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Although glutamate is one of the most important excitatory neurotransmitters of the

central nervous system, its excessive extracellular concentration leads to uncontrolled

continuous depolarization of neurons, a toxic process called, excitotoxicity. In

excitotoxicity glutamate triggers the rise of intracellular Ca2+ levels, followed by up

regulation of nNOS, dysfunction of mitochondria, ROS production, ER stress, and

release of lysosomal enzymes. Excessive calcium concentration is the key mediator

of glutamate toxicity through over activation of ionotropic and metabotropic receptors.

In addition, glutamate accumulation can also inhibit cystine (CySS) uptake by reversing

the action of the CySS/glutamate antiporter. Reversal of the antiporter action reinforces

the aforementioned events by depleting neurons of cysteine and eventually glutathione’s

reducing potential. Various cell lines have been employed in the pursuit to understand

the mechanism(s) by which excitotoxicity affects the cells leading them ultimately to

their demise. In some cell lines glutamate toxicity is exerted mainly through over

activation of NMDA, AMPA, or kainate receptors whereas in other cell lines lacking such

receptors, the toxicity is due to glutamate induced oxidative stress. However, in the

greatest majority of the cell lines ionotropic glutamate receptors are present, co-existing

to CySS/glutamate antiporters and metabotropic glutamate receptors, supporting the

assumption that excitotoxicity effect in these cells is accumulative. Different cell lines

differ in their responses when exposed to glutamate. In this review article the responses

of PC12, SH-SY5Y, HT-22, NT-2, OLCs, C6, primary rat cortical neurons, RGC-5, and

SCN2.2 cell systems are systematically collected and analyzed.

Keywords: excitotoxicity, glutamate oxidative toxicity, PC12, SH-SY5Y, HT-22, NT-2, RGC-5, SCN2.2

Abbreviations: AIF, apoptosis inducing factor; AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor;
BDNF, brain derived neuron factor; BID, BH3 interacting domain death agonist; cAMP, cyclic adenosine monophosphate;
CNS, central nervous system; CREB, cAMP response element binding protein; Cys, cysteine; CySS, cystine; EAAT, excitatory
amino-acid transporter; ER, endoplasmic reticulum; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; GSH, glutathione;
iGluR, ionotropic glutamate receptor; KARs, kainic acid receptors; MAPK, mitogen-activated protein kinase; mGluRs,
metabotropic glutamate receptors; NADPH, nicotinamide adenine dinucleotide phosphate; NGF, nerve growth factor;
NMDAR,N-methyl-D-aspartate receptor; NOS, nitric oxide synthase; PKC, protein kinase C; PLC, phospholipase C; PRCNs,
primary rat cortical neurons; RA, retinoic acid; Src, proto-oncogene tyrosine-protein kinase; VDCC, voltage-dependent
calcium channel; XC

−, glutamate/cystine antiporter.
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Introduction

Glutamate is one of the main excitatory neurotransmitters of

the CNS, contributing to normal neural transmission, develop-
ment, differentiation, and plasticity. However, excessive extra-

cellular glutamate concentration can lead to uncontrolled con-
tinuous depolarization of neurons, a toxic process called, exci-

totoxicity, leading eventually to neuronal death. Excitotoxicity
is associated with many neurodegenerative conditions such as
Huntington’s disease, Alzheimer’s disease, lateral amyotrophic

sclerosis, Parkinson’s disease and stroke or traumatic brain injury.
Glutamate both in neurons and glial cells is synthesized

through the tricarboxylic acid cycle and additionally in neurons
by the glutamate–glutamine cycle, where it is accumulated in

vesicles for future release. Glutamate is ligand to post-synaptic
either iGluRs or mGluRs. Under pathological stimuli, glutamate

release is excessive; GluR over activation ensues, resulting in an
augmented intracellular Ca2+ influx.

Increased intracellular Ca2+ concentration disrupts calcium
homeostasis and initiates a cascade of signaling pathways, leading

to up regulation of nNOS, dysfunction of mitochondria, deregu-
lation of oxidative phosphorylation, ROS production, ER stress,

and release of lysosomal enzymes. Excessive calcium concen-
tration is the key mediator of glutamate toxicity through over

activation of ionotropic and metabotropic receptors. In addition,
glutamate accumulation can also inhibit CySS uptake by revers-

ing the action of the CySS/glutamate antiporter (Xc−). Reversal
of Xc− action reinforces the aforementioned events by deplet-
ing neurons of CySS and eventually GSH, leading to free radical

accumulation. In the absence of glutamate receptors, glutamate
toxicity can occur through this antiporter promoting a Ca2+

independent, non-receptor mediated oxidative glutamate toxic-
ity. Glutamate exerts its toxic effects throughmolecular pathways,

which lead to neurodegeneration and cell death, for reviews see
(Wang and Qin, 2010; Lai et al., 2014).

In the last three decades various cell models have been used
in excitotoxicity studies and different pathways pertaining to cell

survival and/or cell death have been reported to be triggered in
each cell line. This review summarizes the effect of excitotoxicity

on the homeostasis of the cellular organelles, the cell signaling
pertaining to survival and cell death and focuses on the cell lines

that have been used as models for the study of the excitotoxicity.

Glutamate-Induced Cytotoxicity
Triggering and the Effect on
Intracellular Organelles

Glutamate Release and Reuptake: the
Glutamate–Glutamine Cycle and Xc−

During neurotransmission, glutamate is released by depolar-
ization of pre-synaptic membranes via a Ca2+-dependent pro-

cess, involving VDCCs (Meldrum, 1994; Anderson and Swanson,
2000). VDCCs are of N, P/Q, R, and L-type characterized by

their subunit composition and their inhibition by specific tox-
ins. They mediate glutamate synaptic release in CNS and their

distribution among nerve terminals varies. In certain terminals,

only one type is present, while others possess more than one
(Reid et al., 2003).

Neurotransmission is ended within millisecond by efficient
glutamate reuptake via Na+-dependent high affinity gluta-

mate membrane EAATs: EAAT1 (GLAST), EAAT2 (GLT1),
EAAT3 (EAAC1), EAAT4, and EAAT5. EAAT2 is commonly

expressed in glial cells and EAAT3 in neurons. EAAT2 is
believed to play the main role in regulating extracellular

glutamate concentration (Danbolt, 2001). In glial cells reup-
taken glutamate is converted to glutamine by glutamine syn-

thetase thus ending neurotransmission, offering neuroprotec-
tion and preventing excitotoxicity. Glial glutamine is taken

up into the presynaptic neuron via Na+-dependent glu-
tamine uptake systems, where it is converted to glutamate

by glutaminase thus completing the glutamate–glutamine cycle
(Attwell, 2000; Daikhin and Yudkoff, 2000; Hertz et al., 2007;
Figure 1).

The Ca2+-independent glutamate release is attributed to
reverse action of the aforementioned glutamate transporters.

Reverse action of glutamate transporters can occur during depo-
larization, when the Na+ and K+ gradients are diminished

possibly contributing to the regulation of glutamatergic neu-
rotransmission. In hypoxia reduced expression of EAAT1 and

2 contributes to increase extracellular glutamate concentration
leading to neuronal overexcitation and excitotoxicity (Rossi et al.,

2007; Niciu et al., 2012).
Another important molecule modulating both extra- and

intra-cellular glutamate concentrations is the XC
−. This is of

added importance for the nervous system since L-cystine taken

up by the cells can be used for GSH synthesis and protection from
oxidative insults, for a review see (Bridges et al., 2012). Excessive

extracellular glutamate concentration blocks the uptake of CySS
which is essential for biosynthesis of GSH. GSH depletion influ-

ences the capacity of cells to scavenge free radicals, a fact that
makes cells vulnerable to secondary events such as accumulation
of ROS and alteration in Ca2+ homeostatic mechanisms resulting

in cell death (Fukui et al., 2009).

Glutamatergic Neurotransmition: the
Glutamate Receptors
There are two types of glutamate receptors categorized according
to their function. iCluRs functioning upon binding of glutamate

as ion channels and mGluRs. mGluRs are G protein coupled
receptors, coupled to their associated ion channels via a sec-

ond messenger cascade. iGluRs are named after their respective
agonist, NMDARs, AMPARs, and KARs. They are multimeric

assemblies of different protein subunits that form homo or het-
eromeric complexes of varying subunit combination, resulting to

multiple types of ion channels with different properties. iGluRs
mediate fast synaptic transmission and are broadly classified in

two classes as NMDA and non-NMDA receptors (Keinanen et al.,
1990; Monyer et al., 1992; Nakanishi et al., 1994).

N-methyl-D-aspartate receptors are complex structures able
to bind glutamate, glycine, Mg2+, Zn2+, and polyamines.

Composed from seven subunits (one NR1, four NR2, and two
NR3), their function is determined by the combination of NR1
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FIGURE 1 | Glutamate release and uptake, the Xc− antiporter and the

glutamate/glutamine cycle. In glial cells reuptaken glutamate is converted to

glutamine by glutamine synthetase. Glial glutamine is taken up into the

presynaptic neuron via Na+-dependent glutamine uptake systems, where it is

converted to glutamate by glutaminase. Extra- and intra-cellular glutamate

concentrations are modulated through the XC
− antiporter. Neurotransmission is

ended by efficient glutamate reuptake via Na+-dependent high affinity glutamate

membrane EAATs.

and NR2 subunits. NMDARs form channels that are more per-
meable to Ca2+ than Na+ and K+. Upon binding of glutamate

the magnesium ions, blocking the ion channel, are released and
consequently the ion channel is activated allowing the influx of

the aforementioned ions into the cytoplasm (Mehta et al., 2012).
Kainate and AMPA receptors interact only with glutamate and

their specific agonists, and their associated channels are more
permeable to Na+ and K+ than Ca2+(Kostandy, 2012; Figure 2).

Metabotropic glutamate receptors are G-protein cou-
pled receptors and trigger a second messenger cascade

(Skeberdis et al., 2001a; Lea et al., 2005). They are found
both at the pre- and post-synaptic neurons, but also

subunits of metabotropic receptors are expressed in microglia
(Janssens and Lesage, 2001; Byrnes et al., 2009; Figure 2).

There are eight different types of mGluRs (mGluR1 to
mGLUR8) and are classified to three groups according to their

structure and physiological activity (groups I, II, and III). Group
I (mGluR 1 and 5) are mainly post-synaptic receptors coupled

to a Gq heterotrimeric G protein. Upon binding of glutamate,
PLC is activated and 1,4,5-inositol triphosphate is produced
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FIGURE 2 | Glutamate receptors: structure and function. NMDARs bind

glutamate, glycine, Mg2+, Zn2+, and polyamines. Composed from seven

subunits (one NR1, four NR2, and two NR3), their function is determined by the

combination of NR1 and NR2 subunits. NMDARs form channels that are more

permeable to Ca2+ than Na+ and K+. Kainate and AMPA receptors interact

only with glutamate and their specific agonists, and their associated channels

are more permeable to Na+ and K+ than Ca2+. mGluRs are G-protein coupled

receptors and trigger a second messenger cascade. They are found both at the

pre- and post-synaptic neurons, subunits of metabotropic receptors are also

expressed in microglia.

initiating multiple intracellular responses. Evidence is presented

for PKC-dependent and independent pathways potentiating the
NMDA responses by mGluRs (Kelso et al., 1992; Ugolini et al.,

1997; Skeberdis et al., 2001b). Groups II and III are coupled to
Gi/G0 thus inhibiting the action of adenylate cycle and reducing

intracellular cAMP levels.
Pertaining to excitotoxicity, NMDARs play the most impor-

tant role as larger quantities of Ca2+ ions can be moved through
them (Bloom, 1994). The role of kainate and AMPA recep-

tors is also important as it has been shown that their acti-
vation is directly related to the ER stress. Activation of the

iGluRs creates a depolarization (excitatory post-synaptic cur-
rent) and depending on the number of the receptors that are

activated, this current, can lead to an action potential. This cur-
rent is also essential to the function of NMDARs since it can

lift their voltage dependent Mg2+ block (Johnson and Ascher,
1990).

Of the mGluRs class I is positively connected with excitotox-
icity by modulating the NMDA receptor activity while classes II

and III are negatively related to the phenomenon, through the
suppression of intracellular cAMP levels inhibiting the export
of potentially neurotoxic glutamate from microglia offering a

neuroprotective role (Ambrosini et al., 1995; Faden et al., 1997;
Allen et al., 1999; McMullan et al., 2012).

Glutamate Receptors and Cell Death
Both iGluRs and mGluRs mediate the excitotoxic insult via dis-
tinct, but not independent pathways. However, key players in

the initiation of the exitoxic insult are the iCluRs. The elevated
Ca2+ concentration upregulates the activity of nNOS, contributes

to mitochondrial activity deregulation and ER stress, leading to
cell membrane depolarization and dysfunction of intracellular

organelles. As iGluRs are permeable not only to Ca2+ but also

to Na+ and K+, their activation leads to depolarization of the cell
membrane and osmotic inflow of water.

N-methyl-D-aspartate receptor activity can be modulated by
mGluRs. mGluRs do not participate directly in the excitotoxic

insult, but rather seem to modulate it. NMDARs can be up regu-
lated by Src kinase mediated tyrosine phosphorylation, leading

to increased channel permeability (Salter, 1998; Ali and Salter,
2001). Group I are positively coupled via a Gq-protein to

PLC, resulting in the release of Ca2+ from intracellular stores
(Skeberdis et al., 2001a). Augmented intracellular Ca2+ concen-

tration can lead to the sequential activation of PKC, Pyk2 and Src,
resulting in the tyrosine phosphorylation of NMDARs (Lu et al.,

2011). NMDAR phosphorylation via Src family results in its up
regulation (Dikic et al., 1996; Salter, 1998) and increases open

channel probability (Salter, 1998; Ali and Salter, 2001). PKC and
mGluR 1 potentiate NMDARs currents not only by increased

open channel probability but also by recruiting new chan-
nels to the membrane in cooperation with cytoskeletal proteins

(Lan et al., 2001).
Both mGluR1 and mGluR5 lead to the potentiation of

NMDA receptor currents via Src-dependent mechanism.

Alternatively others (Minakami et al., 1997; Ishikawa et al.,
1999; Shinohara et al., 2001) support that both mGluR1 and

mGluR5 can interact with calmodulin in a calcium dependent
manner, proposing that other molecules besides PKC may be

responsible for the mGluR1 mediated activation of Pyk2/Src
and the potentiation NMDARs currents (Figure 3). Group II

(mGluR2 and 3) and III (mGluR4, 6, 7, and 8) are coupled
to Gi/G0 proteins leading to inhibition of adenylate cyclase

decreasing the levels of cAMP in the cytoplasm (Conn and Pin,
1997). Subunits of metabotropic receptors (groups I, II, and
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FIGURE 3 | (A) Excitotoxicity mediated cell death: glutamate excitotoxicity

causes Ca2+ mediated NO production leading to mitochondrial dysfunction

resulting in superoxide production. Peroxynitrite is produced causing lipid

peroxidation, direct DNA damage, and protein dysfunction. Peroxynitrite inhibits

the mitochondrial electron transport chain, cytochrome c normal activity as well

as of superoxide dismutase via protein nitration. Activation of ryanodine

receptors in conjunction with accumulation of misfolded proteins and depletion

of endoplasmic Ca2+ storage, results in ER dysfunction (ER-stress). These facts

can provoke caspase mediated cell death and an eventual apoptotic cell death.

Alternatively augmented intracellular Ca2+ concentration can lead to calpain

activation engaging both calpain dependent and cathepsin dependent cell

death. (B) mGluRs and NMDAR crosstalk: both mGluR1 and mGluR5 lead to

the potentiation of NMDA receptor currents via Src-dependent mechanism in a

PKC or calmodulin depended manner.

III) are also expressed in microglia. Groups II and III through

the suppression of intracellular cAMP levels inhibit the export
of potential neurotoxic glutamate from microglia offering a

neuroprotective role (McMullan et al., 2012).
Recently it is reported that calpains, proteases activated by

elevated intracellular calcium concentration, form a negative
feedback loop for controlling calcium influx, bymeans of cleavage

and subsequent inactivation of glutamate receptors. This feed-
back loop may contribute to a neuroprotective effect against the

excitotoxic insult (Doshi and Lynch, 2009; McMullan et al., 2012;
Figure 3).

nNOS Up Regulation and Cell Death the Key
Player
N-methyl-D-aspartate receptors are linked to neuronal nitric
oxide synthase (nNOS), and therefore their activation leads

to production of toxic NO-levels. NMDARs and nNOS are
connected by the post-synaptic density protein PSD-95. Over

activation of NMDARs under excitotoxic conditions provokes

Ca2+ influx which results in activation of nNOS via calmodulin
(Schrammel et al., 2003; Brown, 2010).

More recently, NO has been shown to interfere with neu-
rotoxicity through an interaction with GAPDH (Hara et al.,

2005). GAPDH/Siah 1(an E3 ubiquitin ligase) pathway is a
novel pathway that links NO to a form of apoptotic-like

death (Leach et al., 1986; Hara et al., 2005). Increased intracel-
lular concentration of NO causes S-nitrosylation of GAPDH

which triggers GAPDH binding to Siah 1. GAPDH/Siah1
complex is translocated to the nucleus resulting in the tran-

scription of the proapoptotic factor p53 (Sen et al., 2008).
Activation of nuclear proteins such as p53 results in pyknotic
nucleus and other morphological characteristics that indicate

apoptotic death (Sen et al., 2009). Moreover, GAPDH plays
a pivotal role in glycolysis and it is possible that GAPDH-

NO interaction leads to loss of function and energy failure
(Vedia et al., 1992).
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FIGURE 4 | Molecular mechanism of oxidative glutamate toxicity.

Increased extracellular glutamate concentration leads to reverse action of Cys

glutamate antiporter. GSH depletion, follows due to decrease of intracellular Cys

influencing the capacity of cells to scavenge free radicals, rendering them

vulnerable mitochondrial dysfunction and to secondary events such as

accumulation of ROS, production of Bid and AIF, resulting in cell death.

Glutamate excitotoxicity causes Ca2+ mediated NO
production leading to mitochondrial dysfunction resulting
in superoxide production, which is released via voltage depen-

dent anion channels into the cytosol. NO-superoxide interaction
can produce peroxynitrite an oxidative molecule that can cause

lipid peroxidation, direct DNA damage and protein dysfunction
(Radi et al., 1991a,b; Salgo et al., 1995). Peroxynitrite has many

deleterious effects, such as the inhibition of mitochondrial
electron transport chain (Radi et al., 1994), cytochrome c normal

activity (Nakagawa et al., 2001) as well as of superoxide dismu-
tase via protein nitration (Yamakura et al., 1998). These facts can

provoke caspase mediated cell death and an eventual apoptotic
cell death (Szab, 2003; Figure 3).

In addition NO activated soluble guanylate cyclase increase
levels of cGMP. The three principal targets of cGMP are

protein kinase G (PKG), cyclic-nucleotide gated channels
(CNGCs), and cyclic-nucleotide phosphodiesterase (PDE). Of

these, PKG provides the broadest means for controlling ion-
channel function modulating this way neuronal excitability

(Denninger and Marletta, 1999; Ahern et al., 2002).

Deregulation of Intracellular
Organelles-Mitochondria, ER, Lysosomes
Deregulation of cell signaling due to excitotoxicity leads to altered
function of intracellular organelles. Mitochondria, ER, and lyso-
somes are mostly affected by the increased Ca2+ influx, and their

degeneration plays a pivotal role in neuronal death.
Mitochondria produce not only ATP, but also ROS and

regulate Ca2+ homeostasis. Normally Ca2+ intake controls
the activity of three dehydrogenases: pyruvate, isocitrate and

ketoglutaric acid dehydrogenase, as well as ATP synthase.
However, the increased influx of Ca2+ leads to mitochon-

drial Ca2+ overload and depolarization of mitochondrial mem-
brane. The consequences of this overload is: (a) the activa-

tion of mitochondrial permeability transition pore, (b) phos-
pholipase A2 and xanthine oxidase up-regulation, (c) inhibi-

tion of respiratory chain enzymes and (d) deactivation of cata-
lase, superoxide dismutase, and GSH peroxidase (Yang et al.,

2011; Cheng et al., 2012). The deregulation of respiratory
chain enzymes firstly decreases ATP synthesis and secondly

overproduces ROS, which cannot be neutralized by the cell.
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ATP depletion leads to neuronal bioenergetic failure and neu-

rodegeneration. ROS react with biological molecules (lipids,
proteins, nucleic acids, carbohydrates), producing new oxida-

tive species, which trigger oxidative chain reactions of other
macromolecules. In this way ROS bind to DNA evoking its frag-

mentation. Mitochondrial DNA, which lacks on histones, is espe-
cially vulnerable to ROS oxidation. The above in combination

to PLC up-regulation, lead to membrane lipid peroxidation with
the consequent membrane destabilization (Nicholls and Budd,

1998).
The result of all these factors is synaptic dysfunction, impaired

neuronal plasticity and cell death via apoptosis, necrosis and/or
autophagy. A central player in the potential driven mitochon-

drial Ca2+ uptake, is the mitochondrial Ca2+ uniporter (MCU),
whose gene has been recently characterized (Luetjens et al., 2000;

Pivovarova et al., 2004). In excitotoxicity Ca2+ uniporter acts as a
mediator of death-signal, induced by loss of mitochondrial mem-
brane potential (MMP), but can also serve a pro-survival role

through neuroprotective Ca2+ signaling stemming from synaptic
activity (Qiu et al., 2013; Figure 3).

Endoplasmic reticulum is an important cell organelle respon-
sible for correct folding and sorting, translation, and post-

translational modification of proteins and serves as an intracel-
lular Ca2+ storage. ER is functionally connected to mitochondria

through intracellular Ca2+ flow between them. ER functions can
be disturbed by different insults such as accumulation of unfolded

proteins and changes in Ca2+ homeostasis. Overstimulation of
AMPA receptors results in inordinate Ca2+ concentration which

leads to activation of ryanodine receptors (RyRs) located in ER
(Ruiz et al., 2010; Mehta et al., 2012).

Activation of RyRs in conjunction with accumulation of mis-
folded proteins and depletion of endoplasmic Ca2+ storage,

results in ER dysfunction (ER-stress). Cell response to ER-
stress is called unfolded protein response (UPR; Boyce and Yuan,

2006) and consists of two repair mechanisms: activation of
proteasome and ubiquitinization of dysfunctional proteins and
induced expression of molecular chaperones (Verkhratsky, 2005;

Boyce and Yuan, 2006; Ruiz et al., 2010).
Lysosomes are organelles which contain hydrolytic enzymes

(proteases, nucleases, and lipases) necessary for intracellular
digestion. Under excitotoxic conditions the number of lysosomes

is increased because of enhanced induction of autophagy. It has
been reported that NMDARs channeling in rat cerebellar granule

neurons in culture, increased phaghosomes and their conjuga-
tion with lysosomes (Sadasivan et al., 2010). Moreover, several

lines of evidence support a cross-talk between apoptosis and
autophagy, since certain caspases can directly or indirectly acti-

vate cathepsins (Hsieh et al., 2009). Mitochondrial dysfunction
leads eventually to activation of caspases which results in the

release of cathepsins. The latter activates authophagy through
release of lysosomal contents into the cytoplasm (Nixon et al.,

2001; Terman et al., 2006).
Autophagy is a natural cell function in CNS since it plays a

pivotal role in neuroprotection. It has been reported that trau-
matic brain injury is followed by enhanced autophagic processes.

Activation of NR2B via CaMKII kinases contributes to the release
of Beclin-1 which induces autophagy, while NR2B antagonists

prevent excitotoxic-induced autophagy. Over activation of lyso-

somes and uncontrolled release of lysosomal enzymes caused by
excitotoxicity contributes to neuronal death and brain pathology

(Sadasivan et al., 2010; Figure 3).

Cell Lines Models Utilized for the Study
of Glutamate-Induced Cytotoxicity

Based in bibliographic search we concluded that nine cell lines

are widely used in researching in vitro excitotoxicity: PC12-
rat pheochromocytoma, SH-SY5Y-human neuroblastoma, HT-

22-immortalized mouse hippocampal cell line, Ntera /D1-NT-2
human teratocarcinoma, oligodendroglial lineage cells (OLCs),

C6 -rat glioma, primary cortical rat neurons (PCRNs), RGC-
5-mouse retinal ganglion cells, and SCN2.2 -hypothalamic

suprachiasmatic nucleus (SCN) rat cell line. Below we summarize
the methodology employed and the findings with respect to the
signaling pathways activated in each cell line while researching

excitotoxicity.

PC12
PC12 is a cell line derived from rat adrenal medulla pheochro-
mocytoma, they synthesize dopamine and glutamate and can

be induced to differentiate by NGF to a sympathetic phenotype
expressing neurites and excitability (Greene and Tischler, 1976).

PC12 cell line has been extensively used as a tool for studying the
function of neurons, neuronal differentiation, and neurotoxicity.

Glutamate exerts its toxic effects on PC12 in a dose and time
dependent manner. Its toxic concentration varies between 0.01

and 10 mM (Pereira and Oliveira, 1997, 2000; Penugonda et al.,
2006; Pourzitaki et al., 2007, 2008, 2009; Lu et al., 2011) while

time varies from 30 min to 3-12-24-48 h of incubation.
Even though mRNA for NMDA receptor subunits is expressed

by PC12 cells (Schubert et al., 1992; Leclerc et al., 1995) there
are contradictory findings, reported in the literature, concern-
ing the receptor functionality, and presence of receptor protein.

According to Sucher et al. (1993) only trace amounts of the recep-
tor protein are present in PC12 cells and no functional NMDA-

operated channels exist in this cells line. This has also been
supported recently from in vitro findings in PC12 cell studies

(Said et al., 1998; Vazhappilly and Sucher, 2002; Edwards et al.,
2007). On the other hand, others support both the presence

and functionality of the NMDARs in PC12 cells (Casado et al.,
1996; Penugonda et al., 2006; Pourzitaki et al., 2007, 2008, 2009;

Figure 3).
In addition to excitotoxicity, glutamate appears to exert a

cytotoxic action at very high extracellular concentrations (5–
10 mM; Murphy et al., 1990). This glutamate-induced cytotoxic-

ity is independent of NMDARs and is mediated through the inhi-
bition of CySS uptake leading to depletion of GSH and oxidative

glutamate toxicity (Tyurin et al., 1998; Penugonda et al., 2006;
Figure 4 and Table 1).

The above two mechanisms of glutamate-mediated tox-
icity can act cooperatively on PC12 cell death (Ma et al.,

2012), while other investigators support that cell death
on PC12 is exclusively due to NMDARs over activation
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TABLE 1 | Reported responses of individual cell lines to excitotoxicity and

oxidative glutamate toxicity.

Cell lines Excitotoxicity Oxidative

glutamate

toxicity

Glutamate

dose range

Time range of

glutamate

incubation

PC12 + + 10 µM–10 mM 0.5–72 h1

SH-SY5Y + 8–80 mM 0.5–48 h2

HT22 + 4–8 mM 3–48 h3

NT-2 + + 10 µM–10 mM 4–58 h4

OLCs + 50 µM–2 mM 12–24 h5

C6 + + 10 µM–10 mM 1–28 h6

Primary

astrocytes

+ 2–5 mM 24–72 h7

PCRNs + + 1–5 mM 6–15 h8

RGC-5 + + 1–25 mM 24–48 h9

SCN2.2 + 10 mM >48 h10

GT1-7 + 10 mM >48 h10

(+) positive for trait. 1(Casado et al., 1996; Pereira and Oliveira, 1997,

2000; Penugonda et al., 2006; Pourzitaki et al., 2007, 2008, 2009; Lu et al.,

2011); 2(Yoshioka et al., 2000; Sun et al., 2010; Hu et al., 2012; Park et al.,

2012; Nampoothiri et al., 2014); 3(Davis and Maher, 1994; Stanciu et al.,

2000; Gursoy et al., 2001; Zhang and Bhavnani, 2006; Xu et al., 2007;

Landshamer et al., 2008; Tobaben et al., 2011; Kumari et al., 2012); 4(Munir et al.,

1995; Sandhu et al., 2003); 5(Oka et al., 1993; Yoshioka et al., 2000); 6(Han et al.,

1997; Sribnick et al., 2006; Castillo et al., 2010a); 7(Oka et al., 1993;

Obara-Michlewska et al., 2014); 8(Stanciu et al., 2000; Zhang and Bhavnani,

2006); 9(Aoun et al., 2003; Fan et al., 2006; Van Bergen et al., 2009);
10(Karmarkar et al., 2011; Karmarkar and Tischkau, 2013).

(Penugonda et al., 2006; Pourzitaki et al., 2007, 2008, 2009) or

inhibition of glu/cys antiporter without NMDAR implication
(Pereira and Oliveira, 1997, 2000). We propose that these

conflicting reports can be attributed to researchers studying
cell death triggered simultaneously by two different events:

increased intracellular Ca2+ concentration and GSH deple-
tion. At glutamate concentrations greater than 20 µM the

Xc
− antiporter begins the reverse CySS transport thus depriv-

ing the cells of their ROS inactivation potential (Seib et al.,

2011).
In relation to the above, there are reports that excitotoxic

cell death in PC12 cells, can be effected by apoptosis and/or
necrosis (Bal-Price and Brown, 2000; Lu et al., 2011; Ma et al.,

2012), while others support a caspase independent calpain
mediated cell death (Roth et al., 2000; Pourzitaki et al., 2007,

2009) probably necroptosis by activation of AIF (Shang et al.,
2014). Investigating hypoxia in a PC12 oxygen glucose depri-

vation model (Kritis et al., 2011), showed that cathepsin D
inhibition protects from cell death suggesting the implica-
tion of the autophagic processes. This is important in view

of excitotoxicity following ischemic insults due to excessive
cell death and uncontrolled release of glutamate (Lai et al.,

2014).
Neuroprotective mechanisms of PC12 cells include the

expression of GRP78, which suppresses oxidative stress
and stabilizes Ca2+ homeostasis (Yu et al., 1999). Protein

kinase B/Akt exhibits prosurvival and antiapoptotic activ-
ities and is involved in growth factor-mediated neuronal

protection. Akt deactivation characterizes both caspase-

dependent and -independent cell death (Luo et al., 2003).
Additionally PI3K/Akt pathway may preferentially regulate both

NGF and BDNF-mediated cell survival (Nguyen et al., 2010;
Table 2).

Human Neuroblastoma SH-SY5Y Cell Line
Human brain neuroblastoma SH-SY5Y differentiated cell line is
derived from bone marrow and is extensively used as a model

for the study of oxidative stress pertaining to neuronal death.
SH-SY5Y cells exhibit many characteristics of dopaminergic

neurons, they have the ability to synthesize dopamine and
norepinephrine and they express dopamine transporter. Upon

treatment with a variety of agents, including RA (Singh and Kaur,
2009) phorbol ester 12-O-tetradecanoylphorbol-13-acetate

(TPA; Pahlman et al., 1981), BDNF (Cernaianu et al., 2008),
dibutyryl cAMP (Kume et al., 2008), purine or staurosporine

(Mollereau et al., 2007). SH-SY5Y cells are differentiated
and exhibit neuronal like characteristics (Cheng et al., 1995;

Ismail et al., 2012). This cell line serves as a neuronal model for
Parkinson’s disease research (Xie et al., 2010).

Several studies in this cell line have detected the expres-
sion of both iCluRs and mGluRs (Naarala et al., 1993; Nair et al.,
1996; Sun and Murali, 1998; Naarala et al., 2002; Akundi et al.,

2003), while others support that SH-SY5Y cells are deficient in
NMDARs or that NMDARs have no function (Cheng et al., 1995;

Sun et al., 2010; Xie et al., 2010; Ismail et al., 2012). Sun et al.
(2010) support that increased cytoplasmic Ca2+ after glutamate

treatment is independent of glutamate receptors (both NMDA
and metabotropic) in SH-SY5Y cells. In this cell line gluta-

mate induced cytotoxicity could be mediated by oxidative stress
through CySS/glutamate antiporter, depletion of GSH, down reg-

ulation of SOD activity leading to apoptosis (oxidative glutamate
toxicity; Figure 4 and Table 1).

Others (Fallarini et al., 2009; Beske and Jackson, 2012) use the
SH-SY5Y cell line for investigating hypoxia employing proto-

col of oxygen glucose deprivation (OGD). Experimental evidence
suggests that glutamate-induced apoptotic cell death involves the

Rac-NADPH oxidase-mediated ROS formation in SH-SY5Y cells
(Nikolova et al., 2005; Table 2). One of the downstream targets

of NADPH oxidase-derived superoxide radicals is the transcrip-
tion factor NF-κB which regulates the expression of many genes
involved in cell survival and inflammation. NF-κB is also a key

factor in regulating NADPH oxidase expression and it is possible
that there is a positive feedback loop in which NF-κB activation

by oxidative stress leads to further radical production via NADPH
oxidase (Nikolova et al., 2005; Anrather et al., 2006).

HT-22 Immortalized Hippocampal Cell Line
HT-22 cell line is an immortalized mouse hippocampal cell
line that is extensively used to study the non-receptor medi-

ated oxidative glutamate toxicity (Murphy et al., 1989, 1990;
Davis and Maher, 1994). These cells lack iCluRs but are still

sensitive to high concentrations of extracellular glutamate
(Tables 1 and 2). Glutamate evokes oxidative death in HT22 in

a time- and dose-dependent manner involving both necrotic
and apoptotic processes (Tan et al., 2001; Fukui et al., 2009;
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TABLE 2 | Reported effectors and molecular pathways in glutamate cytotoxicity.

Effectors-pathways PC12 SH-SY5Y HT-22 NT-2 OLCs C6 PCRNs RGC-5 SCN2.2 GT1-7

Ionotropic (iGluR) − +/+ + +

NMDA +/− +/− + +

AMPA/Kainate +

Metabotropic (mGluR) + + − + +

Cystine/glutamate antiport + + + + +

GSH ↓ ↓ ↓ ↓ ↓ ↓

R.O.S ↑ ↑ ↑ ↑ ↑ ↑

Caspases + + − + + + − ↑

Cytochrome c + + +

ERK pathway + + + + + ↓

PkB/Akt/PI3 pathway + − + ↑

Rac-NADPH-ROS pathway(NF-κB) +

P38/MAPK pathway ↓ − ↑

JNK pathway ↑ ↓ + −

BDNF +

AIF and calpains + + +

↑/↓: Increase/decrease respectively of the responding effectors or pathways under excitotoxicity effect. +: Presence of the responding effectors or pathways in the

specific cell line. −: Absence of the responding effectors or pathways in the specific cell line. +/−: Both presence and absence of effectors or pathways reported for the

same cell line.

Xu et al., 2010). Recent data shows that glutamate induces

mainly necrosis at early time points (before 12 h), but
predominantly induces apoptosis at latter ones (12–24 h;

Thomas and Huganir, 2004; Fukui et al., 2009). This toxicity
is exerted by reduction in GSH production through the

CySS/glutamate exchanger (Tan et al., 1998; Zaulyanov et al.,
1999; Xu et al., 2007; Grohm et al., 2010; Chen et al., 2011;

Tobaben et al., 2011; Poteet et al., 2012; Figure 4). Mitochondrial
oxidative stress and dysfunction are important preceding events
promoting glutamate induced cell death in HT-22 (Suh et al.,

2007; Gliyazova et al., 2013; Shah et al., 2014). Treatment with
glutamate (i) alters MMP (ii) induces mitochondrial cytochrome

c release (iii) release of mitochondrial AIF, which catalyzes
DNA fragmentation and apoptosis. Oxidative stress activates

the c-jun N-terminal kinase (JNK) and p38 mitogen activated
kinase (Yang et al., 2012) pathways via apoptosis signal regulating

kinase-1 (ASK1), leading to apoptosis.
The exact mechanism of glutamate induced excitotoxicity is

not clear, and some believe that this process may be mediated
through the activation of MAPKs and inhibition of the PI3K/Akt

pathway.
In vitro evidence support that glutamate treated HT22 cells,

exhibit a delayed and persistent activation of ERKs which
contributes to oxidative toxicity (Stanciu et al., 2000). In HT-

22 cell line glutamate significantly up regulates the phos-
phorylation of ERK1/2 while decreasing Erk3 (Gliyazova et al.,

2013). Furthermore glutamate treated HT22 increase intracel-
lular Ca2+ levels by means of activation of cobalt-sensitive

channels (Finkbeiner and Greenberg, 1996). It is noteworthy
that cell death in HT-22 is characterized as necroptosis
(Nikoletopoulou et al., 2013). Moreover, increasing evidence sug-

gests that glutamate treated HT22 cells lack caspase activa-
tion and glutamate induced cell death proceeds independently

of the bcl-2 family proteins so in this cell line glutamate

induced apoptosis is mediated via the caspase independent

pathway which involves calpain and AIF and is accompa-
nied by DNA ladder formation but not chromatin conden-

sation (Zhang and Bhavnani, 2006). AIF translocation from
mitochondria to the nucleus has been identified as the final

step of caspase independent mitochondrial death signaling in
neurons (Kinney and Slater, 1993; Rahman and Neuman, 1996;

Holohean et al., 1999; Culmsee et al., 2005; Landshamer et al.,
2008; Poteet et al., 2012).

Human Teratocarcinoma Cell Line – Ntera
/D1 (NT-2)
Ntera-2 cell line is derived from a pluripotent embryonal tes-
ticular carcinoma. Upon treatment with RA, NT2 precursors

are differentiated into NT2N cells, which are identical to neu-
rons, and the majority of them express iCluRs (Perovic et al.,

1996; Yoshioka et al., 1997; Paquet-Durand and Bicker, 2004;
Paquet-Durand et al., 2006; Podrygajlo et al., 2009). NT2 cells

are immunoreactive to the cholinergic markers choline acetyl-
transferase, vesicular acetylcholine transporter, and the non-
phosphorylated form of neurofilament H, all indicative of

motor neurons. The NT2 system may thus be well-suited for
research related to motor neuron diseases (Podrygajlo et al.,

2009). Additionally NT-2N cells are able to secrete amyloid pre-
cursor protein constituting a model cell line for Alzheimer’s

disease studies (Di et al., 2010).
Both NMDA and non-NMDA glutamate receptor channels

have been identified electrophysiologically and mRNAs for
several subtypes of glutamate receptors have been detected

(Younkin et al., 1993).NT-2N cells are susceptible to both
NMDA and non-NMDA mediated excitotoxicity (Younkin et al.,

1993; Munir et al., 1995; Figure 3). High concentrations of
glutamate on NT-2N can also inhibit the CySS/glutamate

antiporter (Xc
−), diminish GSH, thus causing oxidative
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glutamate toxicity (Munir et al., 1995; Sandhu et al., 2002;

Figure 4).
According to Munir et al. (1995), these cells exhibit an exci-

totoxic response characterized by the absence of NOS and
NADPH activity, while Podrygajlo et al. (2009), support that NO

is involved in the excitotoxic response of NT-2. Regularly, astro-
cytes are the main source of NO, however, it has been shown that

NT2 neurons can produce NO and therefore increase levels of
cGMP (Denninger and Marletta, 1999). In this cell line hypoxia

is studied in relation to excitotoxicity and it has been shown
that NMDA antagonist (MK801) can offer protection against cell

death thus directly connecting hypoxia and excitotoxicity NT2
cells are mainly used to study the neuroprotective potential of

glutamate antagonists (Paquet-Durand et al., 2006).
Cell death in NT-2 cell does not seem to be effected by means

of caspase 3 activation alone, since addition of the NMDA antag-
onist MK801 results in synergistic protection (Hanko et al., 2006;
Table 2).

Oligodendroglial Lineage Cells
Oligodendroglial lineage cells are derived from CG-4-
immortalized rat O-2A progenitor cells and are established

as an in vitro model for oligodendroglial cell studies. Failure
of MK-801, to attenuate kainate-induced cell damage under

excitotoxic conditions has led to the conclusion that OLCs do not
express NMDARs (Yoshioka et al., 1995) and that excitotoxicity

in oligodendrocytes is mediated through non-NMDA gluta-
matergic receptors (Yoshioka et al., 1995, 2000; Yamaya et al.,

2002; Itoh et al., 2003). In vitro evidence support that although
both CG-4 and non-immortalized rat OLCs transcribe the

NMDA GluR subunit genes NMDAR1 and NMDAR2D they
do not translate NMDAR1 GluR protein (Peterson and Moore,

1980).
Excitotoxic stimuli can damage oligodendroglial cells by

means of Ca2+ entry which leads to Ca2+ dyshomeostasis and
mitochondrial membrane alterations. These changes can lead
to release of cytochrome c and AIF (Susin et al., 1999) exhibit-

ing a proapoptotic action. Death of oligodentroglial cells can be
either caspase-depended or caspase- independent (Alberdi et al.,

2002; Sanchez-Gomez et al., 2003; Ness et al., 2004). The molec-
ular events observed after glutamate excitotoxicity are shown in

Figure 3. Excitotoxic stimuli results in increased production of
ROS, depolarization of the mitochondrial membrane and release

of caspase-activating proapoptotic factors. Whether cell demise
is mediated via necrosis or apoptosis, it is determined through

the relative contribution of the above events (Ankarcrona et al.,
1995; Sanchez-Gomez et al., 2003). Consequently, cells die via

apoptosis or necrosis, as is observed in excitotoxic models
(Bonfoco et al., 1995). Overexpression of Bcl2 and Bcl-xl can pre-

vent cell death in cases of mild excitotoxic insults, whereas other
members of this family such as Bad or Bax have a proapoptotic

role and are involved in excitotoxicity induced mitochondrial
dysfunction (Xiang et al., 1998; Table 2).

C6 Cell Line
Although it has been shown that C6 rat glioma cells
express iGluRs (Singh and Kaur, 2009; Tsuchioka et al.,

2011; Veenman et al., 2012), it seems that excitotoxicity

in this cell line is mediated by mGluRs (Albasanz et al., 1997;
Viwatpinyo and Chongthammakun, 2009; Castillo et al., 2010a,b;

Piers et al., 2012; Sun et al., 2012). Concurrently studied C6 and
PRCNs cells, showed that in PCRNs cells mGluRs levels are down

regulated and the death rate is increased, after treatment with
glutamate, compared to C6 cells which were resistant to excito-

toxicity, and after 24/48 h the levels of mGluRs were increased.
GSH depletion seems to be responsible for the development of

oxidative stress in C6 cells (Han et al., 1997; Sun et al., 2012;
Figure 4).

Zhu et al. (2012) showed, that oxidized extracellular Cys/CySS
(CySS) redox state in C6 glial cells, induced a significant increase

in mGluR5-mediated phosphorylation of ERK kinases. Cys/CySS
redox could be blocked by U0126 an inhibitor of MEK/MAPK

and a specific mGluR5 antagonist, 2-methyl-6-(phenylethynyl)
pyridine (MPEP). Activation of mGluR5 by oxidized extracellular
Cys/CySS affected the expression of NF-κB and inducible iNOS

(Zhu et al., 2012).
Moreover A1-mediated adenylyl cyclase inhibition and

A2A-mediated adenylyl cyclase stimulation were, respectively,
increased and decreased after glutamate exposure (Castillo et al.,

2010b).
Neuroprotective responses activated due to loss of

neural network and cell death were, the increased
expression of the stress protein HSP70 (Du et al., 2012),

chaperone GRP78 (Suyama et al., 2011), and of BDNF
(Viwatpinyo and Chongthammakun, 2009; Hirata et al., 2012).

Primary Rat Astrocytes
Primary rat astrocytes are widely used to investigate the pro-
tective effect of glial cells against excitotoxic neuronal trauma,

specifically via astrocytic glutamate transporters GLT-1 (EAAT2)
and GLAST (EAAT1), which are the main glutamate trans-

porters in the CNS, taking up most of excess glutamate from
the synaptic cleft to prevent excitotoxic neuronal death (Lu et al.,
2008; Fang et al., 2012; Lane and Lawen, 2013; Foran et al., 2014;

Karki et al., 2014; Obara-Michlewska et al., 2014; Sulkowski et al.,
2014). Although astrocytes appear to be capable of expressing

all five of the known EAAT isoforms (i.e., termed EAATs 1–5)
in humans, the rodent glutamate aspartate transporter GLAST;

ortholog of human EAAT1, and the glutamate transporter 1
GLT-1; ortholog of human EAAT2, are thought to be the pre-

dominantly expressed glutamate transporters in rodent astrocytes
(Lane and Lawen, 2013; Karki et al., 2014) in their effort to prove

that raloxifene (RX) upregulates glutamate transporters in rat
primary astrocytes, found that this happens through the acti-

vation of multiple signaling pathways including ERK, EGFR,
and CREB mediated by estrogen receptors (ERs) ER-a, ER-b,

and GPR30. At the transcriptional level, NF-κB played a criti-
cal role in RX-induced GLT-1 expression, while TNF-a reduced

GLT-1 promoter activity, mRNA and protein levels in primary
astrocytes.

Ionotropic glutamate receptor or mGluRs are known to be
expressed in cultured astrocytes. Although kainate receptor acti-

vation was not directly assessed, clear evidence for a functional
expression of these iGluRs in astrocytes is lacking. Groups II and
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III mGluRs do not appear to be expressed by rodent astrocytes

under standard culture conditions (Lane and Lawen, 2013).
Furthermore, potassium channels Kir4.1 abundantly

expressed in astrocytes contribute to K+ spatial buffering, a
fundamental mechanism in maintaining neuronal excitability

and synaptic transmission and are implicated in the regulation
of cell volume. Down regulation of Kir4.1 channels expression

has been reported to decrease glutamate (Glu) uptake in cultured
astrocytes. (Obara-Michlewska et al., 2014) have shown that

over-activation of astroglial NMDA receptors, is a primary cause
of the reduction of Kir4.1 expression in CNS disorders associated

with increased exposure to Glu, giving a new insight to the
excitotoxic contribution of NMDARs.

Primary Cortical Rat Neurons
Despite of all the disadvantages pertaining to their cul-
ture, PRCNs are widely used for excitotoxicity experiments,
because they present all the characteristics of living neurons

activated by iGluRs agonists (Chen et al., 2013). Additionally
the activation of NMDARs was verified after incubation

with NMDA (Antonelli et al., 2004; Smialowska et al., 2012;
Voulgari-Kokota et al., 2012; Yang et al., 2012).

Kim et al. (2012) in an effort to prove the anti-inflammatory
effect ofVitis amurensis found out that excitotoxicity was induced

not only by NMDARs but also due to the depletion of GSH lev-
els and lipid peroxidation. MAPKs, cyclooxygenase-2 (COX-2),

and pro-apoptotic proteins were also found to be active in these
neurons.

Yang et al. (2012) supported the involvement of MAPK path-
ways in NMDAR-induced apoptosis of rat cortical neurons.

Current studies show that treatment of cortical neurons with glu-
tamate resulted in an increase in Baxwith a decrease in Bcl-2 pro-

teins, loss of the MMP followed by a release of cytochrome c, and
activation of caspase-9, representing the classical mitochondrial

apoptotic pathway (Figure 3).
Concerning neuroprotection, adenosine A2A receptor sub-

type stimulation induced the activation of Akt-GSK-3b signaling

pathway. The blockade of this signaling pathway with specific
inhibitors abolished the increase of BDNF production, possibly

via modulation of ERK1/2- CREB pathway. The physiological
roles of A2A receptor-induced BDNF production was demon-

strated by the protection of neurons from the excitotoxicity and
increased neurite extension, as well as synapse formation from

immature and mature neurons. Taken together, activation of
A2A receptor regulates BDNF production in rat cortical neu-

rons, which provides a neuroprotective action (Jeon et al., 2011;
Table 1).

RGC-5 (Retinal Ganglion Cells)
Retinal ganglion cell (RGC-5) line is used widely in glaucoma
research. This cell line simulates retinal ganglion cells as it is

designated positive for certain characteristics of retinal ganglia,
including Thy-1 and Brn-3C expression, and for sensitivity to

glutamate excitotoxicity upon neurotrophin withdrawal. RGC-5
cell line has been widely used to study the Xc

− antiporter because

retina is extremely vulnerable to oxidative stress (Figure 4). It
must be noted that there is controversy concerning the origin of

the RGC-5 cell line. Van Bergen et al. (2009) have shown utiliz-

ing mitochondrial and nuclear DNA analysis that the cell line is
of mouse origin (Mus musculus) and not of rat origin as orig-

inally was thought. Furthermore, recent evidence has surfaced
fromKrishnamoorthy et al. (2013) which point out that the RGC-

5 cell line may have been mischaracterized and actually be is cell
line 661W, a mouse SV-40 T antigen transformed photoreceptor

cell line. Thus, caution is advised in drawing conclusions from
data extrapolated from experiments using RGC-5 cell line as well

as using the aforementioned cell line as a retinal ganglion cell line.
Retinal ganglion cells express σ1-receptor, which is believed

to induce neuroprotection against excitotoxicity. Hayashi and
Su have shown that σ1 receptors are localized both in the ER

and on the plasma membrane in many organs including the
eye. The receptor is mainly localized in ER, with two transmem-

brane regions that have the ability to translocate to the plasma
membrane upon agonist stimulation or under stressful condi-
tions. This translocation probably gives σ1 receptor the ability

to reach plasma membrane and regulate membrane channels
including voltage-gated and ligand-gated Ca2+, K+, Na+, Cl−,

and SK ion channels (Hayashi and Su, 2003; Tchedre and Yorio,
2008). In vitro exposure of cultured rat brain neurons to selec-

tive σ-receptor ligands protects cells against glutamate or NMDA
exposure (Lesage et al., 1995). Both excitotoxicity and oxidative

glutamate toxicity have been proposed as possible mechanisms of
RGC injury and cell death (Almasieh et al., 2012).

Moreover, in vitro glutamate treatment increased BDNF
mRNA and protein expression and also caused a release of BDNF

in the culture media (Jeon et al., 2011). NF-κB activation was
observed in response to glutamate treatment and it is postulated

that increased BDNF expression is stimulated through NF-κB
activation (Fan et al., 2006). Also CaMKII inhibitor, AIP, may

play a neuroprotective role by enhancing the release of BDNF in
glutamate treated RGC-5 cells. The BDNF/TrkB signaling path-

way plays a pivotal role in RGC survival (Dahlmann-Noor et al.,
2010; Almasieh et al., 2012). Decline in the BDNF/TrkB sig-
naling is an important observation in the RGCs in glaucoma

disease (Gupta et al., 2013). Over activation of glutamate recep-
tors and the resulting Ca2+ overload stimulates calpains which

target cytoskeletal proteins, kinases and phosphatases, mem-
brane receptors and transporters (Xu et al., 2009; Figure 3).

Concerning the TrkB receptors, it is well-established that the
trkB gene encodes a full length receptor tyrosine kinase (TrkB.FL;

Tsuchioka et al., 2011). Under excitotoxic conditions calpain
mediates TrkB.FL cleavage results in up regulation of the trun-

cated TrkB isoform (TrkB.T). This is pivotal for cell survival since
it results in the inactivation of RhoA-GTPase and downstream

inhibition of pro-death pathways of p38/MAPK and JNK/c-Jun
signaling. BDNF stimulation of TrkB receptors results in the acti-

vation of intracellular signaling pathways of Akt and the MAPKs
extracellular signal-regulated kinases 1 and 2 (ERK 1/2), thus

promoting cell survival (Klocker et al., 2000; Cheng et al., 2002).

SCN2.2 Cell Line
The hypothalamic SCN is a brain region that controls circa-

dian rhythms and is endogenously resistant to excitotoxicity in
vivo (Ebling, 1996). This in vivo resistance was first established
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in the 1980s (Peterson et al., 1989; Reynolds and Hastings, 1995).

In vitro studies of the ability of these cells to resist the toxic effects
of glutamate would probably be the first step for excitotoxicity

treatment.
It has been demonstrated that SCN2.2 (immortalized SCN

cell line derived from rat SCN) retains resistance to gluta-
mate toxicity under conditions that are toxic to other immor-

talized cell lines. This ability may provide insights into sig-
naling pathways that offer endogenous neuroprotection in

SCN. SCN2.2 cells retain the ability to respond to gluta-
mate since in vitro studies have proved the presence of func-

tional NMDAR subunits NR2A, NR2B, and NR2D. This fact
enforces the perception that lack of excitotoxicity in SCN2.2

is not because of incapability to respond to the glutamate
stimuli (Bottum et al., 2010). Bottum et al. (2010), supported

that excitotoxic resistance in SCN2.2 is an endogenous abil-
ity and is not due to glutamate uptake by glia. In addi-
tion, experimental evidence support that SCN2.2 have higher

levels of AkT activity than other cell lines (Marchetti et al.,
2004). Activation of Akt pathway (PKB/Akt/PI3) is corre-

lated with neuroprotection since Akt pathway stimulates the
expression of many neuroprotective factors such as: estrogens,

brain-derived neurotrophic factor (Jeon et al., 2011), insulin-like
growth factor and tumor necrosis growth factor (Marchetti et al.,

2004; Johnson-Farley et al., 2007; De et al., 2008; Bourque et al.,
2009).

In vitro, SCN2.2 excitotoxic resistance was evaluated in com-
parison with GT1-7 (a hypothalamic cell line derived from

embryonic GnRH) which served as a neuronal control and
has been widely used in neurotoxicity studies (Mellon et al.,

1990; Bonfoco et al., 1996; Karmarkar et al., 2011). Glutamate
treated SCN2.2 and GT1-7 (10 mmol/L) resulted in activation

of different signaling pathways. SCN2.2 exposure to glutamate
resulted in activation of the anti-apoptotic ERK/MAPK path-

way without affecting the pro-apoptotic p38/MAPK pathway,
whereas in GT1-7 was noted an increase in p38/MAPK pathway
and decrease in ERK/MAPK pathway (Karmarkar et al., 2011;

Table 1).
Moreover in GT1-7 cells glutamate treatment resulted

in increased levels of caspase-3 and BID protein, with sub-
sequent DNA damage and cell death, while in SCN2.2

glutamate didn’t affect caspase-3 activity. Increased caspase
3 activity and cell death in SCN2.2 was noticed only after

pretreatment with PD98059 (inhibitor of ERK/MAPK) which
resulted in NMDAR-mediated death via an apoptotic pathway

(Karmarkar et al., 2011).These results support the connection
between activation of ERK/MAPK pathway and cell survival

(Villalba et al., 1997; Persons et al., 1999; Yazlovitskaya et al.,
1999). More specifically, activation of ERK/MAPK path-

way stimulates the release of molecules such as (a) CREB
(Cao et al., 2008) and (b) mammalian target of rapamycin

(Hay and Sonenberg, 2004). The activation of the above intra-
cellular molecules through ERK/MAPK pathway plays a key

role to cell survival. It is worth mentioning that treatment with
BDNF also up regulates ERK/MAPK pathway (Hetman et al.,

1999; Han and Holtzman, 2000; Hetman and Kharebava,
2006).

Conclusion

From the information presented above becomes evident that

excitotoxicity is a multifactorial and complex phenomenon.
Depending on the extracellular glutamate concentration (below

20 µM) the glutamate receptors alone come into play increasing
the intracellular Ca2+ concentration. In higher extracellular glu-

tamate concentrations, besides the action of glutamate receptors,
the antiporter XC

− exchanges intracellular CySS for glutamate,
thus eventually depleting the cells of their GSH reducing poten-

tial. In addition in certain conditions the reverse action of gluta-
mate transporters (EAATs) contribute to increased extracellular

glutamate concentration.
Different cell lines differ in their responses when exposed to

glutamate. In some cell lines glutamate toxicity is exerted through
over activation of NMDA, AMPA, or kainate receptors whereas in

other cell lines lacking such receptors, the toxicity is due to glu-
tamate induced oxidative stress (Table 2). Another point worth

mentioning is the differentiation of temporal characteristics of
the signaling cascades in different cell lines, such as time and

extent of activation, that play a pivotal role in promoting either
cell survival or cell death. Different researchers used different

exposure times and varying concentrations of glutamate to study
excitotoxicity in their cell model systems.

The evolving understanding of cell death mechanisms also
contributed in part to the hazy picture of excitotoxic cell death.

Today, we understand many types of cell death, necrosis and
programmed cell death. Programmed cell death can be caspase
dependent (apoptosis), caspase independent calpain dependent

(necroptosis or apoptosis like programmed cell death) and cas-
pase independent cathepsin dependent (autophagic cell death;

Nikoletopoulou et al., 2013). The study of excitotoxicity should
take into consideration these facts. We recognized the need of

a well-defined system that can distinguish excitotoxicity from
oxidative glutamate toxicity and take into account our current

view of necrosis or programmed cell death in order to decipher
the response of the nerve cell to increased extracellular glutamate

concentration.
The response of the cells under such conditions can be

addressed by a concerted proteomics approach in order to assess
the end result of the activation of the multiple intracellular signal-

ing cascades initiated by the excitotoxic insult. It is also of great
interest to examine the kinetics of the key pathways involved

in order to assess their implication in cell survival or cell death
under the stimulus of glutamate toxicity.

Herein are collected and presented the cell models, used to
study excitotoxicity and the findings reported so far with respect

to the defense and cell death mechanisms, elicited by elevated
extracellular glutamate concentration.
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