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Abstract

Background: The Affymetrix MitoChip v2.0 is an oligonucleotide tiling array for the resequencing

of the human mitochondrial (mt) genome. For each of 16,569 nucleotide positions of the mt

genome it holds two sets of four 25-mer probes each that match the heavy and the light strand of

a reference mt genome and vary only at their central position to interrogate all four possible alleles.

In addition, the MitoChip v2.0 carries alternative local context probes to account for known

mtDNA variants. These probes have been neglected in most studies due to the lack of software

for their automated analysis.

Results: We provide ReseqChip, a free software that automates the process of resequencing

mtDNA using multiple local context probes on the MitoChip v2.0. ReseqChip significantly

improves base call rate and sequence accuracy. ReseqChip is available at http://code.open-bio.org/

svnweb/index.cgi/bioperl/browse/bioperl-live/trunk/Bio/Microarray/Tools/.

Conclusions: ReseqChip allows for the automated consolidation of base calls from alternative

local mt genome context probes. It thereby improves the accuracy of resequencing, while reducing

the number of non-called bases.

Background
The human mitochondrial (mt) DNA is a double-
stranded circular molecule of 16,569 base pairs (bp) and
consists of two parts: The non-coding displacement loop,
also referred to as the control region, and the coding
region. The control region is 1,124 bp in size and encom-
passes the nucleotide positions (nps) 16,024 to 576. It
contains transcription and replication elements. The

hypervariable segments HVS I (nps 16,024-16,383) and
HVS II (nps 57-372) within the control region are
hotspots for mtDNA alterations. The mutation rate of the
hypervariable segments is tenfold higher than that of the
coding region [1], whose mutation rate is already 10 times
higher than that of nuclear genomic DNA because of the
lack of protective histones, inefficient DNA repair systems
and continuous exposure to mutagenic effects of oxygen
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radicals generated by oxidative phosphorylation [2]. The
mtDNA coding region, on the other hand, contains 37
genes coding for two ribosomal RNAs and 22 transfer
RNAs, which are required for intramitochondrial transla-
tion, as well as 13 polypeptides, which are components of
the respiratory chain enzyme complexes in the inner
membrane of the mitochondria that are essential in the
energy production of the human cell. While most human
cells contain two copies of nuclear DNA, they may possess
up to 100,000 copies of mtDNA [3]. The majority of these
copies are identical or homoplasmic immediately after
birth. Somatic mutations will give rise to variant mtDNA
copies or heteroplasmy over a lifetime, possibly contribut-
ing, for example, to the initiation and progression of can-
cer [4]. Mutant copies may also be inherited and are
known to cause a variety of diseases affecting mostly the
energy-hungry cells of the muscles, brain, or nerves [5].
The large number of copies and polymorphisms has made
mtDNA particularly useful in forensics [6] and paleoge-
netics [7] where the amount of nuclear DNA in a sample
is limited or degraded. Finally, due to its maternal inher-
itance and the lack of recombination, mtDNA provides
insights into the maternal history of anatomically modern
humans and into the impact of genetic drift, demography
and selection on the level, kind and distribution of poly-
morphism observed in extant mtDNA lineages [8]. The
analysis of mtDNA sequence variation is therefore of com-
mon interest in medical, forensic and population genet-
ics. Re-sequencing of mtDNA has been traditionally
accomplished by PCR amplification of the mitochondrial
genome in approximately 40 overlapping fragments fol-
lowed by uni- or preferentially bidirectional sequencing
[8]. Although modern capillary array sequencers allow the
analysis of as many as 2,300 sequencing reactions or an
equivalent of 29 mitochondrial genomes per day, the
complexity of conventional sequence analysis has spurred
the development of novel tools such as the Affymetrix oli-
gonucleotide-based array MitoChip for the detection of
mtDNA variation. The first version of MitoChip was intro-
duced in 2004. It was capable of sequencing the mtDNA
coding region in a single hybridization after its long-range
amplification in three overlapping fragments [9]. A more
recent version (v2.0) of MitoChip covers in addition the
control region. More importantly, it carries probes that
match not only a reference mtDNA (the so-called revised
Cambridge Reference Sequence (rCRS) [10]), but also
common variants thereof, 99% of which are located in the
hypervariable segments of the control region. The Mito-
Chip v2.0 has been applied mainly to the detection of
somatic mutations in cancer [11-17]. In addition, it has
been used in forensic and population genetic studies
[18,19].

As illustrated in Figure 1A, microarray-based re-sequenc-
ing is done in a local sequence context. Every base of the

mt genome is interrogated by hybridization of fluores-
cent-labeled DNA fragments against 8 different 25-mer
probes forming two probe quartets, one quartet for the
light (forward) and one for the heavy (reverse) mtDNA
strand. These probes vary only at their central nucleotide
position (grey bars with letter in the middle) to account
for the 4 possible alleles A, T, C, G or combinations
thereof. The 12 bases up-and downstream of the variable
position match the rCRS [10]. They constitute the local
sequence background for hybridization. Polymorphisms
within the flanking nps compromise hybridization. Due
to the high mutation rate, multiple polymorphic sites
within a window of 25 nps are more frequent in the
hypervariable than the control and coding regions. To
address the problem of compromised hybridization, the
MitoChip v2.0 carries additional alternative probes that
match not only the rCRS, but also common variants
thereof. The MitoChip v2.0 systematically probes for
known hybridization context alternatives including inser-
tions, deletions, and closely spaced single nucleotide pol-
ymorphisms. These additional probes embed their
middle position not into the context of the reference
sequence, but into the context of known variants using
alternative flanking probe sequences. Figure 2 illustrates
the number of different contexts, available for each posi-
tion that is covered by at least one additional context.

The alternative context probes, however, have been
mostly ignored to date in studies employing the MitoChip
v2.0 [11-18,20,21]. This has been due to the lack of soft-
ware for the automated analysis of multiple local context
probe data.

Resequencing analysis of mt genomes operates in two
modes: In the qualitative mode, a genotype, namely A, C,
G, T, AC, AG, AT, CG, CT, GT, ACG, ACT, AGT, CGT,
ACGT or N, is called for each nucleotide position (np). In
the quantitative mode, allele proportions are determined
in case of heteroplasmic nps. The challenge in both modes
is to improve the analysis by using alternative local con-
text probe information.

For nuclear DNA, Two software tools, namely the RATools
and the Affymetrix GeneChip Sequence Analysis Software
(GSEQ), are used to call bases from hybridization signal
intensities. Both are based on the ABACUS algorithm
[22]. Position by position, ABACUS screens a sequence of
fluorescence intensities and calculates likelihoods for
each base independently for both the forward and the
reverse strand. For haploid data, five possible calls (Null,
A, C, G, T) are examined. For diploid data 6 possible dip-
loid calls (AC, AG, AT, CG, CT, GT) are considered in
addition. The pixel intensities within a probe are modeled
as independent random variables with a common mean
and variance. Means and variances are estimated by max-
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imum likelihood. Forward and reverse strand information
is combined by adding the respective (log-)likelihoods. A
base call is issued if the difference between the two highest
log likelihoods exceeds a given quality score threshold
(QT). Otherwise the letter 'N' is introduced into the
sequence indicating that no conclusive evidence is availa-
ble for this position.

ABACUS can be run in two modes to infer the genotype:
The haploid mode only calls the four bases A, C, G, T or
the letter N. It assumes the genotype to be homozygous,
respectively in the case of mtDNA homoplasmic. The dip-
loid mode calls all unsorted pairs of bases. Thus it detects
both homozygous (homoplasmic) as well as hetero-
zygous (heteroplasmic) genotypes. Note that ABACUS is
designed for genotyping nuclear DNA, where hetero-
zygous positions consist of two alleles present at a ratio of
1:1. For mtDNA the situation is different: As a cell may
hold up to 100,000 mt genomes, allele proportions at a
heteroplasmic site may vary over a wide range and even

comprise more than two alleles, albeit rarely. Neverthe-
less, due to the lack of alternatives the ABACUS algorithm
has been established as a quasi-standard for MitoChip
base calling [15,17] propose algorithms building on the
output of ABACUS for the detection of heteroplasmy in
mtDNA ignoring alternative context probes.

Here we focus on using the alternative context probes
arrayed onto the MitoChip v2.0. We introduce Reseq-
Chip, a novel, free and open source software imple-
mented in Perl that exploits data from these alternative
local mt genome context probes in the automated consol-
idation of base calls. ReseqChip does not use raw intensi-
ties as input but base calls for alternative local background
probes. Ideally, intensities are strongest and likelihoods
are highest for the correct base with a clear gap to the run-
ner-up. This is typically observed, if the individual
sequence matches the reference sequence both to the left
and the right of the base in question in a window of 25-
bases in total (the size of the oligonucleotide probe).

Concept of multiple local context probesFigure 1
Concept of multiple local context probes. (A) Three probe sets for 3 different sequence contexts are shown for one 
strand only. If an individual's (Ind) genome contains a nucleotide position different from the reference (rCRS) within 12 nucle-
otide positions (nps) on either side of the interrogated position, only one of the alternative probes in the lower right corner 
will yield a strong hybridization signal. (B) Section of an alignment of additional fragments to reference sequence (left-most col-
umn). Due to the specified settings only fragments marked by a star fulfil the required reliability of no N-calls within 3 nps on 
either side of the interrogated position.
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However, local accumulation of polymorphic sites
around the base in question compromises hybridization
signals.

Mismatches between the individual sequence and the
probe sequence on the array are no longer restricted to the
middle base but also occur in the flanking regions. Inten-
sities do not only become weaker, they are also often
more uniformly distributed across the four bases, result-
ing in many N-calls. ReseqChip consolidates these calls. It
improves both sensitivity and accuracy compared to
applying ABACUS alone.

Implementation
Algorithm

Input of ReseqChip are base calls from one of the two
ABACUS implementations GSEQ or RATools
(RA_Basecaller). The program accepts FASTA formated
base caller output files for one or a series of chip experi-
ments. Base calls need to be provided for the reference
context as well as all additional contexts. In case of multi-
ple local context probes for the same position the base-
callers provide separate calls for each context. Our
algorithm aims at identifying the best matching context.

We do this indirectly by excluding those probes that
appear inadequate. Note, that if a local background is
inadequate for a certain position, it will also be inade-
quate for neighboring positions. Hence, an indication of
inadequacy is the accumulation of N-calls. We investigate
calls in neighborhoods of length k around each sequence
position and in each available context. Figure 1B gives an
example. In addition to calls obtained using the reference
sequence context (left most column), base calls obtained
from 6 alternative local context probes (Con_1-6) are
available. Note that these alternatives can be related to
sequence variants resulting not only from single-base sub-
stitutions, but also from insertions or deletions. For the
latter, gaps need to be introduced to align homologous
sequence positions. The row referring to the current
sequence position in the re-sequencing run is highlighted
in grey. Neighborhoods of size k = 3 (not counting gaps)
are shown as black letters. For probe filtering, the param-
eter maxN is introduced, i.e. the maximum number of N-
calls allowed within the neighborhood. All sequence calls
exceeding maxN are then excluded from further analysis.
In the example, maxN was set at 0, hence only probes pro-
ducing no N-calls were chosen. They are indicated by
stars. In case the calls for the grey row are widely identical
across the filtered columns, the actual call is based on
majority voting. More precisely, we introduce the addi-
tional parameters minP and minU. If more than minP
probes remain after filtering and more than minU percent
call the base x, where x is the most frequently called base,
then x is included in the final sequence, otherwise the let-
ter N. High values for minP ensure robust base calls, while
high values for minU ensure a strong majority vote. In the
example, minP was set to 2, hence the 4 probes remaining
after filtering are sufficient for base calling. Moreover,
minU was set to 50% in the example. Since 3 out of 4
probes call the base, ReseqChip detects the insertion.
ReseqChip is implemented in Perl and accepts a FASTA
formated file that constitutes the base calls for one or a
series of chip experiments as the output of the base caller.
Base calls have to be provided for the genotypes with
respect to the reference context as well as the additional
contexts. The optimal parameter settings derived from the
parameter training (see section Parameter Tuning) are
provided in a separate parameter file (see Additional file
1) that can be used in conjunction with the test script (see
section Availability and Requirements). It allows the user
to choose a threshold for the maximum number of N-calls
per 100 nps or to define an own parameter set.

Parameter Calibration

ReseqChip operates on a number of parameters that need
to be jointly calibrated. We use training data of known
genotype (gold standard) and run ReseqChip on it. We
judge parameter dependent performance based on:

Different ContextsFigure 2
Different Contexts. Number of multiple contexts available 
by MitoChip v2.0 for the 733 nucleotide positions of the 
rCRS for which multiple local context probes are present. 
Note that the contexts of a certain position can vary at sev-
eral of its 12 flanking bases up- and downstream of the 
center.
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1. dn - the number of discordant base calls between Rese-
qChip and the gold standard

2. nc - the number of N-calls

There is a trade-off between dn and nc. Small dc values
lead to high nc values and vice versa. We use a grid of val-
ues for one measure and minimize the second measure
given the former. The user can then specify the maximal
number of N-calls and ReseqChip runs with parameters
minimizing the number of discordant call given the user
specified restraint on the N-calls. Vice versa, the user can
set a restraint on dc and receives parameters minimizing
nc. We let the grid values of both nc and dc vary from 0 to
20 in steps of 0.1.

Results
MitoChip v2.0

We have applied ReseqChip to data from the MitoChip
(GeneChip® Mitochondrial Resequencing Array 2.0), a 36
kb oligonucleotide array. The array queries 16,544 nps of
the mt genome [10] in 25,413 (25,032 if one not distin-
guish between the order of PM and MM probes (see
below)) different, unique contexts, with each context is
represented by two probe quartets, one each for the for-
ward and reverse strand, respectively. Each probe quartet
consits of one probe that matches the sequence perfectly
(PM) and three mismatched probes (MM) for the three
alternative alleles. There are 11,529 (11,910) redundant
probes that serve as internal controls of hybridization
reproducibility and provide 2 to 70 fold redundancy. That
is, the array carries 36,942 probe quartets querying both
rCRS [10] and common variants [23] thereof (Table 1).
The numbers of interrogated variants, regardless of their
contexts are summarized in Table 2. These variants cover
233 different nps.

DNA Samples and Chip Experiments

123 mt genome sequences were analyzed using conven-
tional dye-terminator sequencing as well as MitoChip
v2.0 resequencing. Dye-terminator sequences constituted
the gold standard that we aimed to recover using Mito-
Chip v2.0 data. Among these sequences, 112 were
sequenced completely and had been reported previously

[19,24], while 19 were analyzed only with respect to the
HVS I and II. In addition, pseudo-heteroplasmatic sam-
ples were generated for 11 mt genomes by mixing DNA at
a ratio of 1:1. All pairwise combinations of mixed DNA
where generated in two disjoint groups of 5 and 6 individ-
uals resulting in 10 and 15 controlled heteroplasmic sam-
ples, respectively. For these individuals gold standard
sequences by dye-terminator sequencing using a pub-
lished protocol [25] were available. Combining this data
with the mixing protocols yielded gold standard geno-
types for the artificial heteroplasmic sites. In total we ana-
lyzed 148 genomes, whereof 25 were artificial mixtures.
This data harbored 172 variants at 159 nps, from which
13 were triallelic. Five of the variants were insertions, 3
were deletions. The total numbers of variable sites were
1190, 246 and 15 for substitutions, insertions and dele-
tions, respectively. The artificially created mixtures con-
tained 205 single nucleotide substitution and 14 insertion
type heteroplasmies at 41 variable sites. The polymorphic
sites as discovered by dye-terminator sequencing are sum-
marized in Table 3. For every genome we generated base
calls with GSEQ for Quality Threshold (QT) values of
3,6,9 and 12 using both haploid and diploid settings.

Relevant for our analysis were only those nps, that were
interrogated by at least one alternative local context probe
set. There were a total of 733 nps that met this criterion.
Twenty additional nps cover insertions. In total 21,121
probe quartets interrogated these 753 positions, whereof
9,602 were unique. On average about 13 different con-
texts were assigned to each of the 753 position. Since the
125 contiguous nps around the center of Figure 2 were
covered by only one additional context and probes only
for less than 1.1% of the contexts, we excluded these posi-
tions and restricted our further analysis to the remainingTable 1: MitoChip v2.0 (I)

match # PQs # unique PQs (A) # unique PQs (B)

rCRS 18,824 16,544 16,544

non rCRS 18,118 8,869 8,488

Total 36,942 25,413 25,032

Number of probe quartets (PQs), unique PQs discerning (A) and not 
discerning (B) the probes representing the PM and the three MMs 
that match the rCRS and variations of them, respectively.

Table 2: MitoChip v2.0 (II)

Type of Variation # unique # all

Single-base substitution 246 1365

Deletion 28 102

Insertion 20 94

Total 294 1561

Number of variations that are interrogated by the MitoChip v2.0 
additional probes.

Table 3: Dataset (I)

# Inds # Pos/Ind # Pos

Total 148 89,244 (92,204)

Train 49 603 (623) 29,547 (30,527)

Test 99 59,697 (61,677)

Number of nps involved in the training and test data w/o and with (in 
brackets) insertions.
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608 (628) nps. We further excluded nps 107-111 of the
rCRS owing to persistent wrong hybridization signal,
resulting from a repetitive sequence pattern, which
reduced the total number of positions to 603 (623). We
randomly selected 49 samples to form a training set for
calibrating parameters and collected the remaining 99 for
evaluating genotyping performance. The total number of
positions involved in the training and testing process and
the number of variants and variable sites are listed in
Tables 3 and 4.

Parameter Calibration

We ran ReseqChip on the training data for various param-
eter constellations. Discrepancies between MitoChip and
the gold standard were considered array-based sequencing
errors and nps, for which no call had been generated were
counted as N-calls. Let dc be the number of sequencing
errors and nc the number of N-calls. The goal was to keep
both measures small. ReseqChip builds on the base calls
generated by GSEQ, which depend on the Quality Thresh-
old QT. Hence QT is an additional parameter that needs
to be jointly calibrated with the ReseqChip internal
parameters. We repeated our analysis using a range of dis-
crete QT values (QT = 3,6,9,12). Moreover, we varied the
four ReseqChip intrinsic parameters, namely the neigh-
borhood size (k = 0,1,...,12), the maximal number of N-
calls for probe filtering (maxN = 0,1,...,5), the minimal
number of high quality probes (minP = 1,...,11), and the
uniqueness threshold (minU = 30%,...,100%). In total,
27,456 parameter combinations were tested. The chal-
lenge was to jointly tune this set of parameters so that
acceptable performances were obtained for both, the
number of N-calls and sequencing errors.

Figure 3 shows the nc and dc performance for all 27,456
constellations of parameters assuming a haploid and a
diploid model, respectively. Note that there is a trade-off

between N-calls and sequencing errors. They cannot be
optimized simultaneously. For example, increasing maxN
lead to a smaller number of N-calls, albeit at the expense
of more sequencing errors, while lowering minU, minP
and k has the opposite effect. Depending on the applica-
tion, the balance between nc and dc can be adjusted. Rese-
qChip allows the user to specify a bound on either nc or
dc and then uses the training data to optimize the param-
eters with respect to the second error measure. For exam-
ple, if bounds are set to nc we use the data in Figure 3 for
calculating the minimum dc for increasing nc. Optimal
settings are indicated by the red dots at the bottom
boundary of the cloud. For these points, the x-axis repre-
sents the bound to nc, while the y-axis gives the optimal dc
performance achievable under this constraint. The opti-
mal parameter constellations as obtained by the training
procedure are listed in Additional file 1.

Parameter Testing

Note that the performances indicated by the red dots in
Figure 3 are training set performances. They might be
overoptimistic estimates of performance for independent
data sets. We evaluated the performance of ReseqChip on
independent data using the optimal parameter settings
derived from the training data. Figure 4 shows for substi-
tutions/deletions only the results that were obtained
applying the various parameter constellations to the test
sets for the haploid and the diploid model, respectively.
The circles and triangles display the average numbers of
discordant (dc) and noncalled (nc) bases normalized to
100 nps that were observed upon inclusion (using Reseq-
Chip) and exclusion, respectively, of the local context
probes applying primary base calls only generated by
GSEQ for QT values of 3, 6, 9, 12, 18 and 24. Evidently,
ReseqChip reduces considerably both the number of
sequencing errors and the number of N-calls in compari-
son to a sequence assembly ignoring the alternative local
context probes.

Discussion
ReseqChip allows for the automated consolidation of
multiple base calls from alternative local mt genome con-
text probes into a single call, thereby improving the accu-
racy of mt genome resequencing, while simultaneously
reducing the number of N-calls. Based on primary base
calls only, it shall be feasible to use ReseqChip with any
base calling algorithm and re-sequencing array carrying
multiple local context probes. However, this remains to
be demonstrated.

Exemplified by the MitoChip v2.0 and the GSEQ base-
caller, we demonstrated that an additional sequence con-
solidation step for analyzing the additional base calls
using ReseqChip improved both the accuracy and the call
rate. Interestingly, almost all optimal parameter constella-

Table 4: Dataset (II)

Sub Del Ins Total

Homoplasmic All 985 (166) 15 (3) 246 (3) 1246 (172)

Train 336 (110) 4 (3) 86 (2) 426 (112)

Test 649 (143) 11 (2) 160 (3) 820 (148)

Heteroplasmic All 205 (39) 0 14 (2) 219 (41)

Train 75 (36) 0 6 (2) 81 (38)

Test 130 (39) 0 8 (2) 138 (41)

Total All 1190 (166) 15 (3) 260 (3) 1465 (172)

Train 411 (116) 4 (3) 92 (3) 507 (122)

Test 779 (143) 11 (2) 168 (3) 958 (148)

Number of variable sites in the dataset are listed and stratified by type 
of variation and homoplas-mic/heteroplasmic state. (In brackets the 
number of distinct SNPs are given.)
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tions incorporate a QT value of 3. This indicates that the
algorithm performs best with a low number of N-calls,
which in turn gives a reasonable number of possibly con-
flicting local contexts that can be evaluated. Vice versa, a
sequence assembly based on less but more accurate base
calls is inferior.

Despite the improvements in call rate and accuracy
achieved by means of ReseqChip, it seems impossible to
achieve call rates similar to those of conventional
sequencing at equal accuracy for at least two reasons: First,
array-based resequencing is facing inherent difficulties
with respect to variability of the target sequence. There are

Performance on Train DataFigure 3
Performance on Train Data. The plots show the performance of the 27,456 different parameter constellations in terms of 
number of sequencing errors and N-calls for substitutions/deletions (top) and insertions (bottom) for haploid (left) and diploid 
(right) settings of GSEQ.
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almost always individual target sequences that do not
match some contexts well. Secondly, the principles under-
lying the hybridization of target sequences to surface-
attached probes are still not completely understood.
Though discrimination between signal intensities of PM
and MM in DNA/DNA hybridization is relatively precise,
some PM and MM probes show an unfavorable relation
between their signal intensities. This is in particular due to
base composition of probe sequence, neighboring bases
of PM and MM, and the MM itself [26]. This implies, how-
ever, if several probe quartets probing the same or a
slightly different local context yield primary base calls that
are persistently wrong, then also the consensus call calcu-
lated by ReseqChip is wrong. That contributes to the fact
that the number of N- and discordant calls cannot become
zero.

Our results also show that base calls generated in a diploid
model give less accurate calls and more N-calls. For this
reason, we have also not pursued allele ratios other than
1:1, as it is obvious that accuracy will decrease with
decreasing frequency of the variant allele. We believe that
this limitation can be approached only at the level of the
basecaller.

Conclusions
We provide ReseqChip, a freely available software for the
automated generation of consensus base calls from rese-
quencing arrays that carry multiple local context probes
on the MitoChip v2.0. ReseqChip processes both
homozygous (homoplasmic) as well as heterozygous
(heteroplasmic) base calls of many chips, hence enabling
high-throughput generation of sequence data. ReseqChip
significantly improves both accuracy and call rate.

Availability and Requirements
Project name: ReseqChip

Project home page: The project is part of the live branch of
the BioPerl project (bioperl-live): http://code.open-
bio.org/svnweb/index.cgi/bioperl/browse/bioperl-live/
trunk/Bio/Microarray/Tools/

Availability: the BioPerl live distribution can be down-
loaded via anonymous svn checkout: svn co svn://
code.open-bio.org/bioperl/bioperl-live/trunk bioperl-live

The module path for ReseqChip is Bio/Microarray/Tools.
A test script (t/Microarray/Tools/ReseqChip.t) together

Performance on Test DataFigure 4
Performance on Test Data. The performance of ReseqChip for the test dataset based on the number of sequencing errors 
and N-calls normalized to 100 nps is plotted for substitutions/deletions with haploid (left) and diploid (right) settings of GSEQ. 
The circles represent the performance of the optimal parameter constellations obtained from the training. The triangles repre-
sent the performance of running GSEQ for QT values of 3,6,9,12,18,24 (but without subsequent sequence assembly by Reseq-
Chip). In the diploid settings only QT values of 3,6,9,12 are shown.

http://code.open-bio.org/svnweb/index.cgi/bioperl/browse/bioperl-live/trunk/Bio/Microarray/Tools/
http://code.open-bio.org/svnweb/index.cgi/bioperl/browse/bioperl-live/trunk/Bio/Microarray/Tools/
http://code.open-bio.org/svnweb/index.cgi/bioperl/browse/bioperl-live/trunk/Bio/Microarray/Tools/
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with test data and optimized parameter set are provided in
separate files. The latter files reside in t/data/and carry the
prefix "ReseqChip ".

Operating systems: Cross platform

Programming language: Perl

Other requirements: Perl interpreter, BioPerl 1.4 or
higher, Statistics-Frequency-0.03 from CPAN http://
search.cpan.org/dist/Statistics-Frequency/

License: GNU GPL
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