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Inputs
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Abstract—The universal approximation properties with respect
to L

p-type criteria of three important families of reservoir
computers with stochastic discrete-time semi-infinite inputs are
shown. First, it is proved that linear reservoir systems with either
polynomial or neural network readout maps are universal. More
importantly, it is proved that the same property holds for two
families with linear readouts, namely, trigonometric state-affine
systems and echo state networks, which are the most widely used
reservoir systems in applications. The linearity in the readouts
is a key feature in supervised machine learning applications. It
guarantees that these systems can be used in high-dimensional
situations and in the presence of large datasets. The L

p criteria
used in this paper allow the formulation of universality results
that do not necessarily impose almost sure uniform boundedness
in the inputs or the fading memory property in the filter that
needs to be approximated.

Index Terms—Reservoir computing, echo state network, ESN,
machine learning, uniform system approximation, stochastic
input, universality.

I. INTRODUCTION

A
UNIVERSALITY statement in relation to a machine

learning paradigm refers to its versatility at the time of

reproducing a rich number of patterns obtained by modifying

only a limited number of hyperparameters. In the language

of learning theory, universality amounts to the possibility of

making approximation errors as small as one wants [1]–[3].

Well-known universality results are, for example, the uniform

approximation properties of feedforward neural networks es-

tablished in [4], [5] for deterministic inputs and, later on,

extended in [6] to accommodate random inputs.

This paper is a generalization of the universality statements

in [6] to a discrete-time dynamical context. More specifically,

we are interested in the learning not of functions but of

filters that transform semi-infinite random input sequences

parameterized by time into outputs that depend on those inputs

in a causal and time-invariant manner. The approximants

used are small subfamilies of reservoir computers (RC) [7],

[8] or reservoir systems. Reservoir computers (also referred

to in the literature as liquid state machines [9], [10]) are

filters generated by nonlinear state-space transformations that

constitute special types of recurrent neural networks. They are

determined by two maps, namely a reservoir F : RN×Rn −→
RN , n,N ∈ N, and a readout map h : RN → R that under

certain hypotheses transform (or filter) an infinite discrete-time
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input z = (. . . , z−1, z0, z1, . . .) ∈ (Rn)Z into an output signal

y ∈ RZ of the same type using a state-space transformation

given by:
{

xt = F (xt−1, zt),

yt = h(xt),

(1)

(2)

where t ∈ Z and the dimension N ∈ N of the state vectors

xt ∈ RN is referred to as the number of virtual neurons

of the system. In supervised machine learning applications

the reservoir map is very often randomly generated and the

memoryless readout is trained so that the output matches a

given teaching signal. An important particular case of the RC

systems in (1)-(2) are echo state networks (ESN) introduced,

in different contexts, in [8], [11], [12], and that are built using

the transformations
{

xt = σ(Axt−1 + Czt + ζ),

yt = w⊤xt,
(3)

with A ∈ MN , C ∈ MN,n, ζ ∈ RN , and w ∈ RN . The map

σ : RN → RN is obtained via the componentwise application

of a given activation function σ : R → R that is denoted

with the same symbol. ESNs have as an important feature

the linearity of the readout specified by the vector w ∈ RN

that is estimated using linear regression methods based on a

training dataset. This is done once the other parameters in the

model (A, C, and ζ) have been randomly generated and their

scale has been adapted to the problem in question by tuning

a limited number of hyperparameters (like the sparsity or the

spectral radius of the matrix A).

Families of reservoir systems of the type (1)-(2) have

already been proved to be universal in different contexts. In the

continuous-time setup, it was shown in [13] that linear reser-

voir systems with polynomial readouts or bilinear reservoirs

with linear readouts are able to uniformly approximate any

fading memory filter with uniformly bounded and equicon-

tinuous inputs. The fading memory property is a continuity

feature exhibited by many filters encountered in applications.

See also [9], [10], [14], [15] for other contributions to the RC

universality problem in the continuous-time setup.

In the discrete-time setup, several universality statements

were already part of classical systems theory statements for

inputs defined on a finite number of time points [16]–[18].

In the more general context of semi-infinite inputs, various

universality results have been formulated for systems with

approximate finite memory [11], [12], [19]–[22]. More re-

cently, it has been shown in [23], [24], that RCs generated

by contractive reservoir maps (similar to the ESNs introduced
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above) exhibit universality properties in the approximate finite

memory category.

These universality results have been recently extended to

the causal and fading memory category in [25], [26]. In those

works the universality of two important families of reservoir

systems with linear readouts has been established, namely,

the so called state affine systems (SAS) and the echo state

networks (ESN) that we just introduced in (3). Moreover, the

universality of the SAS family was established in [25] both for

uniformly bounded deterministic inputs, as well as for almost

surely uniformly bounded stochastic ones. This last statement

was shown to be a corollary of a general transfer theorem

that proves that very important features of causal and time-

invariant filters like the fading memory property or universality

are naturally inherited by reservoir systems with almost surely

uniformly bounded stochastic inputs from their counterparts

with deterministic inputs.

Unfortunately, almost surely bounded random inputs are

not always appropriate for many applications. For example,

most parametric time series models use as driving innova-

tions random variables whose distributions are not compactly

supported (Gaussian, for example) in order to ensure ade-

quate levels of performance. The main goal of this work

is formulating universality results in the stochastic context

that do not impose almost sure uniform boundedness in the

inputs. This is achieved by using a density criterion (which is

the mathematical characterization of universality) based not

on L∞-type norms, like in [25], [26], but on Lp norms,

p ∈ [1,∞). This approach follows the pattern introduced in

the static case in [6].

This strategy allows to cover a more general class of input

signals and filters, but it also creates some differences in

the type of approximation results that are obtained. More

specifically, in the stochastic universality statements in [25],

for example, universal families are presented that uniformly

approximate any given filter for any input in a given class of

stochastic processes. In contrast with this statement and like

in [6], we fix here first a discrete-time stochastic process that

models the data generating process (DGP) behind the system

inputs that are being considered. Subsequently, families of

reservoir filters are spelled out whose images of the DGP

are dense in the Lp sense. Equivalently, the image of the

DGP by any measurable causal and time invariant filter can

be approximated by the image of one of the members of the

universal family with respect to an Lp norm defined using the

law of the prefixed DGP.

It is important to point out that this approach allows us to

formulate universality results for filters that do not necessarily

have the fading memory property since only measurability is

imposed as a hypothesis.

The paper contains three main universality statements. The

first one shows that linear reservoir systems with either poly-

nomial or neural network readout maps are universal in the

Lp sense. More importantly, two other families with linear

readouts are shown to also have this property, namely, trigono-

metric state-affine systems and echo state networks, which

are the most widely used reservoir systems in applications.

The linearity of the readout is a key feature of these systems

since in supervised machine learning applications it reduces

the training task to the solution of a linear regression problem,

which can be implemented efficiently also in high-dimensional

situations and in the presence of large datasets.

We emphasize that, from a learning theoretical perspective,

the results in this paper only establish the possibility of

making the approximation error arbitrarily small when using

the proposed RC families in a specific learning task. We do

not provide bounds neither for the approximation nor the

corresponding estimation errors using finite random samples.

Even though some results in this direction already exist in the

literature [23], [24], we plan to address this important subject

in a forthcoming paper where the same degree of generality

as in the present paper will be adopted.

II. PRELIMINARIES

In this section we introduce some notation and collect

general facts about filters, reservoir systems, and stochastic

input signals.

A. Notation

We write N = {0, 1, . . .} and Z− = {. . . ,−1, 0}. The

elements of the Euclidean spaces Rn will be written as column

vectors and will be denoted in bold. Given a vector v ∈ Rn, we

denote its entries by vi or by v(i), with i ∈ {1, . . . , n}. (Rn)Z

and (Rn)Z− denote the sets of infinite Rn-valued sequences of

the type (. . . , z−1, z0, z1, . . .) and (. . . , z−1, z0) with zi ∈ Rn

for i ∈ Z and i ∈ Z−, respectively. Additionally, we denote

by z
(k)
i the k-th component of zi. The elements in these

sequence spaces will also be written in bold, for example,

z := (. . . , z−1, z0) ∈ (Rn)Z− . We denote by Mn,m the space

of real n × m matrices with m,n ∈ N. When n = m, we

use the symbol Mn to refer to the space of square matrices

of order n. Random variables and stochastic processes will be

denoted using upper case characters that will be bold when

they are vector valued.

B. Filters and functionals

A filter is a map U : (Rn)Z → RZ. It is called causal, if

for any z,w ∈ (Rn)Z which satisfy zτ = wτ for all τ ≤ t
for a given t ∈ Z, one has that U(z)t = U(w)t. Denote

by T−τ : (R
n)Z → (Rn)Z the time delay operator defined by

T−τ (z)t := zt+τ , for any τ ∈ Z. A filter U is called time-

invariant, if T−τ ◦ U = U ◦ T−τ for all τ ∈ Z.

Causal and time-invariant filters can be equivalently de-

scribed using their naturally associated functionals. We refer

to a map H : (Rn)Z− → R as a functional. Given a causal

and time-invariant filter U , one defines the functional HU

associated to it by setting HU (z) := U(ze)0. Here ze is an

arbitrary extension of z ∈ (Rn)Z− to (Rn)Z. HU does not

depend on the choice of this extension since U is causal.

Conversely, given a functional H one may define a causal and

time-invariant filter UH : (Rn)Z → RZ by setting UH(z)t :=
H(πZ

−

◦T−t(z)), where πZ
−

: (Rn)Z → (Rn)Z− is the natural

projection. One may verify that any causal and time-invariant

filter can be recovered from its associated functional and
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conversely. Equivalently, U = UHU
and H = HUH

. We refer

to [13] for further details.

If U is causal and time-invariant, then for any z ∈ (Rn)Z

the sequence U(z) restricted to Z− only depends on (zt)t∈Z
−

.

Thus we may also consider U as a map U : (Rn)Z− → RZ
− ,

but when we do so this will always be clear from the context.

C. Reservoir computing systems

A specific class of filters can be obtained using the reservoir

computing systems or reservoir computers (RC) introduced in

(1)-(2) when they satisfy the so called echo state property

(ESP) given by the following statement (see [27]–[29]): for

any z ∈ (Rn)Z there exists a unique x ∈ (RN )Z such that (1)

holds. In the presence of the ESP, the RC system gives rise

to a well-defined filter UF
h that is constructed by associating

to any z ∈ (Rn)Z the unique x ∈ (RN )Z satisfying (1)

and by mapping x subsequently to the output in (2), that

is, UF
h (z)t := yt. Furthermore, it can be shown (see [26,

Proposition 2.1]) that UF
h is necessarily causal and time-

invariant and hence we may associate to UF
h a reservoir

functional HF
h : (Rn)Z− → R defined as HF

h (z) := UF
h (z)0.

As seen above, the causal and time-invariant filter UF
h is

uniquely determined by the reservoir functional HF
h . Since

the latter is determined by the restriction of the RC system to

Z−, we will sometimes consider the system (1)-(2) only for

t ∈ Z−.

D. Deterministic filters with stochastic inputs

We are interested in feeding the filters and the systems

that we just introduced with stochastic processes as inputs.

More explicitly, given a causal and time-invariant filter U
that satisfies certain measurability hypotheses, any stochastic

process Z = (Zt)t∈Z
−

is mapped to a new stochastic process

(U(Z)t)t∈Z
−

. The main contributions in this article address

the question of approximating U(Z) by reservoir filters in an

Lp sense. We now introduce the precise framework to achieve

this goal.

1) Probabilistic framework: Consider a probability space

(Ω,F ,P) on which all random variables are defined. Recall

that the sample space Ω is an arbitrary set representing

possible outcomes, the σ-algebra F is a collection of sub-

sets of Ω describing the set of events to be considered,

and P : F → [0, 1] is a probability measure that assigns a

probability of occurrence to each event. The input signal is

modeled as a discrete-time stochastic process Z = (Zt)t∈Z
−

with values in Rn. For each outcome ω ∈ Ω we denote

by Z(ω) = (Zt(ω))t∈Z
−

the realization or sample path of

Z. Thus Z may be viewed as a random sequence in Rn

and when dealing with stochastic processes we will make no

distinctions between the assignment Z : Z− × Ω → Rn and

the corresponding map into path space Z : Ω → (Rn)Z− . We

recall that Z is a stochastic process when the corresponding

map Z : Ω → (Rn)Z− is measurable. Here (Rn)Z− is equipped

with the product σ-algebra ⊗t∈Z
−

B(Rn) (which coincides

with the Borel σ-algebra of (Rn)Z− equipped with the product

topology by [30, Lemma 1.2]), where B(Rn) is the Borel σ-

algebra on Rn.

We denote by Ft := σ(Z0, . . . ,Zt), t ∈ Z−, the σ-algebra

generated by {Z0, . . . ,Zt} and write F−∞ := σ(Zt : t ∈ Z−).
Thus Ft models the information contained in the input stream

at times 0,−1, . . . , t. For p ∈ [1,∞] we denote by Lp(Ω,F ,P)
the Banach space formed by the real-valued random variables

in (Ω,F ,P) that have a finite usual Lp norm ‖ · ‖p.

We say that the process Z is stationary when for any

{t1, . . . , tk} ⊂ Z−, h ∈ Z−, and At1 , . . . , Atk ∈ B(Rn),
we have that

P (Zt1 ∈ At1 , . . . ,Ztk ∈ Atk)

= P (Zt1+h ∈ At1 , . . . ,Ztk+h ∈ Atk) .

2) Measurable functionals and filters: We say that a func-

tional H is measurable when the map between measurable

spaces H :
(

(Rn)Z− ,⊗t∈Z
−

B(Rn)
)

→ (R,B(R)) is measur-

able. When H is measurable then so is H(Z) : (Ω,F) →
(R,B(R)) since H(Z) = H ◦ Z is the composition of

measurable maps and hence H(Z) is a random variable on

(Ω,F ,P).
Analogously, we will say that a causal, time-invariant filter

U is measurable when the map between measurable spaces

U :
(

(Rn)Z,⊗t∈ZB(R
n)
)

→
(

RZ,⊗t∈ZB(R)
)

is measurable.

In that case, also the restriction of U to Z− (see above) is

measurable and so U(Z) is a real-valued stochastic process.

As discussed above, causal, time-invariant filters and func-

tionals are in a one-to-one correspondence. This relation

is compatible with the measurability condition, that is, a

causal and time-invariant filter is measurable if and only if

the associated functional is measurable. In order to prove

this statement we show first that the operator πZ
−

◦ T−t :
(

(Rn)Z,⊗t∈ZB(R
n)
)

−→
(

(Rn)Z− ,⊗t∈Z
−

B(Rn)
)

is a mea-

surable map, for any t ∈ Z−. Indeed, notice first that the

projections pi :
(

(Rn)Z,⊗t∈ZB(R
n)
)

−→ (Rn,B(Rn)),
i ∈ Z−, given by pi(z) = zi are measurable. Thus πZ

−

◦ T−t

can be written as the Cartesian product of measurable maps,

i.e. for each k ∈ Z− one has that (πZ
−

◦ T−t)k = pt+k is

measurable. This yields that πZ
−

◦ T−t is measurable [30,

Lemma 1.8].

Now, if H is a measurable functional, this implies that the

associated filter UH is also measurable, since for each t ∈ Z−,

(UH)t = H ◦ πZ
−

◦ T−t, (4)

is a composition of measurable functions and hence also

measurable. Conversely, if U is causal, time-invariant, and

measurable, then so is the associated functional HU = p0 ◦U .

3) Lp-norm for functionals: Fix p ∈ [1,∞) and let H be

a measurable functional such that H(Z) ∈ Lp(Ω,F ,P). The

functionals which satisfy that

‖H(Z)‖p := E[|H(Z)|p]1/p < ∞ (5)

will be referred to as p-integrable with respect to the input

process Z.

Let us now consider the expression (5) from an alternative

point of view. Denote by µZ := P ◦ Z−1 the law of Z when

viewed as a (Rn)Z− -valued random variable as above. Thus

µZ is a probability measure on (Rn)Z− such that for any

measurable set A ⊂ (Rn)Z− one has µZ(A) = P(Z ∈ A).
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The requirement H(Z) ∈ Lp(Ω,F ,P) then translates to

H ∈ Lp((Rn)Z− , µZ) and (5) is equal [30, Lemma 1.22] to

‖H‖µZ

p :=

[

∫

(Rn)Z−
|H(z)|pµZ(dz)

]1/p

= ‖H(Z)‖p.

Thus, the results formulated later on in the paper for

functionals with random inputs can also be seen as statements

for functionals with deterministic inputs in (Rn)Z− , where

the closeness between them is measured using the norm in

Lp((Rn)Z− , µZ). Following the terminology used by [6] we

will refer to µZ as the input environment measure.

We emphasize that these two points of view are equivalent.

Given any probability measure µZ on (Rn)Z− one may set

Ω = (Rn)Z− , F = ⊗t∈Z
−

B(Rn), P = µZ and define Zt(z) :=
zt for all z ∈ Ω. We will switch between these two viewpoints

throughout the paper without much warning to the reader.

4) Lp-norm for filters: Fix p ∈ [1,∞). A causal, time-

invariant, measurable filter U is said to be p-integrable, if

‖U(Z)‖p := sup
t∈Z

−

{

E [|U(Z)t|
p]

1/p
}

< ∞. (6)

It is easy to see that if U is p-integrable, then so is the

corresponding functional HU due to the following inequality

‖HU (Z)‖p = E[|HU (Z)|
p]1/p = E[|U(Z)0|

p]1/p

≤ sup
t∈Z

−

{

E [|U(Z)t|
p]

1/p
}

= ‖U(Z)‖p < ∞.

The converse implication holds true when the input process

is stationary. In order to show this fact, notice first that if µt

is the law of πZ
−

◦ T−t(Z), t ∈ Z−, and Z is by hypothesis

stationary then, for any {t1, . . . , tk} ⊂ Z− and At1 , . . . , Atk ∈
B(Rn), we have that

P
(

(πZ
−

◦ T−t(Z))t1 ∈ At1 , . . . , (πZ
−

◦ T−t(Z))tk ∈ Atk

)

= P (Zt1+t ∈ At1 , . . . ,Ztk+t ∈ Atk)

= P (Zt1 ∈ At1 , . . . ,Ztk ∈ Atk) ,

which proves that

µZ = µt, for all t ∈ Z−. (7)

This identity, together with (4), implies that for any p-

integrable functional H:

‖UH(Z)‖p = sup
t∈Z

−

{

E [|UH(Z)t|
p]

1/p
}

= sup
t∈Z

−

{

E
[

|H(πZ
−

◦ T−t(Z))|
p
]1/p

}

= sup
t∈Z

−







[

∫

(Rn)Z−
|H(z)|pµt(dz)

]1/p






= sup
t∈Z

−







[

∫

(Rn)Z−
|H(z)|pµZ(dz)

]1/p






= ‖H(Z)‖p < ∞,

(8)

which proves the p-integrability of the associated filter UH .

III. Lp-UNIVERSALITY RESULTS

Fix p ∈ [1,∞), Z an input process, and a functional H
such that H(Z) ∈ Lp(Ω,F ,P). The goal of this section is

finding simple families of reservoir systems that are able to

approximate H(Z) as accurately as needed in the Lp sense.

The first part contains a result that shows that linear reservoir

maps with polynomial readouts are able to carry this out. As

we already pointed out in the introduction, a result for the

same type of reservoir systems has been proved in [25] in the

L∞ setting for both deterministic and almost surely uniformly

bounded stochastic inputs. The second part presents a family

that is able to achieve universality using only linear readouts,

which is of major importance for applications since in that

case the training effort reduces to solving a linear regression.

Finally, we prove the universality of echo state networks which

is the most widely used family of reservoir systems with linear

readouts.

A. Linear reservoirs with nonlinear readouts

Consider a reservoir system with linear reservoir map and

a polynomial readout. More precisely, given A ∈ MN , c ∈
MN,n, and h ∈ PolN a real-valued polynomial in N variables,

consider the system
{

xt = Axt−1 + czt, t ∈ Z−,

yt = h(xt), t ∈ Z−,
(9)

for any z ∈ (Rn)Z− . If the matrix A is chosen so that

σmax(A) < 1, then this system has the echo state property

and the corresponding reservoir filter UA,c
h is causal and time-

invariant [25]. We denote by HA,c
h the associated functional.

We are interested in the approximation capabilities that can be

achieved by using processes of the type HA,c
h (Z), where Z is

a fixed input process and HA,c
h (Z) = Y0, with Y0 obviously

determined by the stochastic reservoir system
{

Xt = AXt−1 + cZt, t ∈ Z−,

Yt = h(Xt), t ∈ Z−.
(10)

Proposition III.1. Fix p ∈ [1,∞), let Z be a fixed Rn-valued

input process, and let H be a functional such that H(Z) ∈
Lp(Ω,F ,P). Suppose that for any K ∈ N there exists α > 0
such that

E

[

exp

(

α

K
∑

k=0

n
∑

i=1

|Z
(i)
−k|

)]

< ∞, (11)

where Z
(i)
−k denotes the i-th component of Z−k. Then, for any

ε > 0 there exists N ∈ N, A ∈ MN , c ∈ MN,n, and h ∈ PolN
such that (9) has the echo state property, the corresponding

filter is causal and time-invariant, the associated functional

satisfies HA,c
h (Z) ∈ Lp(Ω,F ,P), and

‖H(Z)−HA,c
h (Z)‖p < ε. (12)

If the input process Z is stationary then

‖UH(Z)− UA,c
h (Z)‖p < ε. (13)
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Proof. The proof consists of two steps: In the first one we

use assumption (11) and classical results in the literature to

establish that

Poln(K+1) is dense in Lp(Rn(K+1), µK), for all K ∈ N,
(14)

where µK is the law of (Z
(1)
0 , Z

(2)
0 , . . . , Z

(n−1)
−K , Z

(n)
−K) on

Rn(K+1) under P. In the second step we then use (14) to

construct a linear RC system of the type in (9) that yields the

approximation statement (12).

Step 1: Denote by µK the law of

(Z
(1)
0 , Z

(2)
0 , . . . , Z

(n−1)
−K , Z

(n)
−K) on RN under P, where

N := n(K + 1). By (11) there exists α > 0 such that
∫

RN exp(α‖z‖1)µK(dz) < ∞, where here and in the rest

of this proof ‖ · ‖1 denotes the Euclidean 1-norm. Denoting

by µj
K the j-th marginal distribution of µK , this implies for

j = 1, . . . , N that
∫

R

exp(α|z(j)|)µj
K(dz(j)) ≤

∫

RN

exp(α‖z‖1)µK(dz) < ∞.

Consequently, by [31, Theorem 6], Pol1 is dense in Lp(R, µj
K)

for any p ∈ [1,∞), j = 1, . . . , N . By [32, Proposition page

364] this implies that PolN is dense in Lp(RN , µK), where

we note that µK indeed satisfies the moment assumption in

[32, Page 361]: since x2m ≤ exp(αx) for any x ≥ 0, m ∈ N,

one has
∫

RN

‖z‖2m2 µK(dz) ≤

∫

RN

exp(α‖z‖2)µK(dz)

≤

∫

RN

exp(α‖z‖1)µK(dz) < ∞.

Step 2: Let ε > 0. By Lemma A.1 in the appendix there

exists K ∈ N such that

‖H(Z)− E[H(Z)|F−K ]‖p <
ε

2
(15)

where F−K := σ(Z0, . . . ,Z−K). In the following para-

graphs we will establish the approximation statement (12) for

E[H(Z)|FK ] instead of H(Z). Combining this with (15) will

then yield (12).

Let N := n(K + 1). By definition, E[H(Z)|F−K ] is

F−K-measurable and hence there exists [30, Lemma 1.13] a

measurable function gK : RN → R such that E[H(Z)|F−K ] =
gK(Z0, . . . ,Z−K). Furthermore,

∫

RN

|gK(z)|pµK(dz)

= E[|E[H(Z)|F−K ]|p] ≤ E[|H(Z)|p] < ∞,

by standard properties of conditional expectations (see, for in-

stance, [33, Theorem 5.1.4]) and the assumption that H(Z) ∈
Lp(Ω,F ,P). Thus, gK ∈ Lp(RN , µK) and using the statement

(14) established in Step 1, there exists h ∈ PolN such that

‖E[H(Z)|F−K ]− h(Z⊤
0 , . . . ,Z

⊤
−K)‖p

= ‖gK − h‖Lp(RN ,µK) <
ε

2
. (16)

Define now a reservoir system of the type (10) with inputs

given by the random variables Zt, t ∈ Z− and reservoir

matrices A ∈ MN and c ∈ MN,n with all entries equal to

0 except Ai,i−n = 1 for i = n + 1, . . . , N and ci,i = 1 for

i = 1, . . . , n, that is

A =

(

0n,nK 0n,n

InK 0n,n

)

, and c =

(

In
0nK,n

)

.

This system has the echo state property (all the eigenval-

ues of A equal zero) and has a unique causal and time

invariant solution associated to the reservoir states Xt :=
(

Z⊤
t ,Z

⊤
t−1, . . . ,Z

⊤
t−K

)⊤
, t ∈ Z−. It is easy to verify that

the corresponding reservoir functional is given by

HA,c
h (Z) = h(Z⊤

0 , . . . ,Z
⊤
−K). (17)

Now the triangle inequality and (15), (16) and (17) allow us

to conclude (12).

The statement in (13) in the presence of the stationarity

hypothesis for Z is a straightforward consequence of (7) and

the equality (8).

Remark III.2. It is important to point out that the reservoir

systems used in the proof of Proposition III.1 all have finite

memory. Thus, this proof shows that it is possible to obtain

universality in the Lp sense with that type of finite memory

systems and that, in particular, they can be used to approximate

infinite memory filters. A key ingredient in this statement

is, apart from the hypothesis (11), the Lemma A.1 in the

Appendix. The other universal systems introduced later on in

the paper (trigonometric state-affine systems and echo state

networks) also share this feature. Similar statements have

also been proved for linear reservoir systems with polynomial

readouts and state-affine systems with linear readouts in the

L∞ setup for both deterministic and almost surely uniformly

bounded stochastic inputs (see, for instance, [25, Corollary 11,

Theorem 19]). This phenomenon has also been observed in the

in the context of approximation of deterministic filters using

Volterra series operators (see [13, Theorems 3 and 4]).

Remark III.3. A simple situation in which condition (11) is

satisfied is when for any t ∈ Z− the random variable Zt is

bounded, i.e. for any t ∈ Z− there exists Ct ≥ 0 such that

‖Zt‖ ≤ Ct, P-a.s. However, as the next remark shows, there

are also practically relevant examples of input streams with

unbounded support, for which (11) is satisfied.

Remark III.4. A sufficient condition for (11) to hold is that

the random variables {Zt : t ∈ Z−} are independent and

that for each t, there exists a constant α > 0 such that

E[exp(α
∑n

i=1 |Z
(i)
t |)] < ∞. This last condition is satisfied,

for instance, if Zt is normally distributed. For input streams

coming from more heavy-tailed distributions like Student’s t-
distribution, the condition is not satisfied and so one should use

the reservoir systems considered below (see Corollary III.8,

Theorem III.9, and Theorem III.10) instead if universality is

needed.

Remark III.5. Assumption (11) can be replaced by alternative

assumptions but it can not be removed. Even if n = 1 and

{Zt : t ∈ Z−} are independent and identically distributed with

distribution ν, a condition stronger than the existence of mo-

ments of all orders for ν is required. As a counterexample, one

may take for ν a lognormal distribution. Then ν has moments

of all orders, but (11) is not satisfied. Let us now argue that
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the approximation result proved under assumption (11) fails

in this case. The following argument relies on results for the

classical moment problem (see, for example, the collection of

references in [34]).

Indeed, by [35] ν is not determinate (there exist other

probability measures with identical moments) and thus (see

e.g. [36, Theorem 4.3]) Pol1 is not dense in Lp(R, ν) for

p ≥ 2. In particular, there exists g ∈ Lp(R, ν) and ε > 0
such that ‖g − h̃‖p > ε for all h̃ ∈ Pol1. Suppose that

we are in the case n = 1 and let {Zt : t ∈ Z−} be

independent and identically distributed with distribution ν
and H(z) := g(z0) for z ∈ RZ

− . Then, for any choice

of N , A, c and h one has E[HA,c
h (Z)|F0] = h̃(Z0), where

h̃(x) := E[h(AX−1 + cx)], x ∈ R, is a polynomial. Thus one

may use [33, Theorem 5.1.4] and the fact that by construction

H(Z) is F0-measurable to obtain

‖H(Z)−HA,c
h (Z)‖p ≥ ‖E[H(Z)|F0]− E[HA,c

h (Z)|F0]‖p

= ‖g − h̃‖p > ε.

Remark III.6. In previous reservoir computing universality

results for both deterministic and stochastic inputs quoted in

the introduction there was an important continuity hypothesis

called the fading memory property that does not play a role

here and that has been replaced by the integrability require-

ment H ∈ Lp((Rn)Z− , µZ). In particular, the universality

results that we just proved and those that come in the next

section (see Theorem III.9) yield approximations for filters

which do not necessarily have the fading memory property.

Whether or not the approximation results apply depends on the

integrability condition with respect to the input environment

measure µZ. Consider, for example, the functional associated

to the peak-hold operator [13]. In the discrete-time setting, the

associated functional is

H(z) = sup
t≤0

{zt}, with z ∈ RZ
− .

We now show that the two possibilities H ∈ Lp((Rn)Z− , µZ)
and H /∈ Lp((Rn)Z− , µZ) are feasible, depending on the

choice of µZ:

• Let Z = (Zt)t∈Z
−

be one dimensional independent

and identically distributed (i.i.d) random variables with

unbounded support and denote by µZ the law of Z on

RZ
− . Denoting by F the distribution function of Z1 and

using the i.i.d assumption one calculates, for any a ∈ R,

P(H(Z) > a) = 1− P(∩t<0{Zt ≤ a})

= 1− lim
n→∞

F (a)n = 1.

Hence, we can conclude that H(Z) = ∞, µZ-almost

everywhere and therefore H /∈ Lp((Rn)Z− , µZ).
• Consider now the same setup, but assume this time that

the random variables have bounded support, that is, for

some amax ∈ R one has that P (Zt ≤ amax) = 1 and

P (Zt > amax) = 0. Then, the same argument shows

that H(Z) = amax, µZ-almost everywhere and therefore

H ∈ Lp((Rn)Z− , µZ).

Remark III.7. From the proof of Proposition III.1 one sees

that one could replace in its statement PolN by any other

family {HN}N∈N that satisfies the density statement (14). In

particular, the following corollary shows that this result can

be obtained with readouts made out of neural networks.

Denote by HN the set of feedforward one hidden layer

neural networks with inputs in RN that are constructed with

a fixed activation function σ. More specifically, HN is made

of functions h : RN → R of the type

h(x) =
k
∑

j=1

βjσ(αj · x− θj), (18)

for some k ∈ N, βj , θj ∈ R, and αj ∈ RN , for j = 1, . . . , k.

Corollary III.8. In the setup of Proposition III.1, consider the

family of neural networks h ∈ HN constructed with a fixed

activation function σ that is bounded and non-constant. Then,

for any ε > 0 there exists N ∈ N, A ∈ MN , c ∈ MN,n, and a

neural network h ∈ HN such that the corresponding reservoir

system (9) has the echo state property and has a unique causal

and time-invariant filter associated. Moreover, the correspond-

ing functional satisfies that HA,c
h (Z) ∈ Lp(Ω,F ,P) and

‖H(Z)−HA,c
h (Z)‖p < ε. (19)

Proof. By [6, Theorem 1] the set HN is dense in Lp(RN , µ)
for any finite measure µ on RN . Thus, statement (14) holds

with HN replacing Poln(K+1). Mimicking line by line the

proof of Step 2 in Proposition III.1 then proves the Corollary.

B. Trigonometric state-affine systems with linear readouts

Fix M,N ∈ N and consider R : Rn → MN,M defined by

R(z) :=

r
∑

k=1

Ak cos(uk · z)+Bk sin(vk · z), z ∈ Rn, (20)

for some r ∈ N, Ak, Bk ∈ MN,M , uk,vk ∈ Rn, for

k = 1, . . . , r. The symbol TrigN,M denotes the set of all

functions of the type (20). We call the elements of TrigN,M

trigonometric polynomials.

We now introduce reservoir systems with linear readouts

and reservoir maps constructed using trigonometric polyno-

mials: let N ∈ N, w ∈ RN , P ∈ TrigN,N , Q ∈ TrigN,1 and

define, for any z ∈ (Rn)Z− , the system:
{

xt = P (zt)xt−1 +Q(zt), t ∈ Z−,

yt = w⊤xt, t ∈ Z−.
(21)

We call the systems of this type trigonometric state-affine

systems. When such a system has the echo state property and a

unique causal and time-invariant solution for any input, we de-

note by UP,Q
w the corresponding filter and by HP,Q

w (z) := y0
the associated functional. As in the previous section, we fix

p ∈ [1,∞), Z an input process, and a functional H such that

H(Z) ∈ Lp(Ω,F ,P) and we are interested in approximating

H(Z) by systems of the form HP,Q
w (Z). Again, we will write

HP,Q
w (Z) = Y0, where Y0 is uniquely determined by the

reservoir system with stochastic inputs
{

Xt = P (Zt)Xt−1 +Q(Zt), t ∈ Z−,

Yt = w⊤Xt, t ∈ Z−.
(22)
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Define A as the set of four-tuples (N,w, P,Q) ∈ N× RN ×
TrigN,N × TrigN,1 whose associated systems (21) have the

echo state property and the unique solutions are causal and

time-invariant. In particular, for such (N,w, P,Q) a reservoir

functional HP,Q
w associated to (21) exists.

Theorem III.9. Let p ∈ [1,∞) and let Z be a fixed Rn-valued

input process. Denote by LZ the set of reservoir functionals

of the type (21) which are p-integrable, that is,

LZ := {HP,Q
w (Z) : (N,w, P,Q) ∈ A} ∩ Lp(Ω,F ,P).

Then LZ is dense in Lp(Ω,F−∞,P).
In particular, for any functional H such that H(Z) ∈

Lp(Ω,F ,P) and any ε > 0, there exists N ∈ N, w ∈ RN ,

P ∈ TrigN,N and Q ∈ TrigN,1 such that the system (21)

has the echo state property and causal and time-invariant

solutions. Moreover, HP,Q
w (Z) ∈ Lp(Ω,F ,P) and

‖H(Z)−HP,Q
w (Z)‖p < ε. (23)

If the input process Z is stationary then

‖UH(Z)− UP,Q
w (Z)‖p < ε. (24)

Proof. We first argue that LZ is a linear subspace of

Lp(Ω,F−∞,P). To do this we need to introduce some no-

tation. Given A ∈ MN1,M1 , B ∈ MN2,M2 , we denote by

A ⊕ B ∈ MN1+N2,M1+M2
the direct sum. Given R as in

(20) we define R⊕A ∈ TrigN+N1,M+M1
by

R⊕A(z) :=

r
∑

k=1

Ak ⊕A cos(uk · z) +Bk ⊕A sin(vk · z),

and (with the analogous definition for B ⊕ R) for Ri ∈
TrigNi,Mi

, i = 1, 2 we set

R1 ⊕R2 = R1 ⊕ 0N2,M2
+ 0N1,M1

⊕R2.

One easily verifies that for λ ∈ R and (Ni,wi, Pi, Qi) ∈ A,

i = 1, 2, one has that

(N1 +N2,w1 ⊕ λw2, P1 ⊕ P2, Q1 ⊕Q2) ∈ A,

HP1,Q1
w1

(Z) + λHP2,Q2
w2

(Z) = HP1⊕P2,Q1⊕Q2

w1⊕λw2
(Z).

This shows that LZ is indeed a linear subspace of

Lp(Ω,F−∞,P).
Secondly, in order to show that LZ is dense in

Lp(Ω,F−∞,P), it suffices to prove that if F ∈
Lq(Ω,F−∞,P) satisfies E[FH] = 0 for all H ∈ LZ, then

F = 0, P-almost surely. Here q ∈ (1,∞] is the Hölder

conjugate exponent of p. This can be shown by contraposition.

Suppose that LZ is not dense in Lp(Ω,F−∞,P). Since LZ is

a linear subspace, by the Hahn-Banach theorem there exists

a bounded linear functional Λ on Lp(Ω,F−∞,P) such that

Λ(H) = 0 for all H ∈ LZ, but Λ 6= 0, see e.g. [37,

Theorem 5.19]. Then by [37, Theorem 6.16] there exists

F ∈ Lq(Ω,F−∞,P) such that Λ(H) = E[FH] for all

H ∈ Lp(Ω,F−∞,P) and F 6= 0, since Λ 6= 0. In particular,

there exists F ∈ Lq(Ω,F−∞,P) \ {0} such that E[FH] = 0
for all H ∈ LZ.

Thirdly, suppose that F ∈ Lq(Ω,F−∞,P) satisfies

E[FH] = 0 for all H ∈ LZ. (25)

If we show that F = 0, P-almost surely, then the statement

in the theorem follows by the argument in the second step.

In order to prove that F = 0, P-almost surely, we first show

that (25) implies the following statement: for any K ∈ N, any

subset I ⊂ IK := {0, . . . ,K}, and any u0, . . . ,uK ∈ Rn it

holds that

E



F
∏

j∈I

sin(uj · Zj)
∏

k∈IK\I

cos(uk · Zk)



 = 0. (26)

We prove this claim by induction on K ∈ N. For K = 0,

one sets Q1(z) := cos(u0 · z) and Q2(z) := sin(u0 · z) and

notices that (1, 1, 0, Qi) ∈ A. Moreover, since the sine and

cosine function are bounded, it is easy see that Qi(Z0) =
H0,Qi

1 (Z0) ∈ LZ, for i ∈ {1, 2}. Thus (25) implies (26) and

so the statement holds for K = 0. For the induction step, let

K ∈ N \ {0} and assume the implication holds for K − 1.

We now fix I and u0, . . . ,uK ∈ Rn as above and prove (26).

To simplify the notation we define for k ∈ {0, . . . ,K} and

z ∈ Rn the function gk by

gk(z) :=

{

sin(uk · z), if k ∈ I,

cos(uk · z), if k ∈ IK \ I.

To prove (26), we set N := K+1, for j ∈ {1, . . . ,K} define

Aj ∈ MN with all entries equal to 0 except (Aj)j+1,j = 1,

that is, (Aj)k,l = δk,j+1δl,j , k, l ∈ {1, . . . , N}. Define now

for z ∈ Rn























P (z) :=

K−1
∑

j=0

AK−jgj(z),

Q(z) := e1gK(z),

w := eK+1,

(27)

where ej is the j-th unit vector in RN , that is, the only non-

zero entry of ej is a 1 in the j-th coordinate. By Lemma A.2

in the appendix, one has AjL · · ·Aj0 = 0 for any j0, . . . , jL ∈
{1, . . . ,K} and L ≥ K, since jL = j0+L can not be satisfied.

In other words, any product of more than K factors of matrices

A(j) is equal to 0 and thus for any L ∈ N with L ≥ K and

any z0, . . . , zL ∈ Rn one has P (z0) . . . P (zL) = 0. Using

this fact and iterating (21), one obtains that the trigonometric

state-affine system defined by the elements in (27) has a unique

solution given by

xt = Q(zt) +
K
∑

j=1

P (zt) · · ·P (zt−j+1)Q(zt−j). (28)

In particular (N,w, P,Q) ∈ A and

HP,Q
w (Z) = X0

= w⊤



Q(Z0) +

K
∑

j=1

P (Z0) · · ·P (Z−j+1)Q(Z−j)



 .

(29)

The finiteness of the sum in (29) and the boundedness of the

trigonometric polynomials implies that HP,Q
w (Z) ∈ LZ.

We conclude the proof of the induction step with the

following chain of equalities that uses (25) in the first one,
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the representation (29) in the second one, and the choice of

the vector w and the induction hypothesis in the last step:

0 = E[FHP,Q
w (Z)]

= E[Fw⊤Q(Z0)]

+ E[Fw⊤
K
∑

j=1

P (Z0) · · ·P (Z−j+1)Q(Z−j)]

= E[Fw⊤P (Z0) · · ·P (Z−K+1)Q(Z−K)].

(30)

However, again by Lemma A.2 in the appendix, the only

non-zero product of matrices AjK−1
· · ·Aj0 for j0, . . . jK−1 ∈

{1, . . . ,K} takes place when jk = k+1 for k ∈ {0, . . . ,K−
1}. Therefore:

P (Z0) · · ·P (Z−K+1)

= AKg0(Z0)AK−1g1(Z−1) · · ·A1gK−1(Z−K+1).

Combining this with (30) and using the identity (49) in

Lemma A.2 in the appendix one obtains

0 = E[Fe⊤K+1AK · · ·A1e1

K
∏

k=0

gk(Z−k)]

= E[F
K
∏

k=0

gk(Z−k)],

which is the same as (26).

Fourthly, by standard trigonometric identities, the identity

(26) established in the third step implies that for any K ∈ N,

E



F exp



i

K
∑

j=0

uj · Zj







 = 0 for all u0, . . . ,uK ∈ Rn.

(31)

We claim that (31) implies F = 0, P-almost surely and

hence the statement in the theorem follows. This fact is

a consequence of the uniqueness theorem for characteristic

functions (which is ultimately a consequence of the Stone-

Weierstrass approximation theorem). See for instance [30,

Theorem 4.3] and the text below that result. To prove F = 0,

P-almost surely, we denote by F+ and F− the positive

and negative parts of F . Then by (31) one has E[F ] = 0,

necessarily. Thus, if it does not hold that F = 0, P-almost

surely, then c := E[F+] = E[F−] > 0 and one may

define probability measures Q+ and Q− on (Ω,F) by setting

Q+(A) := c−1E[F+
✶A] and Q−(A) := c−1E[F−

✶A] for

A ∈ F . Denote by µ+
K and µ−

K the law in Rn(K+1) of the

random variable

ZK := (Z⊤
0 ,Z

⊤
−1, . . . ,Z

⊤
−K)⊤

under Q+ and Q−. Then, the statement (31) implies that for

all u ∈ Rn(K+1),
∫

Rn(K+1)

exp(iu · z)µ+
K(dz) =

∫

Rn(K+1)

exp(iu · z)µ−
K(dz).

By the uniqueness theorem for characteristic functions (see

e.g. [30, Theorem 4.3] and the text below) this implies

that µ+
K = µ−

K . Translating this statement back to random

variables, this means that for any bounded and measurable

function g : Rn(K+1) → R one has

0 = cEQ+ [g(ZK)]− cEQ− [g(ZK)] = E[Fg(ZK)],

which, by definition, means that E[F |F−K ] = 0, P-almost

surely. Since K ∈ N was arbitrary and F ∈ L1(Ω,F−∞,P),
one may combine this with limt→−∞ E[F |Ft] = F , P-almost

surely (see Lemma A.1) to conclude F = 0, as desired.

The statement in (24) in the presence of the stationarity

hypothesis for Z is a straightforward consequence of (7) and

the equality (8).

We emphasize that the use in the proof of the theorem

of nilpotent matrices of the type introduced in Lemma A.2

ensures that the the echo state property is automatically

satisfied (see (28)).

C. Echo state networks

We now turn to showing the universality in the Lp sense

of the the most widely used reservoir systems with linear

readouts, namely, echo state networks. An echo state network

is a RC system determined by
{

xt = σ(Axt−1 + Czt + ζ),

yt = w⊤xt,
(32)

for A ∈ MN , C ∈ MN,n, ζ ∈ RN , and w ∈ RN . As it

is customary in the neural networks literature, the map σ :
RN → RN is obtained via the componentwise application of

a given activation function σ : R → R that is denoted with the

same symbol.

If this system has the echo state property and the resulting

filter is causal and time-invariant, we write as HA,C,ζ
w (z) := y0

the associated functional.

Theorem III.10. Fix p ∈ [1,∞), let Z be a fixed Rn-

valued input process, and let H be a functional such that

H(Z) ∈ Lp(Ω,F ,P). Suppose that the activation function

σ : R → R is non-constant, continuous, and has a bounded

image. Then for any ε > 0, there exists N ∈ N, C ∈ MN,n,

ζ ∈ RN , A ∈ MN , w ∈ RN such that (32) has the echo state

property, the corresponding filter is causal and time-invariant,

the associated functional satisfies HA,C,ζ
w (Z) ∈ Lp(Ω,F ,P)

and

‖H(Z)−HA,C,ζ
w (Z)‖p < ε. (33)

Proof. First, by Corollary III.8 and (17) there exists K,N ∈
N, w ∈ RN , A ∈ MN,n(K+1), and ζ ∈ RN such that the

neural network

h(z) = w⊤σ(Az+ ζ)

satisfies

‖H(Z)− h(Z⊤
0 , . . . ,Z

⊤
−K)‖p <

ε

2
. (34)

Notice that we may rewrite A as

A = [A(0)A(−1) · · ·A(−K)]
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with A(j) ∈ MN,n and

H∞(Z) : = h(Z⊤
0 , . . . ,Z

⊤
−K)

= w⊤σ





K
∑

j=0

A(−j)Z−j + ζ



 .
(35)

Second, by the neural network approximation theorem for

continuous functions [6, Theorem 2], for any m ∈ N there

exists a neural network that uniformly approximates the iden-

tity mapping on the hypercube Bm := {x ∈ Rn : |xi| ≤
m for i = 1, . . . , n}. More specifically, [6, Theorem 2] is

formulated for R-valued mappings and we hence apply it

componentwise: for any m ∈ N and i = 1, . . . , n there

exists N
(m)
i ∈ N, w

(m)
i ∈ RN

(m)
i , A

(m)

i ∈ M
N

(m)
i

,n
, and

ζ
(m)
i ∈ RN

(m)
i , such that for all i = 1, . . . , n the neural

network

h
(m)
i (x) =

(

w
(m)
i

)⊤

σ
(

A
(m)

i x+ ζ
(m)
i

)

satisfies

sup
x∈Bm

{|h
(m)
i (x)− xi|} <

1

m
. (36)

Write h(m)(x) = (h
(m)
1 (x), . . . , h

(m)
n (x))⊤ and for j =

1, . . . ,K, denote by [h(m)]j = h(m) ◦ · · · ◦ h(m) the jth

composition of h(m). We now claim that for all j = 1, . . . ,K
and x ∈ Rn it holds that

lim
m→∞

[h(m)]j(x) = x. (37)

Indeed, let us fix x ∈ Rn and argue by induction on j. To

prove (37) for j = 1, let ε > 0 be given and choose m0 ∈
N satisfying m0 > max {|x1|, . . . , |xn|, 1/ε}. Then, for any

m ≥ m0 one has x ∈ Bm by definition and (36) implies that

for i = 1, . . . , n,

|h
(m)
i (x)− xi| <

1

m
< ε.

Hence (37) indeed holds for j = 1. Now let j ≥ 2
and assume that (37) has been proved for j − 1. Define

x(m) := [h(m)]j−1(x). Then, by the induction hypothesis, for

any given ε > 0 one finds m0 ∈ N such that for all m ≥ m0

and i = 1, . . . , n it holds that

|x
(m)
i − xi| <

ε

2
. (38)

Hence, choosing m0 ∈ N with m0 > max(m0, |x1| +
ε
2 , . . . , |xn|+

ε
2 , 2/ε) one obtains from the triangle inequality

and (38) that x(m) ∈ Bm0 for all m ≥ m0. In particular for

any m ≥ m0 one may use the triangle inequality in the first

step, x(m) ∈ Bm0
⊂ Bm and (38) in the second step and (36)

in the last step to estimate

|[h(m)]ji (x)− xi| ≤ |h
(m)
i (x(m))− x

(m)
i |+ |x

(m)
i − xi|

≤ sup
y∈Bm

{|h
(m)
i (y)− yi|}+

ε

2

<
1

m
+

ε

2
< ε.

This proves (37) for all j = 1, . . . ,K.

Thirdly, define

Hm(Z) := w⊤σ





K
∑

j=0

A(−j)[h(m)]j(Z−j) + ζ





with the convention [h(m)]0(x) = x.

Since σ is continuous, (37) implies that limm→∞ Hm(Z) =
H∞(Z), P-almost surely, where H∞ was defined in (35).

Furthermore, by assumption there exists C > 0 such that

|σ(x)| ≤ C for all x ∈ R. Hence one has |H∞(Z) −

Hm(Z)|p ≤ (2C
∑N

i=1 |wi|)
p for all m ∈ N. Thus one may

apply the dominated convergence theorem to obtain

lim
m→∞

‖H∞(Z)−Hm(Z)‖p

= lim
m→∞

E[|H∞(Z)−Hm(Z)|p]1/p = 0.

In particular for m ∈ N large enough one has ‖H∞(Z) −
Hm(Z)‖p < ε

2 and combining this with the triangle inequality

and (34) one obtains

‖H(Z)−Hm(Z)‖p ≤ ‖H(Z)−H∞(Z)‖p

+ ‖H∞(Z)−Hm(Z)‖p < ε.
(39)

To conclude the proof we now fix m ∈ N large enough

(so that (39) holds) and show that Hm(Z) = HA,C,ζ
w (Z) for

suitable choices of A,C, ζ and w. To do so, first define NJ :=
N

(m)
1 + · · ·+N

(m)
n and the block matrices

WJ :=









(w
(m)
1 )⊤ 0

. . .

0 (w
(m)
n )⊤









∈ Mn,NJ
,

ζJ :=









ζ
(m)
1
...

ζ
(m)
n









∈ RNJ , and AJ :=









A
(m)

1
...

A
(m)

n









∈ MNJ ,n.

Furthermore, to emphasize that m is fixed and h(m) approxi-

mates the identity, set J(x) := h(m)(x) and note that

J(x) = WJσ(AJx+ ζJ). (40)

Now set N := KNJ+N and define the block matrix A ∈ MN

by

A =





















0NJ ,NJ

AJWJ 0NJ ,NJ

AJWJ
. . .

0

0 . . . 0NJ ,NJ

AJWJ 0NJ ,NJ

A(−1)WJ A(−2)WJ · · · · · · A(−K)WJ 0N,N





















and ζ ∈ RN , C ∈ MN,n and w ∈ RN by

ζ :=











ζJ
...

ζJ
ζ











, C :=















AJ

0
...

0

A(0)















, and w :=

(

0KNJ ,1

w

)

.
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Furthermore, we partition the reservoir states xt of the corre-

sponding echo state system as

xt :=









x
(1)
t
...

x
(K+1)
t









,

with x
(j)
t ∈ RNJ , for j ≤ K, and x

(K+1)
t ∈ RN . With this

notation for xt and these choices of matrices, the recursions

associated to the echo state reservoir map in (32) read as

x
(1)
t = σ(AJzt + ζJ), (41)

x
(j)
t = σ(AJWJx

(j−1)
t−1 + ζJ), for j = 2, . . . ,K, (42)

x
(K+1)
t = σ(

K
∑

j=1

A(−j)WJx
(j)
t−1 +A(0)zt + ζ). (43)

By iteratively inserting (42) into itself and using (41) one

obtains (recall the definition of J in (40)) that the unique

solution to (42) is given by

x
(j)
t = σ(AJ [J ]

j−1(zt−j+1) + ζJ). (44)

More formally, one uses induction on j: For j = 1 the two

expressions (44) and (41) coincide. For j = 2, . . . ,K one

inserts (44) for j − 1 (which holds by induction hypothesis)

into (42) to obtain

x
(j)
t = σ(AJWJσ(AJ [J ]

j−2(zt−j+1) + ζJ) + ζJ)

= σ(AJ [J ]
j−1(zt−j+1) + ζJ),

which is indeed (44). Finally, combining (44) and (43) one

obtains

yt = w⊤x
(K+1)
t = w⊤σ(

K
∑

j=1

A(−j)WJx
(j)
t−1 +A(0)zt + ζ)

= w⊤σ(

K
∑

j=1

A(−j)[J ]j(zt−j) +A(0)zt + ζ).

The statement (44) shows, in particular, that the echo state

network associated to A,C, ζ and w satisfies the echo state

property. Moreover, inserting t = 0 in the previous equality

and comparing with the definition of Hm(Z) one sees that

indeed Hm(Z) = HA,C,ζ
w (Z). The approximation statement

(33) therefore follows from (39).

Remark III.11. In this paper we measure closeness between

filters and functionals in a Lp sense. As we already pointed

out in Remark III.6, this choice allows us to approximate with

the systems used in this paper measurable filters that, unlike

in the L∞ case, do not necessarily satisfy the fading memory

property. Therefore, an interesting aspect of the universality

results in Proposition III.1, Corollary III.8, Theorem III.9, and

Theorem III.10 is that it is possible to approximately simulate

any measurable filter that does not necessarily satisfy the fad-

ing memory property using the reservoir systems introduced

in those results that do satisfy the fading memory property.

Remark III.12. The results presented in this article address

the approximation capabilities of echo state networks and

other reservoir computing systems. When these systems are

used in practice not all of their parameters are trained. For

example, the recurrent connections of ESNs do not usually

undergo a training process, that is, the architecture parameters

A,C, ζ are randomly drawn from a distribution and only the

readout w is trained by linear regression so as to optimally

fit the given teaching signal. Subsequently, an optimization

over a few hyperparameters (for instance, the spectral radius

of A) is carried out. In addition, in many situations the same

reservoir matrix A can be used for different input time series

and different learning tasks and only the input-to-reservoir

matrices C, ζ and the readout w need to be modified (see,

for instance, the approach taken in [38], [39] to define time

series kernels). This feature is key in the implementation of

the notion of multi-tasking in the RC context (see [10]). Thus,

the empirically observed robustness of ESNs with respect

to these parameter choices is not entirely explained by the

universality results presented here. While in the static setting

of feedforward neural networks such questions have already

been tackled (see, for instance, [40]) for echo state networks

a full explanation is not available yet and these questions are

the subject of ongoing research.

D. An alternative viewpoint

So far all the universality results have been formulated

for functionals and filters with random inputs. Equivalently,

we may formulate them as Lp-approximation results on the

sequence space (Rn)Z− endowed with any measure µ that

makes p-integrable the filter that we want to approximate.

Theorem III.13. Let H : (Rn)Z− → R be a measurable

functional. Then, for any probability measure µ on (Rn)Z−

with H ∈ Lp((Rn)Z− , µ) and any ε > 0 there exists a

reservoir system that has the echo state property and such that

the corresponding filter is causal and time-invariant, the as-

sociated functional HRC satisfies that HRC ∈ Lp((Rn)Z− , µ)
and

‖H −HRC‖Lp((Rn)Z− ,µ) < ε. (45)

The reservoir functional HRC may be chosen as coming from

any of the following systems:

• Linear reservoir with polynomial readout, that is, (9) for

some N ∈ N, A ∈ MN , c ∈ MN,n, and a polynomial h ∈
PolN , if the measure µ satisfies the following condition:

for any K ∈ N,

∫

(Rn)Z−
exp

(

α
K
∑

k=0

n
∑

i=1

|z
(i)
−k|

)

µ(dz) < ∞.

• Linear reservoir with neural network readout, that is, (9)

for some N ∈ N, A ∈ MN , c ∈ MN,n, and a neural

network h ∈ HN .

• Trigonometric state-affine system with linear readout, that

is, (21) for some N ∈ N, w ∈ RN , P ∈ TrigN,N and

Q ∈ TrigN,1.

• Echo state network with linear readout, that is, (32) for

some N ∈ N, C ∈ MN,n, ζ ∈ RN , A ∈ MN , w ∈ RN ,

where we assume that σ : R → R employed in (32) is

bounded, continuous and non-constant.
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Proof. Set Ω = (Rn)Z− , F = ⊗t∈Z
−

B(Rn), P = µ
and define Zt(z) := zt for all z ∈ Ω, t ∈ Z−. Then

F = σ(Zt : t ∈ Z−) = F−∞ and Z is the identity

mapping on (Rn)Z− . One may now apply Proposition III.1,

Corollary III.8, Theorem III.9 and Theorem III.10 with this

choice of probability space (Ω,F ,P) and input process Z. The

statement of Theorem III.13 then precisely coincides with the

statement of Proposition III.1, Corollary III.8, Theorem III.9

and Theorem III.10, respectively.

E. Approximation of stationary strong time series models

Most parametric time series models commonly used in

financial, macroeconometrics, and forecasting applications are

specified by relations of the type

Xt = G (Xt−1,Zt,θ) , (46)

where θ ∈ Rk are the parameters of the model and the vector

Xt ∈ RN is built so that it contains in its components the

time series of interest and that, at the same time, allows for a

Markovian representation of the model as in (46). The model

is driven by the innovations process Z = (Zt)t∈Z ∈ (Rn)
Z

.

When the innovations are made out of independent and iden-

tically distributed random variables we say that the model is

strong [41]. It is customary in the time series literature to

impose constraints on the parameters vector θ so that the

relation (46) has a unique second-order stationary solution or,

in the language of this paper, the system (46) satisfies the echo

state property and the associated filter UG : (Rn)
Z
→
(

RN
)Z

satisfies that

E [UG(Z)t] =: µ and E
[

UG(Z)tUG(Z)
⊤
t+h

]

=: Σh, t, h ∈ Z−,
(47)

with µ ∈ RN and Σh ∈ MN constants that do not depend

on t ∈ Z−. The Wold decomposition theorem [42, Theorem

5.7.1] shows that any such filter can be uniquely written as

the sum of a linear and a deterministic process.

It is obvious that for strong models the stationarity condition

(7) holds and that, moreover, the condition (47) implies that

‖UG(Z)‖2 = sup
t∈Z

−

{

E
[

|UG(Z)t|
2
]1/2

}

= trace (Σ0)
1/2

< ∞.

(48)

This integrability condition guarantees that the approximation

results in Proposition III.1, Corollary III.8, and Theorems

III.9 and III.10 hold for second-order stationary strong time

series models with p = 2. More specifically, the processes

determined by this kind of models can be approximated in

the L2 sense by linear processes with polynomial or neural

network readouts (when the condition in Remark III.4 is

satisfied), by trigonometric state-affine systems with linear

readouts, or by echo state networks.

Important families of models to which this approximation

statement can be applied are, among many others, (see the

references for the meaning of the acronyms) GARCH [43],

[44], VEC [45], BEKK [46], CCC [47], DCC [48], [49],

GDC [50], and ARSV [51], [52].

IV. CONCLUSION

We have shown the universality of three different families

of reservoir computers with respect to the Lp norm associated

to any given discrete-time semi-infinite input process.

On the one hand we proved that linear reservoir systems

with either neural network or polynomial readout maps (in

this case the input process needs to satisfy the exponential

moments condition (11)) are universal.

On the other hand we showed that the exponential moment

condition (11), which was required in the case of polynomial

readouts, can be dropped by considering two different reservoir

families with linear readouts, namely, trigonometric state-

affine systems and echo state networks. The latter are the most

widely used reservoir systems in applications. The linearity in

the readouts is a key feature in supervised machine learning

applications of these systems. It guarantees that they can be

used in high-dimensional situations and in the presence of

large datasets, since the training in that case is reduced to a

linear regression.

We emphasize that, unlike existing results in the literature

[25], [26] dealing with uniform universal approximation, the

Lp criteria used in this paper allow to formulate universality

statements that do not necessarily impose almost sure uniform

boundedness on the inputs or the fading memory property on

the filter that needs to be approximated.

APPENDIX

A. Auxiliary Lemmas

Lemma A.1. Let Z : Z × Ω → Rn be a stochastic process

and let Ft := σ(Z0, . . . ,Zt), t ∈ Z−, and F−∞ := σ(Zt : t ∈
Z−)}. Let F ∈ Lp(Ω,F−∞,P). Then E[F |Ft] converges to

F as t → −∞, both P-almost surely and in norm ‖ · ‖p, for

any p ∈ [1,∞).

Proof. Since F−t ⊂ F−t−1 ⊂ F−∞, for all t ∈ N,

and F ∈ Lp(Ω,F−∞,P) ⊂ L1(Ω,F−∞,P), one has by

Lévy’s Upward Theorem (see, for instance, [53, II.50.3] or

[33, Theorem 5.5.7]) that Ft := E[F |Ft] converges for

t → −∞ to F in ‖ · ‖1 and P-almost surely. If p = 1 this

already implies the claim. For p > 1 one has by standard

properties of conditional expectations (see, for instance, [33,

Theorem 5.1.4]) that supt∈N{E[|Ft|
p]} ≤ E[|F |p]. Hence [33,

Theorem 5.4.5] implies that Ft converges for t → −∞ to

some F̃ ∈ Lp(Ω,F−∞,P) both in ‖ · ‖p and P-almost surely.

But this identifies F̃ = limt→−∞ Ft = F , P-almost surely

and hence Ft converges for t → −∞ to F also in ‖ · ‖p.

Lemma A.2. For N ∈ N\{0, 1} and j = 1, . . . , N−1 define

Aj ∈ MN by (Aj)k,l = δk,j+1δl,j for k, l ∈ {1, . . . , N}. Then

for L ∈ N, j0, . . . , jL ∈ {1, . . . , N − 1} it holds that

(AjL · · ·Aj0)k,l = δk,jL+1δl,j0

L
∏

i=1

δji,ji−1+1. (49)

In particular AjL · · ·Aj0 6= 0 if and only if ji = j0 + i for

i ∈ {1, . . . , L}.

Proof. The last statement directly follows from (49). To prove

(49) we proceed by induction on L. Indeed, for L = 0 the
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formula (49) is just the definition of Aj0 . For the induction

step, one assumes that (49) holds for L− 1 and calculates

(AjL · · ·Aj0)k,l

=

N
∑

r=1

δk,jL+1δr,jL(AjL−1
· · ·Aj0)r,l

=

N
∑

r=1

δk,jL+1δr,jLδr,jL−1+1δl,j0

L−1
∏

i=1

δji,ji−1+1,

which is indeed (49).
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[7] W. Maass, T. Natschläger, and H. Markram, “Real-time computing
without stable states: a new framework for neural computation based
on perturbations,” Neural Computation, vol. 14, pp. 2531–2560, 2002.

[8] H. Jaeger and H. Haas, “Harnessing Nonlinearity: Predicting Chaotic
Systems and Saving Energy in Wireless Communication,” Science, vol.
304, no. 5667, pp. 78–80, 2004.

[9] W. Maass and H. Markram, “On the computational power of circuits of
spiking neurons,” Journal of Computer and System Sciences, vol. 69,
no. 4, pp. 593–616, 2004.

[10] W. Maass, “Liquid state machines: motivation, theory, and applications,”
in Computability In Context: Computation and Logic in the Real World,
S. S. Barry Cooper and A. Sorbi, Eds., 2011, ch. 8, pp. 275–296.

[11] M. B. Matthews, “On the Uniform Approximation of Nonlinear
Discrete-Time Fading-Memory Systems Using Neural Network Mod-
els,” Ph.D. dissertation, ETH Zürich, 1992.
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