
Research strategies and the use of nutrient biomarkers in
studies of diet and chronic disease

Ross L Prentice1,2,*, Elizabeth Sugar1,3, CY Wang1,2, Marian Neuhouser1 and
Ruth Patterson1,4

1Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North,
Seattle, WA 98109, USA: 2Department of Biostatistics, University of Washington, Seattle, WA, USA:
3Department of Statistics, University of Washington, Seattle, WA, USA: 4Department of Epidemiology,
University of Washington, Seattle, WA, USA

Abstract

Objective: To provide an account of the state of diet and chronic disease research
designs and methods; to discuss the role and potential of aggregate and analytical
observational studies and randomised controlled intervention trials; and to propose
strategies for strengthening each type of study, with particular emphasis on the use of
nutrient biomarkers in cohort study settings.
Design: Observations from diet and disease studies conducted over the past 25 years
are used to identify the strengths and weaknesses of various study designs that have
been used to associate nutrient consumption with chronic disease risk. It is argued
that a varied research programme, employing multiple study designs, is needed in
response to the widely different biases and constraints that attend aggregate and
analytical epidemiological studies and controlled intervention trials. Study design
modifications are considered that may be able to enhance the reliability of aggregate
and analytical nutritional epidemiological studies. Specifically, the potential of
nutrient biomarker measurements that provide an objective assessment of nutrient
consumption to enhance analytical study reliability is emphasised. A statistical model
for combining nutrient biomarker data with self-report nutrient consumption
estimates is described, and related ongoing work on odds ratio parameter estimation
is outlined briefly. Finally, a recently completed nutritional biomarker study among
102 postmenopausal women in Seattle is mentioned. The statistical model will be
applied to biomarker data on energy expenditure, urinary nitrogen, selected blood
fatty acid measurements and various blood micronutrient concentrations, and food
frequency self-report data, to identify study subject characteristics, such as body mass,
age or socio-economic status, that may be associated with the measurement
properties of food frequency nutrient consumption estimates. This information will
be crucial for the design of a potential larger nutrient biomarker study within the
cohort study component of the Women’s Health Initiative.
Setting and subjects: The methodology under study is expected to be pertinent to a
wide variety of diet and chronic disease association studies in the general population.
Ongoing work focuses on statistical methods developed using computer simulations
motivated by studies of dietary fat in relation to breast and colon cancer among post-
menopausal women, and ongoing pilot studies to be described in detail elsewhere,
involving post-menopausal women living in the Seattle area.
Results and conclusion: A varied research programme appears to be needed to make
progress in the challenging diet and chronic disease research area. Such progress may
include aggregate studies of diet and chronic disease that include sample surveys in
diverse population groups world-wide, analytical epidemiological studies that use
nutrient biomarker data to calibrate self-report nutrient consumption estimates, and
randomised controlled intervention trials that arise from an enhanced infrastructure
for intervention development. New innovative designs, models and methodologies
are needed for each such research setting.
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The relationships between nutrient consumption and

chronic disease risk have been the focus of a large number

of epidemiological studies for the past three decades.

While these studies have identified many new leads1, there

has also been much controversy2,3 with less consistency

than one might expect among the reports from ecological,

case–control and cohort studies. As a result, few causal

diet and chronic disease associations can be said to be well
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established. Important exceptions include the relationship

between the components of dietary fat and coronary heart

disease and to a lesser extent the relationship between

calcium consumption and fracture risk. In both cases a

biomarker was identified that was responsive to dietary

consumption – namely, plasma lipoproteins and bone

mineral density, respectively – and interventions that

favourably affect the biomarker were developed and

subsequently shown to reduce the risk of the related

chronic disease in question in randomised controlled

trials4–6. It is interesting to note that, in these contexts,

observational studies to relate self-reported fat intake to

coronary heart disease, and observational studies to relate

calcium consumption to fracture incidence, have tended

to be unimpressive in their clarity or consistency.

Analytical epidemiological studies in the diet and

chronic disease area face formidable challenges. First,

there are the usual ascertainment and confounding bias

issues. For example, persons who consume a healthful

diet may also tend to have atypical health-related habits

in such areas as physical activity patterns, avoidance of

tobacco products and environmental exposures, and

disease screening. In addition, there are often key

limitations related to the nutrient consumptions them-

selves. Within study populations there may be limited

variation in nutrient consumption; for example, most

persons in the USA currently consume a diet having

between 25 and 35% energy from fat. Also, the diet is a

complex mixture of foods and nutrients with many

correlated elements. Hence one may need to be able to

measure such components with exquisite precision on

individuals to distinguish the roles of such foods and

nutrients in analytical epidemiological studies.

Unfortunately, available dietary self-assessment tools do

not provide such precision, because related consumption

estimates are known to involve substantial random error

for most nutrients, and probably incorporate important

systematic error as well. Available statistical tools do not

make provision for such systematic errors, casting an

important shadow over virtually all analytical epidemio-

logical studies of diet and chronic disease that have been

reported to date.

Per capita food disappearance data7, deriving from food

production with adjustments for imports and exports and

for food consumption by animals, have been a source of

dietary data for many nations world-wide for a sustained

period of time. These data are crude; for example, they are

not even age- or sex-specific. However, they have the

advantage of objectivity in that self-reporting is not

involved. Some authors have reported strong associations

of per capita disappearance of selected nutrients with

disease incidence and mortality rates8–10, especially for

cancer, where good-quality population-based disease

registers exist in many countries. Unfortunately, to date,

these ecological studies have lacked the ability to make

adequate provision for between-population confounding.

This potential confounding, along with limitations of the

nutrient supply (disappearance) data, has caused these

studies to be relegated to a hypothesis-generating role.

Randomised controlled trials in the area of diet and

chronic disease have the potential to overcome many of

the limitations of the ecological and analytical epidemio-

logical studies. First, randomisation implies a lack of

confounding of the intervention comparison with pre-

randomisation dietary and non-dietary factors. Second,

individual dietary assessment no longer constitutes the

critical exposure data at the core of the study design, as

with analytical epidemiological studies, but rather

addresses the secondary questions about the assessment

of adherence to intervention goals and about the

explanation of disease rate differences between inter-

vention and control groups. However, randomised trials

are expensive and logistically difficult, and may need to

continue for a lengthy period of time to provide an

adequate assessment of the health benefits versus risks for

the interventions under test. As a result, very few

individually randomised dietary intervention trials have

been conducted and most completed ongoing trials have

involved pill-taking interventions. Intervention trials that

involve alterations of dietary patterns and strong

behavioural components are a more recent phenomenon.

These trials would seem to be of very high priority

although they will often have the additional complication

that intervention and control groups differ in various

aspects of dietary and non-dietary behaviour, beyond the

intended dietary differences.

The above description highlights the genuine difficulties

in generating reliable information in the diet and chronic

disease research area. The next section argues the need

for a varied research programme that strengthens the

execution of each of the study designs mentioned above.

Aspects of a comprehensive diet and chronic disease

research programme

Consider a cohort study that relates nutrient intakes, as

assessed using food frequencies, food records or food

recalls, to the subsequent occurrence of a certain disease.

Sometimes the intake assessments for a particular nutrient

are claimed to be ‘validated’ merely on the basis of a

positive correlation between the assessments on individ-

ual study subjects using different self-report instruments,

or a positive correlation between repeat applications of

the same instrument. However, the measurement errors

associated with multiple assessments on a particular study

subject are very likely also to be positively correlated,

making it unclear from readily available data whether the

instruments used in the multiple assessments are in any

sense measuring the nutrient exposure of interest. For

example, if obese persons systematically underreport

energy consumption compared with lean persons, then,

regardless of the assessment instrument used, energy
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consumption measurement errors will tend to be

positively correlated across assessment instruments, and

what appears as a consistency in nutrient assessment may

be attributable, in whole or in part, to a consistency in

misreporting. In fact, studies using doubly labelled water

assessments of short-term energy expenditure11 suggest

strongly that obese persons, in Western populations, do

systematically underreport energy consumption, as is also

the case, but to a lesser extent, for the self-reporting of

protein consumption based on studies using urinary

nitrogen evaluations11. Of course obesity, or more

generally body mass, is but one of the study subject

characteristics that may be associated with the systematic

bias in dietary self-reporting. Other such factors may

include gender, age, ethnicity, socio-economic status and

social desirability factors12,13, to name a few.

Available statistical models for accommodating

exposure measurement error almost universally require

the availability of two (or more) exposure assessments

having uncorrelated measurement errors. As noted above,

an uncorrelated measurement error assumption for

nutrient intake estimates based on different self-report

instruments, or on repeated applications of a single self-

report instrument, may be quite implausible. On the other

hand, assuming uncorrelated measurement errors

between the nutrient consumption estimate arising from

a particular self-report instrument and that derived from a

suitable objective biomarker of nutrient assumption may

be much more plausible. Furthermore, a simple classical

measurement model may apply to the nutrient biomarker

assessment, making it a sensible candidate to calibrate a

corresponding self-report assessment, which will typically

be the only nutrient assessment available on most

members of the study cohort. The actual calibration

equations will depend on the nature of the systematic and

random error elements of the self-report nutrient

consumption estimates. In the next section we describe

a statistical model for bringing together biomarker nutrient

consumption data, on a moderate sized subset of a study

cohort, with self-report nutrient assessment data on the

entire cohort, to relate an underlying true consumption to

disease risk. This is followed by a brief overview of a

nutrient biomarker pilot study that we have conducted

among 102 postmenopausal women in Seattle.

Before going into these topics in more detail, we shall

make a few comments on the role that population

comparisons and randomised controlled intervention trials

can play in the diet and chronic disease research agenda,

and outline some ways of strengthening these studies.

Students of epidemiology are typically taught a

hierarchy of increasing study reliability starting from

ecological studies, and ranging through case–control

studies, cohort studies and intervention trials. However, in

circumstances of difficult-to-measure, highly correlated

exposures and difficult-to-measure confounding factors,

such a hierarchy may not always hold. In particular,

well-conducted ecological studies, in which moderate

sized random samples in each group of a multi-population

aggregate study are surveyed to ascertain exposures and

potential confounding factors, are largely immune to the

noise aspect of measurement error14,15. Such studies may

be less sensitive than cohort or case–control studies to

systematic aspects of measurement error as well, in part

due to their ability to incorporate an unusually broad

range of exposures. It is not clear how successfully

‘between-population’ confounding can be controlled in

such settings, but the challenges and uncertainties of

observational studies in the diet and disease area argue for

a varied research programme, including research designs

having differing sources of potential bias. Furthermore,

methodological work towards defining the comparative

reliability of various observational approaches as a

function of the distribution and measurement properties

of key exposure and confounding variables should have a

high priority in the chronic disease population research

agenda.

Our group in Seattle has carried out substantial planning

activities for a potential international study on aggregate

data of diet and cancer. The study would be conducted in

about 35 diverse populations world-wide that are covered

by good-quality cancer registries. In each population, 300

males and 300 females would be randomly selected from

persons aged 35–64 years in the registry catchment area,

and epidemiological questionnaire data and blood speci-

mens would be obtained. Regression analyses would

relate disease risk to the distribution of dietary exposure

and confounding factor data, with biomarker data

providing the possibility of avoiding the need to rely on

difficult-to-standardise dietary self-assessment tools. This

study design has been piloted in Shanghai, Costa Rica and

Seattle16.

Diet and chronic disease prevention hypotheses having

substantial public health potential should be put to test in

randomised controlled intervention trials whenever

practical. Recent examples include colon polyp preven-

tion trials using calcium supplementation17, wheat bran

fibre supplementation18 and a low-fat eating pattern19,

and the ongoing Women’s Health Initiative (WHI)20

clinical trial of a low-fat eating pattern among 48 836

postmenopausal women in the United States for the

prevention of breast and colorectal cancer and, seconda-

rily, coronary heart disease. As mentioned previously,

however, randomised controlled trials of dietary interven-

tions having disease outcomes are logistically difficult and

expensive. Hence there is a pressing need for a strong

intervention development enterprise, and careful feasi-

bility and pilot studies are needed prior to embarking on

such trials.

In addition to various types of observational study, an

adequate intervention development enterprise is likely to

rely heavily on small-scale human feeding studies with

intermediate biochemical, and perhaps genomic or
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proteomic, outcomes. In particular, the rapid development

of functional genomics21 using micro-array technologies,

and the potential of high-dimensional protein array data in

the not-too-distant future, may add much specificity to the

screening of preventive interventions. These technologies

may allow one to observe the simultaneous effect of an

intervention on the expression of a large number of

human genes, or expressed sequence tags, throughout the

human genome, or a large number of protein concen-

trations, in order to provide insight into a broad range of

potential intervention effects. The statistical and bio-

informatic aspects of analysing and interpreting such high-

dimensional data are at an early stage of development, but

are widely recognised as critical to the impact of genomic

techniques. Such data-rich techniques also enter the

chronic disease population research area in the identifi-

cation of persons at high risk for specific diseases, which

may be able to lead to smaller and more efficient

prevention trials, and to aid in the elucidation of gene–

environment interactions that may have a substantial role

in chronic disease development.

Statistical methods to combine nutrient biomarker

data with self-report nutrient consumption data in

epidemiological cohort studies

Consider a nutrient consumption value Z for an individual.

For example, Z may be the individual’s long-term daily

average energy consumption, or a corresponding daily

average nutrient density. An objective biomarker measure

W, of Z, may plausibly adhere to a classical measurement

model

W ¼ Z þ u; ð1Þ

where u is a mean zero error variable that is independent

of Z and independent of other study subject character-

istics. Such a biomarker measurement provides the

‘anchor’ that allows self-report assessments Q of the

same nutrient consumption to be calibrated. Because it is

usually impractical to obtain biomarker data on the entire

study cohort, which may be tens of thousands in size, self-

report estimates of nutrient consumption will need to be

used as the sole source of dietary data on most study

subjects. Also, because the measurement error associated

with estimates of Z may depend on a vector V of study

subject characteristics (e.g. body mass, age, social

desirability factors, etc.), one might consider a statistical

model of the form

Q ¼ Z* þ 1; ð2Þ

where 1 is a random error term independent of Z* and all

study subject characteristics and Z* is the actual ‘target’ of

the self-report assessment that could plausibly be

expressed as

Z* ¼ g0 þ g1Z þ gT
2 V þ gT

3 VZ þ h; ð3Þ

where h is a person-specific random effect and ‘T’ denotes

vector transpose. Note that the term g3VZ makes a

provision for systematic bias in that, if a component of g3 is

non-zero, then there is systematic bias in the self-report

assessment of Z that is associated with the corresponding

element of V. Also, the mean zero random effect, h,

accommodates a further person-specific bias. Its variance

is allowed to depend on V, but when re-scaled to have unit

variance the random effect is assumed to be independent

of (V, Z ). The random effect allows the measurement

errors in repeat self-report assessments of Z to be

correlated. Related measurement models for Q have

previously been considered22,23. Note that repeat appli-

cation of the biomarker measurement W and the self-

report measurement Q, with independent measurement

errors in (1) and (2) respectively, are needed on sub-

samples of study subjects to estimate the variances of u

and 1. Key requirements in the use of the measurement

model (1)–(3) include the availability of an objective

measure (W ) to which a classical measurement model

plausibly applies and the accommodation, by means of V,

of the characteristics that are associated with systematic

bias in the self-report assessment W. Under these

circumstances, one can use nutrient consumption esti-

mates Q on the cohort and biomarker estimates W on an

appropriate subset of the cohort to relate the underlying

nutrient consumption Z to disease occurrence in the

cohort. For example, one may have a binary disease

indicator (Y ) and consider a logistic regression model

PrðY ¼ 1jZ;V Þ ¼ {1 þ exp½2ðb0 þ b1Z þ bT
2 V Þ�}21: ð4Þ

The parameter b1 that relates the odds of disease to the

true nutrient exposure Z would then be of primary interest

in data analysis.

It is of interest to consider the bias in estimators of b0, b1

and b2 that may arise under standard methods of data

analysis that fail to account fully for the elements of the

measurement model (1)–(3). To do so, we generated

normally distributed exposures Z having mean and

variance both equal to one, and obtained corresponding

pairs of W (biomarker) values by adding to Z independent

error variates that were normally distributed with a mean

of zero and a variance of one. Corresponding self-report

‘targets’ Z* were generated using (3) with g0 ¼ 0:0; g1 ¼

0:8; g2 ¼ 0:2 and g3 ¼ 0:2; with V a univariate character-

istic (e.g. body mass), independent of Z, that takes values

21, 0 and 1 with respective probabilities 0.2, 0.6 and 0.2,

and with h=ð1 þ 0:5 V Þ1=2 as standard normal variate,

independent of (V, Z ). Paired self-report Q values were

generated according to (2) by adding to Z* normal error

variates having mean zero and variance 0.5 that are

independent of Z, V and h. Binary disease indicators

(Y ¼ 1 for diseased; Y ¼ 0 otherwise) were generated

from Z and V using (4) with b0 ¼ 2log 2 ¼ 20:6931,

b1 ¼ log 2 ¼ 0:6931 and b2 ¼ 0: Five hundred replicates
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of cohort datasets, each of size 100 and 500, were

generated and various potential estimators of b0 and b1

were calculated (b2 was set to zero throughout).

Table 1 provides simulation summary statistics for four

estimators of b0 and b1. The column labelled Q̄ is based on

binary logistic regression of Y with the average (Q̄) of the

corresponding self-report assessments of Z in place of the

actual Z values. Very substantial biases in b0 and b1

estimators are evident and confidence interval coverage

probabilities are not close to their nominal value of 0.95. A

second estimator replaces Z in the logistic regression (4)

by W̄, the average of the paired biomarker values. Biases

remain large and confidence interval coverage rates are

still poor. A third, less naı̈ve, estimator would replace Z in

(4) by an estimator EðZjQÞ of the expectation of the true

exposure Z given the pair of corresponding Q values,

assuming that these self-report values arise from a classical

measurement model Q ¼ Z þ 1; rather than (3). This is the

regression calibration method24 that may be used if the

self-report data are assumed to be without systematic bias

or, equivalently, if multiple self-report assessments are

assumed to have statistically independent measurement

errors. Table 1 shows the resulting estimators of relative

risk parameters to be seriously biased, with the b1 estimate

strongly attenuated towards zero. Finally, Table 1 shows

an appropriate regression calibration estimator in which Z

in (4) is replaced by EðZjW Þ; an estimate of the

expectation of Z given the pair of biomarker W values.

This estimate was based on simple linear calibration

equations, and a corresponding ‘sandwich-type’ variance

estimator was calculated for the (b0, b1) estimates. As

shown in Table 1, these variance estimates align closely

with the corresponding sample variances and confidence

intervals have close-to-nominal coverages. In addition, the

biases in the estimators of (b0, b1) appear to be negligible.

In the simulation study just described, we assumed W

(biomarker) determinations to be available on the entire

study cohort. As noted above, this will not be practical in a

nutritional epidemiology cohort study. We have con-

ducted additional development of calibration estimators of

regression parameters, which involve replacing Z in (4) by

an estimate of its expectation conditional on V and on the

W and Q values that are available for the study subject in

question. We have also conducted corresponding simu-

lation studies that show that such methods can lead to

odds ratio parameter estimates having acceptable bias and

coverage properties even if biomarker data are available

on only a modest fraction of the study cohort. Our

ongoing work, to be described in detail elsewhere, is also

looking into the necessary size of a biomarker sub-study as

a function of the complexity of the measurement

properties of Q, as reflected in (2) and (3). This work,

along with biomarker pilot data to build a measurement

model (1)–(3), is intended to provide input to the design

of a potential future nutrition biomarker sub-study of the

WHI cohort study.

There appears to have been little discussion in the

literature as to the types of biomarker that may adhere to a

classical measurement model (1). These measures, such as

doubly labelled water assessments of energy expenditure

Table 1 Simulation study of various estimators of logistic regression parameters b0 ¼ 20:6931 and
b1 ¼ 0:6931 with biomarker estimates W, and self-report estimates Q, of a nutrient exposure Z
generated according to the measurement model (1)–(3). The estimates labelled Q̄ and W̄ are obtained
by replacing Z values by the average of paired Q and W values in logistic regression, while those
labelled E ðZ jQÞ and E ðZ jW Þ are regression calibration estimates obtained under an oversimplified and
correct measurement model assumption, respectively

Regression
variable

(Z ) replacements

Cohort size Parameter Q̄ W̄ E(ZjQ ) E(ZjW )

100 b0 Sample bias 0.454 0.225 0.436 20.024
Sample SD* 0.246 0.291 0.252 0.373
Average SD estimate* 0.246 0.282 0.251 0.360
95% CI* 0.520 0.850 0.554 0.952

b1 Sample bias 20.404 20.226 20.382 0.023
Sample SD* 0.169 0.191 0.182 0.301
Average SD estimate* 0.160 0.188 0.172 0.290
95% CI* 0.280 0.728 0.384 0.958

500 b0 Sample bias 0.463 0.247 0.446 0.018
Sample SD* 0.112 0.126 0.114 0.161
Average SD estimate* 0.108 0.123 0.110 0.154
95% CI* 0.102 0.486 0.022 0.934

b1 Sample bias 20.418 20.246 20.398 20.017
Sample SD* 0.070 0.079 0.075 0.125
Average SD estimate* 0.069 0.081 0.074 0.123
95% CI* 0.000 0.154 0.006 0.946

* The entries are the sample standard deviation, the average of standard deviation estimates and the empirical coverage
rate of nominal 95% confidence intervals.
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and urinary nitrogen assessments of protein expenditures,

which involve collecting a metabolite that arises if and

only if the corresponding nutrient is expended, the

abundance of which reflects the corresponding amount of

nutrient expended, are likely to be the most valuable.

These measures still require the metabolite collection to be

complete, and the study subject to be in nutrient balance,

and they require calibration equations that express

consumption estimates as a function of metabolite

measurements.

Some other potential biomarkers, for example blood

concentrations of certain micronutrients, may typically be

influenced by factors beyond recent consumption of the

nutrient. Such biomarkers will then not adhere to the

simple measurement model (1) and may themselves

require a substantial calibration study to develop a suitable

measurement model. Even so, a biomarker in (1) would,

however, have a major advantage over a second self-

report assessment (e.g. using food records) in that the

biomarker measurement error (u ) may plausibly be taken

to be uncorrelated with that (1) for the self-report estimate,

whereas it would seem virtually impossible to argue

convincingly that two self-report assessments have

uncorrelated measurement errors, regardless of the

complexity of models (1) and (2). Even with a biomarker

in (1) one should be aware of the possibility of positively

correlated errors in (1) and (2), and hence of optimistic

assessment of the properties of the measurement Q,

simply because both assessments may aim to measure

consumption in a common narrow time window (e.g. a

few weeks or months) while the target Z may be defined to

reflect consumption over a much longer time period (e.g.

a decade or two). Much important work remains to be

carried out on the selection, modelling and use of

appropriate biomarkers of nutrient (and food group)

consumption.

WHI nutrition biomarker pilot study

As discussed above, error in self-report of dietary intake is

perhaps the single greatest impediment to understanding

the effect of diet on disease risk. However, for many

studies, self-report (often food-frequency questionnaires

(FFQs)) will be the only dietary assessment on all

participants because of logistic and cost constraints.

Therefore it has become increasingly clear that large-

scale research efforts need to incorporate biomarker

sub-studies that can identify and quantify sources of

measurement error in the parent study’s primary dietary

assessment instrument.

The WHI nutrition biomarker pilot study was

designed to demonstrate the feasibility of collecting a

comprehensive panel of biological markers of dietary

intake for comparison with the WHI FFQ25. The WHI

is perhaps the most ambitious population research

investigation ever undertaken. Briefly, this initiative

includes a randomised, controlled clinical trial to evaluate

the health benefits and risks of three distinct interventions

among 68 133 postmenopausal women and an obser-

vational study comprised of 93 676 postmenopausal

women. Follow-up of participating women is planned

through March 2005 for an average of about 8.5 years’

duration20. The potential for this observational study to

make important new contributions to our understanding

of diet and disease will be influenced heavily by the

degree to which we can correct for systematic and person-

specific measurement error in the FFQ. Below we provide

an overview of the protocol employed in the WHI

nutrition biomarker pilot study, which was designed to

address issues of error in dietary self-report.

This pilot study obtained dietary intake data using the

WHI FFQ along with objective measures of intake from

102 healthy postmenopausal women aged 50–79 years in

Seattle, Washington. The biomarker data include measures

of energy (using indirect calorimetry and an acceler-

ometer), protein (from urinary nitrogen), carbohydrate

(using a phospholipid fatty acid), and vitamin C, folate,

retinol, tocopherols and carotenoids (from fasting blood

samples).

We recruited participants with the same methods used

to recruit women for WHI: mass mailings and public

service announcements. Women attended two clinic visits

(one week apart) so that we could obtain duplicate

measures of key variables for purposes of investigating

reliability and within- vs. between-person variability. At

each visit we measured resting energy expenditure using

indirect calorimetry, took a fasting blood sample, and

obtained a 24-hour urine sample that women collected the

day preceding the clinic visit. For measurement of activity-

related energy expenditure, participants wore an

accelerometer during waking hours for at least two non-

consecutive days between clinic visits. We also measured

height, weight and body circumferences. In addition to the

FFQ, participants completed questionnaires on demo-

graphic characteristics, health behaviour and psychosocial

factors such as social desirability. Only two women began

the protocol and did not finish the study (98% completion

rate). Participants were paid $100 as compensation for

their time and effort.

For the biomarker of energy intake, we encountered an

unanticipated problem because of the market unavail-

ability of doubly labelled water for determination of

energy expenditure26. Therefore we developed an

alternative protocol for measuring the major components

of energy needs: (1) resting metabolic rate determined

using an indirect calorimeter (SensorMedics, Yorba Linda,

CA) and (2) activity-related energy expenditure using a

Caltrac accelerometer (Muscle Dynamics, Torrance, CA).

Some properties of this energy expenditure measure have

recently been reported27.

For the biomarker of protein intake, we obtained two
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24-hour urine collections. The use of urinary nitrogen as a

marker of protein intake is well studied and controlled

feeding studies have shown that, over a 28-day period of

time, 24-hour urinary nitrogen correlates nearly perfectly

with dietary nitrogen intake, representing 78–83% of intake28.

A potential biomarker of carbohydrate intake is a

plasma phospholipid fatty acid called vaccenic acid

(18:1n–7) that is produced endogenously from carbo-

hydrate and appears to increase in response to a low-fat

diet. This biomarker was identified using a controlled

feeding study comparing fasting plasma fatty acid profiles

among postmenopausal women on a low-fat (high-

carbohydrate) diet vs. a high-fat (low-carbohydrate) diet.

Results of this study have provided preliminary evidence

that plasma phospholipid fatty acids may be able to serve

as quantitative biomarkers of total dietary fat and/or

carbohydrate intake29. For example, using discriminant

analyses, phospholipid vaccenic acid concentrations

distinguished between the two controlled diets almost

perfectly. Finally, we propose to obtain an objective

measure of fat (and alcohol) intake by subtracting

protein and carbohydrate intakes (determined from the

biomarkers) from our measure of energy intake.

Further analyses from this pilot study are currently

underway and may be used to inform the design of a larger

nutritional biomarker study within the WHI Observational

Study. For this purpose, the pilot study data can provide

preliminary estimates of the calibration function (3) for the

food frequency nutrient assessments by identifying factors

(V in equation (3)) that are related to the measurement

error properties of the FFQ and by providing estimates of

the corresponding calibration parameters (g).
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