ 81%:

Assuming a measurement error for Y of 20%, that is,
1 − l2Y = 0.20, so that

lY ¼
ffiffiffiffiffiffiffiffiffiffiffi
0:80
p

and that G* explains 10% of the variance in G, so

lG ¼
ffiffiffiffiffiffiffiffiffiffiffi
0:10
p

:

We thus have

bGY ¼
ffiffiffiffiffiffiffiffiffiffiffi
0:80
p

�
ffiffiffiffiffiffiffiffiffiffiffi
0:10
p

� 0:90 ¼ 0:25:

Note that, in Figure 1B, the standardised bGY = rGY.
The variance explained by the polygenic score in the
observed phenotype (r2GY) is therefore close to 6%
(0.252), much lower than the underlying heritability.
Note that removing measurement error in Y

increases bGY but not massively,
ffiffiffiffiffiffiffiffiffiffiffi
0:10
p

� 0:90 ¼ 0:28,

as the measurement error in the polygenic score is
considerably higher. Most current polygenic scores

have limited reliability and capture a small percent-
age of phenotypic variance, sometimes less than
10%, even for highly heritable phenotypes (see
Table 1). The reliability of the polygenic score in
capturing SNP-heritability (h2

SNP) can be approxi-
mated based on the variance explained by the
polygenic score and SNP-heritability (Table 1 for
examples and Appendix S1 for derivation):

l2G ¼
r2GY

h2
SNP

Genetic confounding and mediation

The fact that polygenic scores currently explain a
small percentage of (SNP) heritability has wider
consequences on models commonly implemented in
child and adolescent psychiatry and beyond. Let us
extend the previous model by adding a risk factor X
(Figure 2). Figure 2A illustrates genetic confounding
where a genetic factor (G*) confounds the true
association between the exposure (X *) and the
outcome (Y*) (see Figure S1 for confounder defini-
tion). The true genetic confounding effect is equal to
βG*X*βG*Y* (Pingault, Rijsdijk, et al., 2021). Genetic
confounding is pervasive in psychiatric research.
This is because, in addition to influencing psychi-
atric outcomes, genetic factors are associated with
many exposures typically classified as environmen-
tal, thereby generating confounding. For example,
the polygenic score for schizophrenia has been found
to be associated with urbanicity, which is a known
exposure for schizophrenia. Polygenic scores have
been associated with many environmental exposures
relevant to child and adolescent psychology and
psychiatry, including maternal education, parent-
ing, breastfeeding, or bullying victimisation (Krapohl
et al., 2017; Newbury et al., 2020; Schoeler et al.,
2019). Recognising the role of genetics in

Figure 1 Measurement error. This figure and others present the true model (A) and the fitted model (B). In all figures, latent variables are
enclosed within a circle and denoted with * (e.g. Y*). Corresponding measured variables are enclosed within a square (e.g. Y). l are
loadings indexing reliability (e.g. lY). β stands for beta in the true model (e.g. βG*Y*), b for estimated betas (e.g. bGY), and r for correlation
(e.g. rGY). All betas and loadings are standardised with variances of latent and measured variables equal to 1.
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confounding associations between exposures and
outcomes, researchers have recently started to
adjust for polygenic scores when examining the
association between a risk factor and an outcome
(Croft et al., 2019; Lee et al., 2021; Paul et al., 2021).
For example, Croft et al. investigated the association
between trauma and later psychotic experience,
adjusting for a number of confounders including
polygenic scores for schizophrenia and bipolar dis-
orders. However, because those polygenic scores
have low reliability, the adjustment is incomplete
and can lead to the incorrect conclusion that the risk
factor is still associated with the outcome after
adjusting for genetic confounding. For simplicity,
we assume that X* and Y* are perfectly measured
and we compute the fitted parameter bX*Y* when
adjusting for the observed polygenic score. We show
in the Appendix S2 that:

bX ∗Y ∗ ¼ βX ∗Y ∗ þ βG∗X ∗βG∗Y ∗ 1� l2G
� �

1� l2Gβ
2
G∗X ∗

where the fitted parameter bX*Y* consists of the true
beta βX*Y* plus the true genetic confounding effect but
scaled by the measurement error of G (1 − l2G) (Pin-
gault, Rijsdijk, et al., 2021). The fitted betawill thus be
larger than the true beta as genetic confounding has
not been entirely adjusted for, to the extent that G is a
noisy measure of G*. This means that even when the
truebeta iszeroandX*hasnoeffectonY*, theobserved
beta will not be null. The bias:

BiasX ∗Y ∗ ¼ βG∗X ∗βG∗Y ∗ 1� l2G
� �

1� l2Gβ
2
G∗X ∗

can be almost as large as the true genetic confound-
ing effect if the reliability of G (l2G) is low (corre-
sponding to high measurement error), which is often
the case. Let’s take the example of (i) an exposure X*
with no effect on the outcome Y*, that is,

βX ∗Y ∗ ¼ 0:

(ii) a heritable outcome Y* with a SNP-heritability

h2
SNP ¼ 0:30,

leading to

βG∗Y ∗ ¼
ffiffiffiffiffiffiffiffiffiffiffi
0:30
p

,

as there are no genetic effects on Y* mediated by the
exposure. We also have substantial genetic effects on
the exposure, that is,

βG∗X ∗ ¼
ffiffiffiffiffiffiffiffiffiffiffi
0:15
p

and a polygenic score that captures 3% of the
variance in Y*. We thus have:

l2G ¼
0:03

0:30
¼ 0:10

and a bias of

Bias ¼
ffiffiffiffiffiffiffiffiffiffiffi
0:15
p � ffiffiffiffiffiffiffiffiffiffiffi

0:30
p � 1� 0:10ð Þ

1� 0:1� 0:15ð Þ ¼ 0:19:

Consequently, with a true effect that is null, we have
a fitted beta of 0.19 despite adjusting for the poly-
genic score. As such, even substantial associations
like the one mentioned above between trauma and
later psychotic symptoms can be theoretically
explained by genetic confounding that remains even
after adjusting for polygenic scores.

A related question of interest, also represented in
Figure 2, is how much of the effect of the polygenic
score is mediated by the risk factor, that is, the
pathway G*→X*→Y*. Several studies have aimed to
examine to what extent the effect of a polygenic score
on an outcome is mediated by important risk factors
throughout development (Belsky et al., 2016; Wertz

Table 1 Variance explained by polygenic scores, SNP-, and twin heritability estimates

Phenotype R2
PGS h2

SNP

R2
PGS /

h2
SNP h2

Twin References

Educational
attainment

0.114 0.147 0.776 0.40 Branigan, McCallum, and Freese (2013); Lee et al., (2018)

Intelligence 0.052 0.190 0.274 0.66 Haworth et al. (2010); Savage et al. (2018)
Childhood
intelligence

0.022 0.274a 0.080 0.41 Benyamin et al. (2014); Haworth et al. (2010)

Risk taking 0.016 0.045 0.356 0.44 Linnér et al. (2019); Wang, Zheng, Xuan, Chen, and Li (2016)
ADHD 0.055 0.216 0.255 0.76 Demontis et al. (2019); Faraone et al. (2005)
Autism 0.025 0.118 0.212 0.64–0.91 Grove et al. (2019); Tick, Bolton, Happé, Rutter, and Rijsdijk

(2016)
Major depression 0.032 0.089 0.360 0.37 Howard et al. (2019); Sullivan, Neale, and Kendler (2000)
Schizophrenia 0.117 0.244 0.480 0.81 Pardiñas et al. (2018); Sullivan, Kendler, and Neale (2003)

For prediction of the PGS in independent cohorts (incremental R2 or pseudo R2) we provide optimistic values from the original
studies, that is, the highest reported R2 when multiple replication samples were used and when no pooled R2 was provided.
aWe calculated the narrow-sense h2

SNP on the GWAS summary statistics using LD score regression (Bulik-Sullivan et al., 2015) to
enable comparison with other estimates.
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et al., 2019). For example, Belsky et al. found that
the association between the polygenic score for
education and socioeconomic outcomes was medi-
ated by child characteristics such as cognitive abil-
ity, self-control, and interpersonal skills.
Importantly, Figure 2 illustrates the ambiguity of
the term ‘direct effect’ as the effect of G* is now
mediated (indirect) via X. In a sense, all genetic
effects are indirect, whether mediated by physiolog-
ical pathways or environmental risk factors. To add
to the confusion, in mediation analyses, the term
direct effect has a standard meaning as the effect
that is not mediated by the mediator(s) being mod-
elled. The term ‘direct genetic effect’ defined above
thus only refers to the fact that the individual
phenotype Y* is ultimately explained by the individ-
ual genetic factor G* without the additional biases
discussed below, and does not preclude mediation.
We come back to this issue and propose a new
terminology below.

The true mediated effect is obtained by multiplying
betas along the path from G* to Y*, that is,

βM ¼ βG∗X ∗βX ∗Y ∗

The fitted mediated effect using the polygenic score
is (as shown in the Appendix S2):

bM ¼ lGβM þ lGβG∗X ∗BiasX ∗Y ∗

The fitted mediated effect is therefore the true
mediated effect scaled by lG (i.e. lGβM) but there is
also an additional term corresponding to an addi-
tional ‘mediation’ path via the bias in X*Y*. This is
because, as we have shown above, the fitted bX*Y* is
under-corrected for genetic confounding. This
undercorrection leads to an overestimation of bX*Y*

which, in turn, leads to an overestimation of the
fitted mediation effect. The counter-intuitive

consequence is that, when using a polygenic score,
the proportion of genetic effects mediated by a given
risk factor X is over – rather than underestimated.
The estimated proportion mediated is:

pM ¼ πM þ BiasX ∗Y ∗rG∗X ∗

rG∗Y ∗
,

where πM is the true proportion mediated, to which
an additional proportion is added that includes the
additional ‘mediation’ path via the bias in X*Y* in the
numerator and the true total association between
the genetic factor and the outcomes in the denom-
inator (rG*Y*). It is therefore possible to have a
nonnull mediated effect when using the polygenic
score even if the true percentage is null (i.e. a false
positive). In the example above, because the study
used a polygenic score for educational attainment,
which was not entirely reliable, the path from child
self-control to later socioeconomic outcomes is likely
under-corrected for genetic confounding and thus
exaggerated. In turn, the fitted mediated effect from
the polygenic score for education to adult socioeco-
nomic outcomes via child self-control is likely exag-
gerated.

Recently, we have proposed a method to account to
some extent for the low reliability of polygenic scores
based on external estimates of heritability (Pingault,
Rijsdijk, et al., 2021). Using structural equation mod-
elling, we can correct for measurement error by
including the polygenic score as an imperfect mea-
sure of additive genetic factors as in Figure 2B. This is
akin to a sensitivity analysis where we consider what
would happen if we had measured a polygenic score
capturing additive heritability. An advantage of this
genetic sensitivity analysis over other sensitivity
analyses of unmeasured confounders is that we have
an external measure of the importance of this

Figure 2 Exposure

© 2022 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for
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unmeasured factor, using estimates such as h2
SNP or

even additive heritability measured from twin studies.

Collider bias

Collider bias, that is, the bias incurred from adjust-
ing for a collider should also be considered when
adjusting for polygenic scores. In Figure 3A, X* is a
collider for G* and U* as the two arrows from the
predictors G* and U* are directed to X*, that is, they
collide in X*. To illustrate collider bias, let us take the
example of two predictors of referral for treatment of
depression in adolescents, which thus becomes a
collider. The first predictor is a dichotomised poly-
genic score (high vs. low risk) and the second is a
dichotomised environmental risk (high vs. low risk).
Let us assume for simplicity that the two are
independent and that being a high risk on either
factor necessarily leads to referral. Because the two
are independent in the population, knowing that one
individual is at high environmental risk gives no
information on risk status for the polygenic score
(i.e. the two predictors are not associated). However,
within the referred adolescents only (i.e. one stratum
of the outcome), the two become strongly negatively
associated. This is because we know that for an
adolescent to be referred they have to be high risk on
either or both variables. Therefore, if we know that a
referred adolescent has a low-risk polygenic score,
we also know with certainty that they must be at
high environmental risk. Polygenic and environmen-
tal risks become associated by adjusting for the
collider (the adjustment is represented here by
stratifying for the collider when testing for the
association in referred adolescents only). Similarly,
collider bias can generate spurious associations
between genetic variables (variants or polygenic
scores) and environmental risk factors if analyses
are restricted to cases of a disease.

More generally, adjusting for a collider can induce
an association between independent predictors of
the collider, which can generate a knock-on bias in
the model. In Figure 3A, U* stands for unknown (or
unmeasured) nongenetic confounders of the associ-
ation between X* and Y*. The fitted model, Fig-
ure 3B, therefore does not include U* (to simplify, we
first assume that G*, X*, and Y* are measured).
Importantly, G* is not a confounder here as it causes
X* but does not cause Y* directly. In theory, adjust-
ing for G* should not modify the association between
X* and Y*. In practice, in a model regressing Y* on
both X* (the collider) and G*, the association between
X* and Y* is biased. This specific case has been
termed bias amplification as the bias can be so
severe that the adjusted estimate of X*→Y* is further
from the causal effect than the unadjusted correla-
tion between X* and Y* (Myers et al., 2011). As
shown by others, the estimated adjusted path of the
association between the genetic factor and the out-
come is

bG∗Y ∗ ¼ βG∗Y ∗ � βG∗X ∗βU ∗X ∗βU ∗Y ∗

1� β2G∗X ∗

(Akimova et al., 2021). The numerator of the second
term (bias) is akin to an indirect pathG*→X* U*→Y*
in Figure 3A. Note that this path is normally not a
legitimate backdoor path as it is blocked in X*;
adjusting for the collider X* unblocks this path and
the association between G* and U* (see also Figure S1
for an illustration of concepts such as backdoor path
and blocked path). If all paths in the model are
positive, the adjusted effect of the genetic factor on
the outcome will be underestimated. In turn, we have

bX ∗Y ∗ ¼ βX ∗Y ∗ þ βU ∗X ∗βU ∗Y ∗

1� β2G∗X ∗

Note that βX*Y* + βU*X*βU*Y* would correspond to the
true residual association between X* and Y* once G*
has been adjusted for, that is, the association free of
genetic confounding (because U* is not measured,
the residual association is equal to the causal effect
plus the backdoor path via U*). The bias thus comes
from the denominator of the second term, which is
equal to the standardised variance of X* (1) that is
not explained by the effect of G* on the exposure X*
(β2G*X*). As such, the more variance G* explains in X*
the smaller the denominator will be and the larger
the bias. In other words, once the effect of G* is
removed, U* explains a larger proportion of the
variance in X*, which magnifies the bias via U*
(Myers et al., 2011). Concretely, this means that
adjusting for the polygenic score corresponding to
the exposure (thus explaining more variance in the
exposure), should be avoided, as it might increase
the bias rather than remove genetic confounding.
Instead, the adjustment should be based on the
polygenic score for the outcome (Pingault, Rijsdijk,
et al., 2021).

When allowing for measurement error in G, X, and
Y and a collider bias as represented in Figure S2, the
fitted bXY between observed variables becomes more
complex (see Appendix S3 for derivation and detailed
explanations). Instead of an unbiased scenario
where bXY = βX*Y*, we have:

bXY ¼
lX lY βX ∗Y ∗ 1� l2Gβ

2
G∗X ∗

� �þ βU ∗X ∗βU ∗Y ∗ þ βG∗X ∗βG∗Y ∗ 1� l2G
� �� �

1� lG lX βG∗X ∗ð Þ2

We note several components to this expression.
Reliability terms are present in both the numerator
and the denominator. Note that this expression
simplifies to the expression above when lG = lX = lY =
1. The second term of the numerator (βU*X*βU*Y*)
refers to the collider bias and is similar to what we
obtained in the simpler expression of bX*bY* above.
The third term includes βG*X*βG*Y* and refers to the
genetic confounding effect that remains unadjusted
because of the measurement error in G (1 − l2G).
Taken together, these different components mean

© 2022 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for
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that, as polygenic scores become more accurate
(increasing lG), genetic confounding should be better
adjusted for while the collider bias will worsen. The
complexity of this expression also demonstrates why
simply adjusting for a polygenic score does not
adjust for genetic confounding.

Interpreting genetic associations with
environmental risk

As noted in the introduction, polygenic scores have
been associated with many variables that are typi-
cally considered environmental, such as maltreat-
ment, parenting, and bullying. This is typically
referred to as gene–environment correlation (abbre-
viated rGE), which can be active/evocative, discussed
in this section or passive, discussed later.

Figure 4A shows that the effect of a genetic variant
(or a polygenic score) for X* denoted GX* has an
indirect effect on Y* to the extent that X* causes Y*.
This means that, when conducting a GWAS of X*,
the same genetic variant will be associated with Y*
with an effect of βG*X*βX*Y*. When the causal effect is
strong, the signal in the GWAS of Y* can also be
strong, for example, some genetic variants signifi-
cantly associated with lung cancer are, in effect,
genetic variants that directly explain smoking
(smoking mediates the effect of those genetic vari-
ants on lung cancer) (Gage et al., 2016; Munafò
et al., 2012). Similarly, a polygenic score for ADHD
was associated with experiencing bullying victimisa-
tion. Children with a high ADHD polygenic score are
more likely to develop impulsivity and hyperactivity,
which, in turn, may evoke harsher reactions from
their peers. In the same study, the polygenic score
for BMI was also associated with experiencing bul-
lying. The genetic liability to BMI leads to higher
BMI, which, in turn, is a known risk factor for
experiencing bullying (this also illustrates that such
associations may vary according to context, depend-
ing for example on the social perception of high BMI).
These are examples of evocative gene–environment
correlations when genetically influenced character-
istics (impulsivity-hyperactivity or BMI) ‘evoke’ a

particular environmental response. Active gene–en-
vironment correlations are conceptually distinct in
that the child is said to actively shape their own
environment (e.g. by selecting a more turbulent peer
group) (Plomin, DeFries, Knopik, & Neiderhiser,
2013).

More generally, when an exposure causes an
outcome, exposure-related genetic variants will be
captured in the outcome GWAS (Gage et al., 2016).
As such, with sufficient power, a polygenic score for
any given phenotype will necessarily be associated
with heritable environmental exposures for this
phenotype. This may lead to the conclusion that
polygenic score associations with disease exposures
tautologically reflect the epidemiology of the disease,
in the sense that the polygenic score for Y* will be
associated with every variable associated with Y*.
However, even when X* and Y* are associated at the
phenotypic level, genetic variants (or a polygenic
score) for Y* need not be associated with X* in case of
reverse causation (Figure 4B) or of a purely environ-
mental (nonheritable) exposure such as exposure to
an earthquake (Figure 4C).

The fact that genetic effects on the outcome reflect
the causal effect of heritable exposures is central in
genetically informed causal inference methods such
as Mendelian randomisation (i.e. if X* causes Y*,
then any genetic variant associated with X* will
necessarily be associated with Y via the mediation
pathway GX*→X*→Y*) (Richmond & Smith, 2021).
GX* is called an instrument for X* as it is used to
calculate the causal effect of X* on Y*. Polygenic
scores can also, to some extent, be used as proxies of
exposures (Schoeler et al., 2019), and can, under
strict assumptions, provide causal effects that are
mathematically equivalent to effects obtained in
Mendelian randomisation analyses (Dudbridge,
2021).

Perception of environmental risk
The rating of many psychopathological symptoms –
such as low mood – is intrinsically subjective,
relying on an individual’s self-report. This not only

Figure 3 Collider bias
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leads to complex measurement issues but also
affects aetiological research. This is because the
subjective appraisal of internal states extends to
the perception of external environments. Perception
biases susceptible to affect risk appraisals, such as
paranoia, delusions, or negative cognitions, are
common features of many psychiatric disorders.
Interpreting genetic associations with environmen-
tal exposures are therefore more complex when the
environmental measure involves perception (e.g. it
is self-reported). For example, we could observe an
association between a polygenic score for
schizophrenia and self-reported neighbourhood vio-
lence: (a) without any path from the polygenic
score to objective levels of neighbourhood violence
(i.e. no genuine gene–environment correlation
between the genetic factor and the environmental
exposure); and (b) without any role of neighbour-
hood violence in the aetiology of schizophrenia.
This is illustrated in Figure 5A, where an objective

risk (OX*, e.g. actual neighbourhood violence)
informs the perception of the risk (PX*, e.g. per-
ceived neighbourhood violence). Risk perception is
also influenced by a phenotype Y* (e.g. schizophre-
nia symptoms) itself influenced by genetic factors
(G*). This will lead to observed correlations between
G and PX (false positive rGE) but not between G and
OX. The objective risk factor OX is also unrelated to
the phenotype Y. The observed correlations
between G, PX, and Y do not imply that the
polygenic score has an environmentally mediated
effect; rather, the polygenic score influences the
outcome (e.g. schizophrenia symptoms) which
leads to perceived environmental risk. Even if
measures of perceived and objective environmental
exposures are associated (Figure 5A), the potential
for genetically influenced perception bias means
that measures of perceived risk cannot be used to
demonstrate rGE or causal effects of objective
exposures on outcomes.

Figure 4 Environmental risk

Figure 5 Risk perception

© 2022 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for
Child and Adolescent Mental Health.

8 Jean-Baptiste Pingault et al.



However, the perceived environmental risk might
also feed into later psychiatric symptoms, as illus-
trated in Figure 5B. For example, perceived neigh-
bourhood violence (whether consistent or not with
objective levels of violence) could lead to later para-
noid symptoms (i.e. Y2* in Figure 5B). In this case,
perception of environmental risk itself becomes
important in the aetiology of psychopathology.
Notably, objective risk also affects psychopathology,
but these effects are completely mediated via the
perception of risk (dashed arrow from OX* to Y1*
indicating an absence of direct effect of OX* after
accounting for PX*). This mediation scenario might
explain evidence showing that objective measures of
adverse childhood experiences (such as maltreat-
ment or bullying) are not associated with psy-
chopathology after accounting for perceptions of
these experiences (Baldwin & Degli Esposti, 2021;
Danese & Widom, 2020). In this situation, interven-
ing on the objective risk factor would lead to a
subsequent reduction in psychiatric symptoms
(Y2*). But interventions targeting the perception
itself could be beneficial when intervening on the
objective exposure is complex or impossible (e.g.
when an adult has been exposed to early adversity).
Note that genetic effects can also tag perception
processes (i.e. a polygenic score for Y2* would reflect
the path G*→Y1*→PX*→Y2*).

Additional biases arise from jointly modelling
environmental risk and polygenic scores
Selection bias and attrition – that is, the biases
resulting from a nonrandom (self-) selection or
retention into the sample – can be considered as
special cases of collider bias (Munafò, Tilling, Taylor,
Evans, & Davey Smith, 2018). When polygenic
scores and measures of environmental risk indepen-
dently predict participation or retention in a study
sample, spurious associations between the polygenic

scores and measures of environmental risk can be
generated. This is because restricting the analysis to
(the remaining) participants is equivalent to strati-
fying on the collider.

Estimating gene–environment interactions using
single genetic variants has been hopeless (Duncan &
Keller, 2011). While there is a renewed interest in
estimating gene–environment interactions using
polygenic scores, the aforementioned biases still
apply. Measurement error can lead to underestimat-
ing the interaction term. The presence of rGE can lead
to spurious gene–environment interactions (Dud-
bridge & Fletcher, 2014). Furthermore, collider bias
also changes gene–environment interactions in non-
intuitive ways (Akimova et al., 2021).

Demographic biases

Bias from population stratification arises when
ancestry confounds the relationships between poly-
genic scores, environmental risk factors, and out-
comes (Figure 6A). The chopstick example is a
classical illustration of biases arising from popula-
tion stratification (Hamer & Sirota, 2000). With two
populations of different ancestries, one eating with
chopsticks, the other with forks, a GWAS of chop-
stick eating will uncover many genetic variants (i.e.
all alleles with different frequencies between the two
groups). Such variants do not indicate the discovery
of chopstick eating genes but are markers of ances-
try. Many factors, including the geographic location
of populations, language, or religion can be influ-
enced by ancestry, potentially leading to false pos-
itives in GWAS and downstream investigations
including polygenic score studies. Population strat-
ification is typically accounted for by controlling for
principal components that reflect ancestry (Uffel-
mann et al., 2021). However, population stratifica-
tion can be granular and hard to fully capture,
arising for example from movements of

Figure 6 Demographic bias. Adjustment for mating choice is represented by the thick square around the variable in 7B. This creates the
co-path (dashed line) between genetic factors for mothers (GM*) and fathers (GF*). In turn, this affects downstream analyses. For
example, the variance in the child outcome YC* now includes an additional component via the co-path between GM* and GF*. Note that
assortative mating can lead to cross-trait associations, for example between height and education. At the SNP level, assortative mating
can thus lead to correlations (in the child) of SNPs that should be uncorrelated, for example, an SNP for height in one chromosome and an
SNP for education in another
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subpopulations within a region over centuries
(Young, Benonisdottir, Przeworski, & Kong, 2019).
Within family, analyses can be useful to control for
residual population stratification. For example, full
biological siblings share the same parents and hence
the same ancestry. A within-sibship GWAS can
examine the role of inheriting a risk variant by
comparing outcomes in a sibling who inherited the
variant versus a sibling who did not (Howe et al.,
2021).

The genetic relatedness between first-degree rela-
tives, such as a parent and their biological offspring,
implies that the correlation between their polygenic
scores for any given trait should be .50. Conversely,
polygenic scores of genetically unrelated people, for
example, the two parents, should be uncorrelated.
However, a nonzero correlation can be observed
between the two parents due to assortative mating
– that is, the fact that people choose their partner
based on some heritable phenotypic characteristics
such as education. This mating choice can be
construed as a collider (Figure 6B). Stratifying for
this collider by conducting within family analyses
leads to intraclass correlations, for example, the
polygenic score of the mother is correlated positively
with the polygenic score of the father. Assortative
mating leads to a number of possible biases in
downstream analyses involving the offspring (Fig-
ure 6B).

Genetic nurture

The term genetic nurture may sound like an oxy-
moron but is one of the complex interplays between
nature and nurture. As mentioned above, some
genetic effects can be mediated by environmental
factors. Genetic nurture effects are similar within an
intergenerational context, that is, parental genetics
influence child outcomes via environmental path-
ways. For example, parental genetic variants, even
when not transmitted to the child, still influence
parental depression, which in turn may affect par-
enting, which in turn can affect child internalising
problems (Cheesman et al., 2020). In other words,
genetic factors in the parents, even when not trans-
mitted to the child, can affect the child’s outcomes by
affecting the way that parents nurture the child. This
is depicted in Figure 7, which also aims to clarify a
number of related concepts arising from the fact that
children inherit both genetic variants and environ-
ments from their parents, including passive and
active/evocative gene–environment correlations,
direct genetic effects, dynastic effects, and genetic
confounding. All these concepts are particularly
important in child and adolescent psychology and
psychiatry where a key endeavour is to understand
the role of parents in shaping child development.

Note that the concept of indirect genetic effects is
sometimes preferred to genetic nurture. This is
partly because it complements the concept of direct

genetic effects. Most importantly, genetic nurture
seems to imply that the effects involve nurturing
from parents, which is not necessarily the case. For
example, genetic variants associated with increased
education in parents may affect child outcomes via
nurturing behaviours (e.g. reading to the child) or
other indirect mechanisms (e.g. the school that the
child is sent to). However, as highlighted above, the
terms direct and indirect genetic effects are also
unsatisfactory as (i) all genetic effects are indirect via
physiological and environmental pathways and (ii)
confusion arises with standard terminology used in
mediation analyses when assessing whether either
direct or indirect genetic effects are mediated by
intermediate variables. We therefore propose to
replace direct genetic effects with individual genetic
effects defined as effects that originate in the indi-
vidual genome. And to replace indirect genetic effects
with familial genetic effects defined as effects that
originate in the genome of family members, such as
parents or siblings, independent of genetic trans-
mission (see Figure 7). These terms have the advan-
tage of not referring to either causality, pathways
(direct/indirect), or mechanisms (nurture) but sim-
ply describe in whom the genetic effects originate
from. Causal individual genetic effects or causal
familial genetic effects occur when those effects are
free from biases (e.g. assortative mating).

Figure 7 and caption explain a number of chal-
lenges arising from the combination of familial and
individual genetic effects in polygenic score studies:
(a) the unadjusted association between child poly-
genic scores and child outcomes also captures
familial genetic effects rather than just individual
genetic effects, for example, the association between
a child’s polygenic score for education and their own
educational achievement is inflated by environmen-
tally mediated familial genetic effects (Wang et al.,
2021); (b) child polygenic scores can be associated
with environmental exposures in the absence of
evocative gene–environment correlation, for exam-
ple, it is possible that the child polygenic score for
hyperactivity–impulsivity is associated with parent-
ing not because those genetically influenced traits
evoke harsher parenting (corresponding to evocative
rGE) but because hyperactivity–impulsivity in the
parents impacts their parenting (leading to passive
rGE); and (c) environmental exposures and child
outcomes can be associated in the absence of a
causal effect of the environment (e.g. trauma can be
associated with later psychotic symptoms in the
absence of a causal effect of trauma).

Note that family-based studies are starting to
address these challenges. As mentioned above, sib-
ship GWAS can better estimate individual genetic
effects, from which polygenic scores can be derived.
Designs capitalising on trio genomic data (including
mother, father, and child) can be implemented to
estimate familial genetic effects as well as gauge the
presence of passive and/or active/evocative gene–
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environment correlations (Kong et al., 2018; Pin-
gault, Barkhuizen, et al., 2021). These designs also
offer new opportunities to better understand the role
of parental risk factors in shaping the child’s envi-
ronment. For example, the ‘virtual parent’ design
utilises trio data to construct polygenic scores com-
prising nontransmitted alleles (i.e. alleles not trans-
mitted from parent to child). In turn, polygenic

scores comprising nontransmitted alleles can be
used to better understand the role of parental risk
factors on child outcomes, independent of genetic
transmission. For example, a polygenic score includ-
ing nontransmitted alleles for depression can be
used to assess the impact of exposure to parental
depression. This design parallels the in vitro fertili-
sation design where the genetic relatedness between
the parent and the child is broken when a donor
gamete is implanted (Thapar & Rice, 2021). The
absence of genetic relatedness precludes genetic
confounding. Beyond polygenic scores, methods
using genetic variants to better understand causality
such as intergenerational Mendelian randomisation
can also be implemented (Hwang, Davies, Warring-
ton, & Evans, 2021; Pingault, Richmond, et al.,
2021; Richmond et al., 2017; Zhang et al., 2015).

Compounded challenges
Most polygenic score studies will be susceptible to
multiple sources of bias, which, when combined, can
make the interpretation of results challenging. Let’s
take the example examined in Agnew-Blais et al.
(2022) of a plausible environmental risk factor,
household chaos, predicting child ADHD symptoms.
The child polygenic score for ADHD is associated with
household chaos, suggesting the presence of genetic
confounding. However, concluding that household
chaos is an environmental factor for child ADHD after
merely adjusting for the ADHD polygenic score is
meaningless in the absence of a consideration of
measurement error (Figure 1). As discussed above,
careful sensitivity analyses using the polygenic score
for the outcome to minimise collider bias in conjunc-
tion with heritability estimates can better answer this
question (Figure 2) (Pingault, Rijsdijk, et al., 2021).
Applying these methods shows that the association
between household chaos and child ADHD is likely
entirely accounted for by genetic confounding. In
addition, the association between the child’s poly-
genic score for ADHD and self-reported household
chaos itself cannot be readily interpreted. It can
reflect perception bias, for example in the case of a
hyperactive adolescent rating the household environ-
ment as chaotic (Figure 4). Comparing associations
between the polygenic score and subjective versus
more objective (e.g. external observer) measures of
family chaos can help to assess the role of perception
bias. Empirical findings show that the association
between the polygenic score and the objective mea-
sure of household chaos appears larger than the
association with subjective ratings, ruling out that the
findings are entirely due to perception bias. Second,
the association between the child polygenic score for
ADHD and household chaos can reflect either evoca-
tive or passive gene–environment correlations (Fig-
ure 6). The use of polygenic scores based on trio
genetic data can help identify the respective role of
active/evocative versus passive rGE (e.g. the

Figure 7 Genetic nurture. Genetic nurture (or familial genetic
effects) occurs when parental genetics influence offspring out-
comes via environmental pathways, for example, GM*→EM*→YC*
for mothers. Note that even transmitted alleles (GMt & GFt) can
have a genetic nurture effect as, being part of the parental
genome, they affect the environment to the same extent as the
nontransmitted alleles. By contrast, genetic transmission arises
from the fact that child genetics (GC*) comprises maternally (GMt)
and paternally (GFt) transmitted genetic material, leading to the
paths GMt (GFt)→GC*→YC*. Direct genetics effects (or individual
genetic effects) are the effects originating in the child genome
(GC*→YC*), free of inflation arising from familial genetic effects.
Passive gene–environment correlation refers to the fact that the
child genetics can be correlated to the child’s environment
because of the backdoor path via parental genetics, for example,
GC* GM*→EM*. In addition, there can be an active/evocative
gene–environment correlation (GC*→EM*). In the figure, no
active/evocative gene–environment effect is present on the
father’s side (no direct arrow from GC* to EF*). But note that a
correlation would still be observed between GC* and EF* because
of the passive gene–environment correlation (GC* GF*→EF*).
The association between EM* and YC* is genetically confounded
by paths YC* GC* GM*→EM* (passive) and YC* GC*→EM*
(active/evocative). Similarly, a correlation between EF* and YC*
would be observed despite an absence of an effect in the figure
from EF* to YC*. Finally, dynastic effects refer to the backdoor
path GC* GM*→EM*→YC*. Dynastic effects imply that a correla-
tion can be observed between GC* and YC* even if there were no
individual genetic effects (no path GC*→YC*). Dynastic effects
lead to biased association estimates obtained from GWAS and
downstream analyses including polygenic score and Mendelian
randomisation analyses. Note that genetic nurture can be more
simply represented as population stratification in Figure 6A, by
replacing A* with parental genetics. Figure 7 contains several
simplifications: (a) only latent variables are represented; (b) the
absence of correlation between GM* and GF*, that is, no
assortative mating; (c) no representation of the parental pheno-
type (e.g. GM* it is likely to influence parental phenotypes like
depression, which, in turn, influence the environment EM*); (d)
only one path is represented between parental genes and child
outcomes whereas many parental phenotypes and environmen-
tal variables are likely to explain the relationship; and (e) no
correlation is represented between EM* and EF* which could
partially or totally overlap
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association between the child score and household
chaos may disappear when controlling for parental
polygenic scores, suggesting passive gene–environ-
ment correlation). Empirical findings show that
adjusting for maternal polygenic scores does not
eliminate the relationship between the child’s poly-
genic score and household chaos, thereby suggesting
evocative rGE (additional control for the father’s poly-
genic score would be required to confirm this finding).
After careful examination, Agnew-Blais et al. con-
cluded that household chaos is unlikely to directly
influence the development of child ADHD symptoms.

Importantly, the consequences of the biases dis-
cussed in this review are not necessarily negative,
depending on the intended purpose of the analysis.
For example, the fact that child polygenic scores
potentially capture familial genetic effects and pop-
ulation stratification can be useful. Adjusting for
such polygenic scores removes confounding beyond
(strictly defined) genetic confounding. Such a poly-
genic score will also be useful when building a
prediction model, where what counts is the strength
of the association rather than understanding the
underlying mechanisms.

Conducting, reporting, and interpreting
polygenic score studies
When conducting polygenic score studies, key
sources of biases should be either addressed

through analyses or discussed as limitations. A
nonexhaustive list is presented in Table 2.

As in other fields, triangulation of evidence is
required, both within polygenic score studies, for
example, comparing population and within-family
analyses (Howe et al., 2021; Selzam et al., 2019) or
with other genetically informed methods (Pingault
et al., 2018; Richmond & Smith, 2021; Smith,
Richmond, & Pingault, 2021). For example, find-
ings that polygenic scores for psychiatric disorders
predict self-harm have been followed by Mendelian
randomisation analyses to assess causality (Lim
et al., 2020). To assess whether an increased
liability to ADHD leads to increased BMI, findings
have been triangulated across developmentally
sensitive within-twin polygenic score analyses,
Mendelian randomisation, and twin differences
analyses (Liu et al., 2021). Findings using
polygenic scores to estimate genetic nurture effects
can also be discussed in view of evi-
dence from genetic and nongenetic designs (Wang
et al., 2021).

Biases included in Table 2 overlap with biases
commonly encountered in epidemiological studies
and those more specific to genetic studies. Conduct-
ing and interpreting polygenic score studies thus
requires researchers in child psychology and psy-
chiatry to be versed in both epidemiological and
genetic methods or build on interdisciplinary collab-
orations.

Table 2 Biases in polygenic score studies

Bias Consequences Possible solutions

Measurement
error

Introduces bias in all multivariate models intending to
estimate adjusted effects, mediation, and interaction
effects.

Account explicitly for measurement error in the
polygenic score and phenotypes when possible.

Discuss biases arising from measurement errors.
Collider bias Biases associations when adjusting for a collider such as a

genetically influenced exposure.
Use the polygenic score for the outcome rather than
the exposure in multivariate models to minimise
collider bias.

Selection and
attrition
biases

Can generate spurious associations between polygenic
scores and nongenetic predictors of attrition such as
environmental variables.

Provide descriptive (e.g. testing whether polygenic
scores are associated with attrition).

Compare results in studies with low versus high
attrition when available.

Use appropriate methods to deal with attrition (e.g.
imputation).

Perception
bias

When only subjective measures are available: Generate
false-positive rGE and genetic confounding.

Risk to over or underestimate the importance of risk
factors.

Compare polygenic associations with subjective
versus objective measures of risk.

Discuss the respective aetiological roles of objective
versus subjective risks.

Population
stratification

Generates spurious associations between polygenic scores
and phenotypes.

Adjust for principal components of ancestry along
with other required technical variables.

Rely on within-family GWAS (e.g. within-sibship) to
better estimate individual genetic effects.

Assortative
mating

Generates spurious associations between polygenic scores
and phenotypes.

Implement within-family GWAS (e.g. within-sibship)
to better estimate individual genetic effects.

Familial
genetic
effects

The association between a child’s polygenic score and child
phenotype does not only reflect individual genetic effects.

The association between a child’s polygenic score and the
child’s environment does not necessarily reflect active/
evocative rGE

Implement within-family analyses (e.g. trio design, to
distinguish between individual and familial genetic
effects).
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Supporting information
Additional supporting information may be found online
in the Supporting Information section at the end of the
article:

Figure S1. Representing relationships between vari-
ables.

Figure S2. Collider bias includes measurement errors.

Appendix S1. Direct genetic effect with measurement
error (Figure 2).

Appendix S2. Exposure model (Figure 3).

Appendix S3. Collider bias (Figure S2).

Acknowledgements
J-B.P., A.G.A., and L.F. are supported by the European
Research Council (ERC) under the European Union’s

Horizon 2020 research and innovation programme
(grant agreement No. 863981). J-B.P. is supported by
the Medical Research Foundation 2018 Emerging Lead-
ers 1st Prize in Adolescent Mental Health (MRF-160-
0002-ELP-PINGA). J.R.B. is funded by a Wellcome
Trust Sir Henry Wellcome fellowship (grant 215917/
Z/19/Z). The authors have declared that they have no
competing or potential conflicts of interest.

Correspondence
Jean-Baptiste Pingault, Division of Psychology and
Language Sciences, Department of Clinical, Educa-
tional and Health Psychology, University College Lon-
don, London WC1H 0AP, UK; Email:
j.pingault@ucl.ac.uk

Key points

� Many studies have now uncovered associations between polygenic scores and a vast array of phenotypes and
environmental exposures.

� Such associations are much more complex to interpret than initially thought due to biases present in genetic
and epidemiological studies. Here, we show how those biases can profoundly affect the results of analyses
commonly implemented in developmental research, such as mediation or adjustment for confounding.

� Awareness of such complexities is essential to ensure that polygenic score research actually contributes to our
understanding of child psychology and psychiatry.
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