
7th Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Researching Reference Architectures
and their relationship with frameworks, methods, techniques, and tools+

Gerrit Muller1 and Pierre van de Laar2

1 Embedded Systems Institute, The Netherlands, and Buskerud University College, Norway, Gerrit.muller@esi.nl
2 Embedded Systems Institute, The Netherlands, Pierre.van.de.laar@esi.nl

+ This work has been carried out as part of the Darwin project at Philips Healthcare under the responsibility of the Embedded
Systems Institute. This project is partially supported by the Netherlands Ministry of Economic Affairs under the BSIK program.

Abstract
Reference architectures are seen as one of the means to cope with increased organization size, distributed development,
increased integration, increased performance and functionality, and ever faster changes in the market. Our research project
Darwin is aimed at evolvability of product families, where reference architecture is one of the research subjects. In this paper
we start with positioning reference architectures relative to architecture frameworks, architecting methods and techniques, and
tools. Then we focus on our attempts to mine information from past architectures by studying produced artefacts as well as by
interacting with the people involved. We explain that it is a long way from detailed facts found in the artefacts to conceptual
diagrams that capture the domain essence and that could guide future architectural developments. We illustrate this by
discussing two of the smaller research projects in some more detail.

Keywords – reference architectures, analysis, case study, knowledge

1 Introduction
Last year we wrote several papers about reference
architectures [3, 9, 10]. The main assertion in these papers
is that reference architectures are beneficial for systems that
are created in large and distributed organizations. The
reference architecture is capturing domain know how from
the past and the vision of the future to guide architecting of
future systems. The papers were well received; however, a
number of questions has been asked repeatedly that have to
be addressed. In this paper we will clarify reference
architectures in relation to architecture frameworks,
architecting methods and techniques, and tools. The
following questions were posed multiple times:

1. What is the difference between an architecture
framework and a reference architecture?

2. What is the difference between system architecture
and reference architecture?

3. What does a reference architecture look like?
4. How do you create a reference architecture?

We do not claim to have all the answers to these questions.
A lot of research is needed to answer especially questions 3
and 4 and to (in)validate the assertion that reference
architectures are beneficial for large distributed
organizations developing evolving product families. We
have to realize that while hunting for the proposed
reference architectures we did not find yet any example that
fits our demanding goals. In other words we are working on
a hypothetical entity that still has to be realized, before we
can (in)validate its asserted value. However, our research of
last year provides some answers that are valuable to share.
We research reference architectures in the Darwin project,
www.esi.nl/darwin, as described also in [9, 8]. The Darwin
project uses the industry-as-laboratory approach, where the
development department of Magnetic Resonance Imaging
(MRI) systems at Philips Healthcare is the industrial

laboratory. The research of the Darwin project itself is
performed by 11 full-time researchers from different
universities and disciplines and 3 research fellows from the
Embedded Systems Institute (ESI). The main research
objective of the Darwin project is to study the evolvability
of systems, where the project assertion is that reference
architectures facilitate evolvability.
We will first discuss reference architectures in relation with
other architectural concepts, such as architecture
frameworks, architecting methods, system and product line
architectures, to address the first two questions. Next we
describe our efforts to create parts of a MRI reference
architecture to address the third and fourth question.

2 Reference architectures and other architectural
concepts

2.1 Architecture frameworks and architecting
methods

In the past, many architecture frameworks and architecting
methods have been proposed and are actually used in
practice. A well known example of an architecture
framework is the Zachman framework [15]. This
framework decomposes the architecture description in 6 by
6 views. For all 36 views guidance is provided what and
how to present information for that view. A well known
architecting method is Structures Analysis and System
Design (SASD) by Yourdon [14]. SASD provides a
stepwise process and a prescribed set of artefacts to create a
system design.
Architecting methods and architecture frameworks have in
common that they capture generic information how to
create and capture system designs. In both cases a generic
recipe is provided with little or no domain information at

Loughborough University – 20th - 23rd April 2009

http://www.esi.nl/darwin

7th Annual Conference on Systems Engineering Research 2009 (CSER 2009)

all. Both examples originate from the software world. An
example of domain information that is still present in both
is the emphasis on information models, something that is
not relevant for purely mechanical systems for example.
However, neither SASD nor Zachman have any knowledge
about the addressed applications or services, such as
insurance, banking, or air traffic control. Architecting
methods and architecture frameworks provide generic
guidance for designing a broad set of systems.
The difference between architecting methods and
architecture frameworks is the amount of guidance
provided for the approach itself. Architecting methods
provide an ordered set of steps, the method itself, how to
get from the start to a finished design. Architecture
frameworks only provide guidance for what information,
what presentation and what structure to use to capture the
design. Most frameworks, on purpose, are method agnostic.
For example, DoDAF [4] is designed to be method agnostic
in response to the ongoing feedback that previous military
architecting standards were too “heavy”.
One of the main deliverables of the architecting effort is an
architecture description. Both architecting methods and
architecture frameworks tend to focus on the creation of the
architecture description. The IEEE standard 1471-2000 [7]
is an example of an architecture description standard that is
method agnostic. This standard provides a very generic
information model to guide the creation of architecture
descriptions. Core idea behind this standard is that the
architecture description consists of models. More
background on the state of architecting can be found in
[12]. This white paper describes the current state
architectural descriptions and models as discussed in the
architecting forum.
The Boderc project [6] used FTMT (formalisms,
techniques, methods, models and tools) as framework for
the research of Systems Engineering. A cohesive set of
FTMT is called a methodology. The previous example
SASD is in this definition a methodology, since it also
prescribes formalisms and uses tools for support. In fact all
these elements that form together a methodology are
complementary. Techniques use formalisms to achieve a
desired result; Methods provide guidance how to use
formalisms, techniques and models. Tools support the use of
techniques and the deployment of methods. When we apply
methods in practice we also need presentation or
visualization guidance in addition to FTMT to support
communication and discussion between stakeholders.
In conclusion, we have explained that architecture
frameworks and architecting methods are generic, hence not
domain specific, means to support the creation and
capturing of architectures.

2.2 System and Product line architectures
We will use the IEEE standard 1471-2000 definition for
system architecture:

The fundamental organization of a system,
embodied in its components, their relationships to
each other and the environment, and the principles
governing its design and evolution.

Note that in this definition of architecture both internal
elements of the system (components) as well as external
factors (relationship with the environment) together form
the architecture. In other words architecture combines
understanding of the context with guidance for the design.
System architecture is limited to the system of interest, in
relation to its environment, and its evolution. However,
when we look at organizations that create systems, then we
see that these organizations tend to make many variants of
systems, so called product lines or product families, or even
complete product populations [13]. These product lines
evolve over time and generations of product lines succeed
each other. The principles governing the design and
evolution of product lines are captured in product line
architectures. The more limited system architecture of a
single product is derived from and complies with the
product line architecture.
We have discussed the different scopes of system
architectures and product line architectures or even product
population architectures. Essential for all these architectures
is that they capture the essential rules governing design and
evolution. All these architectures are inherently full of
domain information, both from technological nature and
from the context.

2.3 Reference architectures
Large organizations that have been creating similar systems
and product lines for a long time have a huge amount of
knowledge about the domain, both technical, as well as
contextual. This knowledge is partially implicit, for
example in the heads of designers and engineers, and
partially explicit in design repositories and documentation.
In [11], we described that reference architectures get
attractive when the organizations become large and
distributed. In organizations of few hundred people at one
location the social process of information sharing between
humans can still be highly effective. However, we have to
introduce other, often more formal, ways to capture
knowledge and to communicate, when the information
sharing process between humans gets less effective. For
example, when the organization exceeds the size where this
social process is effective or when the organization is
distributed over multiple locations, then the communication
might become too little to share effectively. Scaling up an
organization appears to be very difficult in practice. When
we distribute the organization over multiple locations, then
sharing of knowledge and communication gets even more
difficult. Of course, many systems engineering processes
target these problems, for example by defining work
breakdowns that allow for cohesive working groups and
minimal coupling between the groups. Despite all these
measures we observe1 that larger and more distributed
organizations struggle more with sharing knowledge and
communication.
We look at the MRI division at Philips Healthcare as
example, where the Darwin research is being performed.
1 Based on personal observation in health care, defense, sub
sea, maritime, semiconductor, automotive, consumer, and
the information technology domains.

Loughborough University – 20th - 23rd April 2009

7th Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Philips Healthcare has been growing tremendously,
partially organically and partially through acquisitions and
mergers. In particular, the MRI division has grown from a
few persons in the early eighties, to more than thousand
persons in 2008. The MRI organization is distributed over
many locations, such as Ohio and Florida in the USA,
Finland, The Netherlands, Israel, and India. If we estimate
the accumulated knowledge of the MRI division since its
origin in the early eighties, then we see that several tens of
thousands of person years of work has been performed on
these systems. Even if part of that knowledge is obsolete,
then this organization still has the equivalent of more than
ten thousand person years of knowledge accumulation.
We propose reference architectures as a means to capture
the essential architectural knowledge over multiple product
lines, and multiple generations of systems. The purpose of
capturing this knowledge is to provide guidance to architect
new product lines and generations. We have observed that
in large organizations a tremendous amount of knowledge
is available, both implicit in the heads of employees, as well
as explicit in design repositories and documentation.
However, this knowledge is not structured and captured in
ways that facilitate the guidance of next generations. As
described in [10] one of the challenges is to reduce the
information to digestible proportions, without losing too
many essential details.
If we now compare this concept of reference architectures
with architecture frameworks, then we assert that reference
architectures are inherently rich in domain information,
technical and contextual. In that sense reference
architectures are quite similar to system architectures and
product line architectures. The main difference between
reference architectures and system or product line
architectures is that reference architectures have to abstract
even more from implementations; reference architectures
are not system or product line specific.
Over time an organization has built up experience about
many domain specific problems and many possible
solutions in many different circumstances. In the software
world the combined knowledge of problem, solution and
circumstances is captured as pattern [5], based on
Christopher Alexander's patterns [1]. The idea behind
reference architectures is to capture this type of knowledge,
for example as patterns. It is important to realize that most
of this knowledge is domain specific.
So, we are not so much looking for generic patterns, such as
the observer pattern. Instead we are looking for domain
specific patterns, such as, for example, guiding principles
for the RF (Radio Frequency) transmission. The excitation
of nuclei as part of the MR imaging is done by RF pulses.
To shape and actually generate the RF-field many technical
solutions are available, with their advantages and
disadvantages. The most relevant guiding principles for the
RF transmit chain can be captured in the reference
architecture. Guiding principles to shape and generate RF
fields are highly domain-specific. These principles have
evolved slowly in the last few decades. The slow evolution
makes it attractive to capture the principles explicitly,

because then they can be re-used with little maintenance
effort.

3 Research in the Darwin project
The full-time researchers of the Darwin project have in
general an academic background. These researchers are not
seasoned MRI designers, but independent scientists. The
consequence is that they start with an empty sheet of paper.
The benefit is that the researchers are unbiased, while the
obvious disadvantage is that a significant learning
investment has to be made to be able to contribute. Roughly
the following approaches are being followed by the
researchers to search domain knowledge that could be
incorporated in the MRI reference architecture:

1. Analysis of the repositories and the meta-
information.

2. Observation and analysis of running systems.
3. Reading of documentation.
4. Interviewing of stakeholders.
5. Workshops with researchers and stakeholders.

Every researcher tackles a specific case to make the
research scope manageable. For example, some of the
researchers look at the evolution of clinical application
packages. For that purpose software dependencies between
applications and other building blocks of the software are
identified. An individual researcher typically has to limit
the scope and has to connect to the researcher's prior
discipline. The organizational project perspective is that
researchers define smaller projects in time and in human
resources where they cooperate with a limited number of
Philips designers or architects. The idea is that the
combined set of smaller projects over time advances the
insight in evolvability and that parts of the MRI reference
architecture will be created.
Most researchers have been working on the project now for
about 2.5 years. In the beginning most researchers have
explored the current MRI architecture from their
disciplinary perspective. Since we are now halfway the
research project we have challenged all researchers to
create one view that according to their current insights
would belong to the MRI reference architecture.

3.1 Analysis tools

analysis tool presentation
tool

code
repository

meta-
information

documentation
input from
interviews

analysis tool presentation
tool

running
system domain

experts

Figure 1 - Typical research activity: analyzing code
repository or running system and presenting relevant
information to Philips stakeholders.

Loughborough University – 20th - 23rd April 2009

7th Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Figure 1 shows a typical research activity, where analysis
tools operate on repository data or observations from
running systems. Analysis tools should support the mining
of knowledge from existing realizations. Repository data
provides static information about the realizations, while
running systems provide a snapshot of dynamic information
of a limited set of events on one instance of the realizations.
The presentation of the results is based on domain
understanding derived from documentation and interviews.
The output of the presentation tool is not yet a reference
architecture view. For example, the output might show
mutual dependencies between subsystems or components,
or the typical data and event flow in a running system. This
output might trigger domain experts, for example when
subsystems are much more dependent than expected by the
experts, or when the data flow is more complicated than
expected.

presentation
tool

presentation
tool

documentationdomain
knowledge

presentation
tool

domain
experts

architect

insights
reference

architecture
view

Figure 2 - Quite some steps are needed to transform output
of analysis tools into a reference architecture view.

The output of analysis tools and the related interaction
between domain experts with their implicit domain
knowledge can trigger new insights. An architect can
transform these insights, using implicit domain know how
and explicit documentation, into a view of the reference
architecture. The interaction process and the architect’s
involvement should not be random, but need based. For
example, the introduction of new application features or
new technologies might drive the interest in reference
architecture views. These views will then be related to the
entities well known to the MRI architects, such as clinical
packages (a package of software providing a single clinical
application), building block dependencies (the local variant
of components) and the execution architecture. An example
of such view is provided in Figure 3. The researcher who
produced this view started his research by building and
using a set of analysis tools. The results from (potential)
users perspective was quite disappointing. The researcher
chose a different approach: he joined an engineering team
working on clinical packages. The researcher applied his
analysis tools in this approach when needed. His
contribution is now highly appreciated by the organization.
Based on these experiences the researcher produced Figure
3 as draft view for the MRI reference architecture.

PII

Portability interfaces

Clin. App. wrapper

Job processing Logging

Image
database

PII log
files

NSUI
components

Diffusion Processing

MR log
Server

MR log
files

XML

App.
Config

XML

App.
Config

PII

Portability interfaces

Clin. App. wrapper

Job processing Logging

Image
database

PII log
files

NSUI
components

Diffusion Processing

MR log
Server

MR log
files

XML

App.
Config

XML

App.
Config

Figure 3 - Draft reference architecture view for clinical
packages, based on analysis output and interaction with
domain experts.

Most researchers have been working on the activities
depicted in Figure 1. Our challenge to translate their own
insights into a reference architecture view forces them to
move more to the transformation process shown in
Figure 2. The original idea behind analysis tools is that the
design repositories, such as the software code repository
with millions lines of code, contain lots of design
knowledge. Unfortunately, this knowledge is the result of a
process where few user needs via specification and design
steps finally are transformed in detailed realization steps in
software code. The analysis tools are part of a reverse
architecting effort. However, Figure 2 shows that the
analysis tools have to be combined with other knowledge to
be able to turn detailed repository information into
reference architecture views.
As example Figure 4 shows the presentation of run-time
analysis tools. [2] gives a more elaborated description of
this research. Based on discussions with experts it was
decided to analyze the structure of all RF-coils (RF = Radio
Frequency) used to receive the MR signal. The system
architects did have an interest in the system design of the
RF-coils and all related interfaces, both hardware and
software. The main entities in the system design are
building blocks, tasks, and processes. Building blocks are
the units of decomposition in the software repository; The
building block decomposition is static. Processes are the
units of the decomposition for concurrency; The process
decomposition is dynamic. Tasks are the decomposition of
the work to be done by the system. At the most detailed
level of engineering these entities are realized in code and
data.

Loughborough University – 20th - 23rd April 2009

7th Annual Conference on Systems Engineering Research 2009 (CSER 2009)

software component

processes

task of
scenario

activity

code and
data

Figure 4 - Presentation of run-time analysis of RF-coil
related tasks.

The run-time analysis tool analyzes for one scenario what
building blocks, processes and tasks are involved and how
this maps on code and data. A scenario is some user level
operation, such as adding a new RF coil to the system. This
tool lifts the analysis from lines of code and individual data
elements to the conceptual level of entities being used by
designers. It helps the designers to relate the dominant static
view of the system to the actual dynamic behavior. The
limitation of this approach is that it operates on a set of
scenarios (out of thousands of relevant scenarios) on one
realization in one system configuration. In other words the
tool zooms in on one specific use, and creates insight at
higher conceptual level for that specific use. By sampling
different scenarios and configurations the broader
conceptual picture is created.
We have discussed two examples of research with analysis
tools. One example used static analysis tools (approach 1)
to study clinical packages. The other example used run-time
analysis tools (approach 2) to study RF coil interfaces.

3.2 Reflection on analysis tools in relation to
reference architectures.

Figure 5 - Positioning research of analysis tools in the
“abstraction diabolo”.

In [10] we discussed the level of abstraction and the number
of details of reference architectures by a diabolo-like figure.
Figure 5 is the same figure overlaid with the reference
architecture itself, the analysis tools and a number of

stakeholders. The diabolo part of the figure shows that
typical collections of systems are defined by billions of
details of mono-disciplinary nature: mechanical
characteristics of parts, connections and components,
software lines of code et cetera. During the multi-
disciplinary design we use less detailed abstractions. At
system level we specify systems even more compact with
thousands of system characteristics. These systems operate
with many stakeholders, each with a significant set of
characteristics. These stakeholders operate within an
enterprise, which is orders of magnitude more complex,
with large numbers of employees, and systems; both with
large number of characteristics. The enterprise again
operates in some broader context, where the number of
details again is orders of magnitude larger. Reference
architectures have to be limited in size to be useful and
manageable, so most information is at higher abstraction
layers in the middle of the diabolo. However, the art of
creating usable reference architectures is to be able to
identify essential details and to capture those in the
perspective of the “big picture”.
The overlay of Figure 5 shows that analysis tools typically
analyze highly detailed repositories. The purpose is to find
these essential details. However, the assessment of the
relevance of details depends on all higher layers: multi-
disciplinary design, system specification, stakeholder needs,
enterprise needs and enterprise context. Analysis tools may
find candidates for essential details that can be assessed by
stakeholders. Good analysis tools result in few false
positives (details that turn out not to be essential) and few
false negatives (missing details that are essential, but that
are not found by the tool).

3.3 Interviewing, reading documentation, and
workshops

[9] described an example of functional and physical
architecture diagrams made to study the evolution of the
communication technology internal in the system. These
diagrams are getting close to reference architecture views.
In one of the workshops of researchers and designers from
Philips (approach 5) the quantification of these figures was
discussed. Quantification in terms of figures of merit, for
example, would bring these diagrams closer to reference
architecture views. This activity is planned in the near
future.
The researchers did dive more in specific interfaces, related
to RF-coils, of this part of the system before elaborating the
quantification. These interfaces were of particular interest
for ongoing discussions about the system design.
Interviewing (approach 4) was chosen as main approach in
addition to reading documentation (approach 3) and looking
for information via the previously discussed analysis tools
(approaches 1 and 2). The interview approach turned out to
be difficult, due to organization size and all multi-factors
[12] that trigger the research of reference architectures.

Loughborough University – 20th - 23rd April 2009

100

106

103

109

systems

multi-disciplinary
design

parts, connections,
lines of code

103

109

106

stakeholders

enterprise

enterprise context

nu
m

be
r o

f
de

ta
ils

reference
architecture

analysis tools
SW expert

system expert

enterprise
expert

application
expert

7th Annual Conference on Systems Engineering Research 2009 (CSER 2009)

100

106
103

109

103

109

106

nu
m

be
r o

f
de

ta
ils

SW/HW
expert

system
expert

enterprise
expert

application
expert

Figure 6 - Positioning interviewing results in the
“diabolo”.

The interview results are scattered across the entire diabolo,
as visualized in Figure 6. What makes it more difficult is
that the results are not always cohesive and sometimes
simply contradictory. The explanation of this outcome is
that the interviewed stakeholders have different concerns
and perspectives. This is the normal architecting challenge:
to find an acceptable and appropriate solution in a non-
trivial socio-economic force field. The initial outcome of
such a set of interviews is a map with technical facts,
business propositions, operational considerations, opinions,
concerns et cetera.
The interview results have been transformed into a set of
more structured diagrams, ranging from the process flow
with stakeholders, their needs and their responsibilities to
data flow diagrams in the software control part of the
system. To transform these diagrams into the intended
reference architecture level we have to make several steps.
The current diagrams describe a status quo. These diagrams
might be far from complete; we might have to study more
configurations and situations. The next step is to reduce the
diagrams to the essentials, an abstraction step. The last step
is to include future needs and vision to provide guidance for
the future.

3.4 Current Research Status and Future Research
We have discussed the search for domain knowledge in
four complementary ways: (1) static analysis, (2) run-time
analysis, (3) reading documentation and (4) interviewing.
We have had several workshops (approach 5), but they did
not yet have the direct focus to work towards reference
architecture views. The research is performed mostly by
relative outsiders, unbiased by years of history. None of
these four ways so far has produced reference architecture
views. Intense interaction with domain experts and
architects is required to transform the current research
results, such as the output of analysis tools and many
diagrams, into reference architecture views. Two examples
that we discussed focused on interfacing RF-coils,
providing useful and complementary information.
However, together these activities do not yet provide the RF
interface part of the MRI reference architecture, because the
information is still too fragmented and detailed. The
produced information has to be integrated further and
reduced to the essentials to get to the level we intend the
reference architecture to be.

We will have to intensify the interaction of researchers and
stakeholders to get closer to reference architecture views.
Approach 5, workshops with researchers and domain
experts, deserves more research effort, because this method
might help to lift the abstraction level of the information
gathered by the other approaches. The senior research
fellows will make an attempt to create some reference
architecture views based on the available research results,
by working on actual cases with domain architects. For
example by combining all RF coil interfacing work and
intense interaction with RF coil experts and stakeholders.

4 Summary and Conclusion
We have discussed the potential value of capturing domain
specific architectural knowledge, especially for large and
distributed organizations. Reference architectures are
capturing this architectural knowledge to provide guidance
for future architecting efforts. The main difference between
architecture frameworks, architecting methods and
reference architectures is the degree of domain specificity;
reference architectures are highly domain specific,
frameworks and methods capture the generics.
Our research with about 15 researchers tries to penetrate
this pile of accumulated knowledge with tens of thousands
of person-years effort and with more than thousand people
working on it continuously. We have chosen a set of five
complementary approaches (analysis, reading, observation,
interviewing and workshops). We make progress, but at the
same time we conclude that we still have to bridge a
significant gap between analysis tools and interview-based
methods to reference architecture views. More research is
needed to answer the questions:

• What does a reference architecture look like?
• How do you create a reference architecture?

Answers of these questions are a prerequisite to (in)validate
the asserted value of reference architectures.

5 Acknowledgments
Pierre America, Teade Punter and Dave Watts provided
feedback. All researchers from the Darwin project
contributed with their research work, especially Trosky
Callo with the run-time analysis and Pieter van der Spek
with clinical packages view.

6 References
[1] A Pattern Language: Towns, Buildings, Construction.
By Christopher Alexander, Sara Ishikawa, Murray
Silverstein, Max Jacobson, Ingrid Fiksdahl-King, Shlomo
Angel (1977) New York: Oxford University Press. ISBN
978-0195019193.

[2] Analyzing the Actual Execution of a Large Software-
Intensive System for Determining Dependencies, by Trosky
B. Callo Arias, Paris Avgeriou, and Pierre America at
WCRE08 in Antwerp, October 2008.

Loughborough University – 20th - 23rd April 2009

7th Annual Conference on Systems Engineering Research 2009 (CSER 2009)

[3] The Concept of Reference Architectures, by Robert
Cloutier, Gerrit Muller, Dinesh Verma, Roshanak Nilchiani,
Eirik Hole and Mary Bone, submitted to INCOSE Journal
of Systems Engineering, 2008.

[4] DoD Architecture Framework, Volume 1: Definitions
and Guidelines, Version 1 US Dept. of Defence, 2003.

[5] Design Patterns: Elements of Reusable Object-Oriented
Software, by Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides (1995). Addison-Wesley. ISBN 0-201-
63361-2.

[6] Boderc: Model-based design of high-tech systems,
edited by Maurice Heemels and Gerrit Muller, Boderc
Symposium 2006, published by Embedded Systems
Institute, Eindhoven,
http://www.esi.nl/publications/bodercBook.pdf.

[7] IEEE Recommended practice for architectural
description of software-intensive systems, by the Institute
of Electrical and Electronics Engineers, Inc., IEEE Std
1471, 2000.

[8] The Darwin Project: Evolvability of Software-Intensive
System, by Pierre van de Laar et al, ICSM 2007, Paris,
October 2007.

[9] How Reference Architectures support the evolution of
Product Families, by Gerrit Muller, CSER 2008 in Los
Angeles

[10] Right Sizing Reference Architectures; How to provide
specific guidance with limited information, by Gerrit
Muller, INCOSE 2008 in Utrecht.

[11] Reference Architectures; Why, What and How, edited
by Gerrit Muller and Eirik Hole, white paper from the
System Architecting Forum, March 2007,

[12] Architectural Descriptions and Models, edited by
Gerrit Muller and Eirik Hole, white paper from the System
Architecting Forum, March 2006,

[13] Building product populations with software
components, by Rob van Ommering, ICSE 2002 in
Orlando, Florida.

[14] Modern Strutures Analysis, by Edward Yourdon,
Prentice Hall 1989.

[15] The Zachman framework for enterprise architecture,
by John Zachman, http://www.zifa.com/, 1987.

Loughborough University – 20th - 23rd April 2009

http://www.zifa.com/
http://www.esi.nl/publications/bodercBook.pdf

	1Introduction
	2Reference architectures and other architectural concepts
	2.1Architecture frameworks and architecting methods
	2.2System and Product line architectures
	2.3Reference architectures

	3Research in the Darwin project
	3.1Analysis tools
	3.2Reflection on analysis tools in relation to reference architectures.
	3.3Interviewing, reading documentation, and workshops
	3.4Current Research Status and Future Research

	4Summary and Conclusion
	5Acknowledgments
	6References

