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Reservoir computing with a single delay-coupled non-linear mechanical
oscillator
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Reservoir computing was achieved by constructing a network of virtual nodes multiplexed in time

and sharing a single silicon beam exhibiting a classical Duffing non-linearity as the source of non-

linearity. The delay-coupled electromechanical system performed well on time series classification

tasks, with error rates below 0.1% for the 1st, 2nd, and 3rd order parity benchmarks and an accuracy

of (78+ 2)% for the TI-46 spoken word recognition benchmark. As a first demonstration of

reservoir computing using a non-linear mass-spring system in MEMS, this result paves the way to

the creation of a new class of compact devices combining the functions of sensing and computing.

© 2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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I. INTRODUCTION

The discovery of faster numerical methods to adjust the

parameters of artificial neural networks (aka training) has led

in the last decade to a resurgence of interest in using these

networks to implement complex functions, which are con-

structed from a finite (albeit large) training set of examples,

and which can exhibit impressive generalization capabilities

when applied to inputs which were not part of the training

set.1 Recurrent neural networks (RNN) are especially effi-

cient at modeling time dependent data,2,3 as they feed infor-

mation from the “top” parts of the network at a given

iteration to “lower” parts of the network at the next iteration.

They are universal computers (in the sense described in

Ref. 4) but are considered difficult to train.5 Under certain

conditions, RNN form a so-called reservoir computer (RC),

in which case the weights of the recurrent network are initial-

ized randomly and are left untrained, while the weights of a

simple output layer are adjusted to train the network for a

desired output.6

The concept of RC has led to interesting numerical

applications7–9 but, more importantly, it has been the trigger

for a variety of hardware implementations of computing

systems with functionalities similar to those of artificial

neural networks. In these hardware implementations, the

dynamics of a physical system are (often) left untrained and

provide memory and non-linear computing capabilities to a

simple, trainable output system. Hardware RC results have

been reported for optical systems,10–12 mechanical devices,13,14

memristor arrays,15 and spintronic devices,16 for instance.

Hardware RC can be interesting as computing systems if

they provide significant gains over conventional computers in

terms of speed17,18 or energy efficiency.6,19,20 In addition,

RC implemented in micro-mechanical devices, in particular,

could serve the dual purpose of sensing and of computing

for various force stimuli,21 to create new classes of devices

in distributed sensing or in control applications where the

device dimensions or energy requirements are a limiting

factor. As a step toward the realization of such devices com-

bining mechanical sensing with neural-like computing, we

describe in this paper a micro-fabricated silicon beam, with

non-linear dynamics which can be harnessed to perform non-

trivial computing tasks.

The dynamics of our oscillating beam, which exhibit a

classical Duffing non-linearity (Sec. II), are coupled to a

feedback mechanism in a scheme22 that has been used to

create hardware RC implementations from various relatively

simple non-linear systems.16,17,23,24 The resulting MEMS RC

is trained (Sec. III) to process streams of bits and to classify

spoken words, to demonstrate a small, energy-efficient com-

puting device, which encodes information in the mechanical

domain and therefore has the potential to function as both a

sensor and a computer (as discussed in Sec. IV).

II. METHODS

A. The non-linear node

The non-linear expansion of input data into a higher

dimensional state space is a necessary property of RC.25 In

this experiment, it is achieved using the non-linear dynamics

of a single clamped-clamped silicon beam at large oscillation

amplitudes. Figure 1 shows a typical device, which incorpo-

rates two mechanically coupled beams, although this study

focuses on a single one of them (highlighted in red). The

other beam is not actuated and the coupled system will be

the subject of future work on a hybrid reservoir architecture.26

The device is micro-fabricated on a (100) p-doped silicon

on insulator (SOI) substrate with a sacrificial oxide thickness

of 1.5 μm. Both device and handle layers have a resistivity of

(0.003 + 0.002)Ωm. The device layer thickness of 10 μm

defines the width of the beam (normal to its displacement),

while its length and in-plane thickness were chosen to be

500 μm and 4 μm, respectively, in order to satisfy previouslya)julien.sylvestre@usherbrooke.ca
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identified requirements.21 These requirements include a rela-

tively low quality factor (≏100) so that the beam “forgets”

about previous inputs rapidly enough, a high natural fre-

quency (fn . 105 Hz) so that the characteristic time of the

oscillator is short enough to allow a reasonable processing

speed (as discussed in Sec. IV), and a sufficiently non-linear

behavior, insuring rich reservoir dynamics. This last prerequi-

site demands for a high value of β (≏ 1023 Hz2 m�2), the

coefficient controlling the amount of non-linearity in the

restoring force for a Duffing oscillator whose displacement is

described by

€x(t) ¼ �
ω0

Q
_x(t)� ω2

0x(t)� βx3(t)þ F(t), (1)

where F(t) is the force per unit mass driving the beam, ω0 ¼
2πf0 is the natural angular frequency of the oscillator in its

linear regime, and Q is the quality factor of the MEMS. A

value of f0=228 kHz was obtained for the beam studied here,

and its quality factor, measured in the time domain, is 100

+ 3, independent of the oscillation amplitude.

Oscillations of the beam are excited in the plane of the

substrate by a 300 μm long drive electrode (yellow in Fig. 1)

placed 6 μm away from the beam. For the electrostatic actua-

tion scheme employed here, the force acting on the beam is

proportional to the square of the driving voltage. Vibrations

of the beam are thus solicited at twice the sinusoidal drive

frequency fd, which allows one to filter out the feedthrough

signal stemming from parasitic capacitive coupling between

the drive electrode and the measurement electrode.

Reproducing a strategy that has proven successful,27

identical strain gage (1.2 μm large by 12 μm long) pairs are

also patterned on the device to allow for the piezoresistive

transduction of the mechanical vibrations, measured at the

mid-voltage point between the two gages (blue pad in

Fig. 1). The gages have a nominal resistance of Rg ¼ 50Ω

and are biased at +2:5 V (green traces in Fig. 1). When dis-

placed, the beam acts as a lever and causes axial tension

(Rg ! Rg þ ΔR) in one gage and compression (Rg ! Rg�
ΔR) in the other such that the combined effect on the readout

voltage Vo is additive:

Vo ¼ VB

ΔR

Rg

, (2)

where VB ¼ 2:5 V is the DC bias voltage.

Electrical connections to the device are established by

wirebonding the chip to a printed circuit board, with the sub-

strate grounded. The reason for grounding the handle layer is

twofold: it negates the possibility of a charged substrate

exerting a static downward force on the beam, modifying its

dynamics, and it mitigates feedthrough by removing the

main feedthrough pathway (constituted by the two large

series capacitors established around the oxide layer by the

drive electrode, handle layer, and sense pad). The piezoresis-

tive displacement signal being of small amplitude (, 100 μV)

and riding on top of a relatively large feedthrough signal,

FIG. 1. SEM image of the device. The two coupled silicon beams (with one

of them highlighted in red) can be actuated and read out individually by

independent drive electrodes (yellow), piezoresistive gage pairs (biased

using the electrical traces highlighted in green), and measure pads (blue). FIG. 2. Maximum of the frequency response for various drive amplitudes,

measured at twice ( fh ¼ 2fd) and four times ( fh ¼ 4fd) the drive frequency.

The spectrum is otherwise flat within the detection resolution, except for a

large feedthrough signal at the drive frequency.

FIG. 3. Response of the system at four times the drive frequency ( fh ¼ 4fd)

in the drive amplitude–drive frequency (A0, fd) plane. Colours indicate the

measured signal Vo. The “backbone curve” (dashed red line) gives the

natural frequency as a function of oscillation amplitude for a Duffing

oscillator.
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its proper digitization requires amplification with a gain of

80 dB, bandpass filtering with a center frequency of fh . fd
to attenuate the feedthrough component and reduce the noise

contribution, and finally envelope detection to extract the

oscillation amplitude.

Figure 2 shows the amplitude of the piezoresistive dis-

placement signal Vo (before its amplification) as a function of

the drive amplitude A0, for the oscillator driven at its natural

frequency fn. For low drive amplitudes, the device behaves as

a damped harmonic oscillator and the response is essentially

contained in the component at twice the drive frequency. As

the amplitude is increased, a component at four times the

drive frequency begins to dominate, which indicates the

onset of nonlinear effects. The response of the system to a

drive frequency and amplitude sweep, filtered around this

fourth harmonic, is shown in Fig. 3. It features a discontinu-

ity for drive amplitudes larger than 45 V, which coincides

with the amplitude at which the response at 4fd starts to dom-

inate over the component at 2fd (see Fig. 2). The frequency

at which the discontinuity appears increases as the drive

amplitude is increased, which suggests that the beam indeed

behaves as a stiffening Duffing oscillator. The red dashed

line in Fig. 3 verifies the Duffing nature of the nonlinearity

by modeling the location of the discontinuity ( jump down)

with28

f 2jump ¼
3

16π2
βx2max þ f 20 , (3)

where xmax is the maximum displacement of the beam (right

before the jump) which, for a linear transduction scheme, is

proportional to the measured signal, and f0 is the natural fre-

quency of the oscillator in its linear regime. A value of

β ¼ 1:9� 1023 Hz2 m�2 and a transduction coefficient of

90 μV/μm reproduce the data well and are coherent with

values obtained by finite element analysis and analytical

methods for the dimensions of the beam.

Note that Fig. 3 was constructed by sweeping the drive

signal from low to high frequency, increasing the drive

amplitude between each sweep. Decreasing the drive voltage

or amplitude during the sweeps changes the location of the

discontinuity. This results in the hysteresis loops shown in

Fig. 4, constructed by fixing the drive amplitude (frequency)

and sweeping up and down the drive frequency (amplitude).

B. The reservoir

For RC to be realized on a single physical node, virtual

nodes need to be created in order to generate a rich enough

reservoir state, which can then be collapsed to a usable

output by a simple linear combination of the individual node

states from the reservoir state. This is done through the

FIG. 4. Top: response of the beam to a drive frequency sweep for a fixed

drive amplitude of 80 V. Bottom: response to a drive amplitude sweep for a

fixed drive frequency of 115.1 kHz. All curves show the response at 4 times

the drive frequency.

FIG. 5. Signal chain for the system and SEM image of the device. Before being supplied to the drive electrode, the input signal is preprocessed in the digital

domain, goes through a digital to analog converter (DAC), modulates a sinusoidal drive of amplitude A and frequency fd, and is amplified with a gain of 26 dB.

Measuring the response involves amplifying the piezoresistive signal V0 with a gain of 80 dB, bandpass filtering it around fh ¼ 4fd , detecting its envelope

(ENV) and digitizing it (ADC), before reinjecting it, with a delay τ and a gain α, in the preprocessing stage.

152132-3 Dion, Mejaouri, and Sylvestre J. Appl. Phys. 124, 152132 (2018)



increasingly common delay-based approach,22 where virtual

nodes are created by time-domain multiplexing: the input

signal u(t) is sampled and held for a time τ while a random

binary mask of length N is applied at a rate θ�1 (τ ¼ Nθ)

(see Figs. 5 and 6). The mask defines the input weights and

keeps the system from saturating by regularly switching

between two levels. For both tasks investigated in Sec. III,

good results are obtained with mask values randomly chosen

to be 0.45 or 0.70, with the input signal scaled such that u(t)

is limited to the range [0.60, 0.75]. Since coupling between

adjacent virtual nodes is done entirely in the time domain,

the reservoir interconnection sparsity can be tuned to some

extent by varying the virtual node length θ: decreasing the

ratio θ=T , where T ¼ 2Q=ω0 is the decay time of the oscilla-

tor, makes the behavior of a given virtual node more depen-

dent on the response of previous nodes since the signal is

given less time to settle. For our experiments, best results

were obtained for θ ≏ T (see Sec. IV). The masked signal is

then used to modulate the amplitude A of the drive at fre-

quency fd. After amplification with a gain of 26 dB to bring

the drive amplitude from A to A0, the resulting amplitude

modulated waveform is used to drive the silicon beam into a

non-linear state (see Figs. 3 and 4). The N virtual node states

are then acquired by measuring the oscillation amplitude x(t)

at the end of each interval of length θ. This is done by band-

pass filtering the amplified readout signal (gain of 80 dB)

around fh ¼ 4fd and sampling its envelope at a rate θ�1 with

a resolution of 16 bits. The result is a vector X of length N

containing the output layer state at a given timestep of the

input function. This readout, scaled by a factor α, is then

added to the masked input for the next timestep, closing the

feedback loop. With a proper choice of α, this feedback loop

ensures that the RC has the fading memory29 property, which

means that perturbations propagate in the reservoir for a finite

time and eventually vanish. The oscillator is thus driven by a

voltage signal of the form:

Vd(t) ¼ A0 u(t)m(t)þ αx(t � τ)þ 1½ � cos 2πfdtð Þ: (4)

Finally, the readout vector is used to form a scalar output

y(t) ¼ wTx(t), (5)

with w being a vector of weights. In order to obtain a desired

output y0(t) for a series of inputs u(t), the weights are

adjusted during a supervised training period, which consists

of minimizing the mean squared error between y and y0 by

applying a ridge regression with Tikhonov regularization:

w ¼ y0XT XXT þ λI
� ��1

, (6)

FIG. 6. From top to bottom: three timesteps of the sampled input signal u(t),

the associated periodic mask sequence m(t) with N ¼ 6, the preprocessed

input u(t)� m(t), the preprocessed input with added feedback, and the reser-

voir response x(t), where the red markers show how the signal is sampled to

obtain the individual virtual node states.

FIG. 7. Performance of the system for the parity benchmark. The topmost waveform is the input signal u(t), randomly alternating between values of �1 and 1.

The other waveforms show the prediction of the system y(t) (blue) overlaid on the target y0(t) (red) after the training phase (green) for Pn,0 with

n ¼ 2, 3, 4, 5, 6. Success rates for the individual tasks, evaluated for 1000 timesteps of the input function, are indicated on the right.
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where y0 and X are the target vector and the data matrix,

obtained by concatenating the discrete entries of y(t) and

x(t), respectively. The regularization parameter λ prevents

overfitting, thus increasing robustness. A value of λ ≏ 10�1

V2 improves the stability in our system.

III. RESULTS

A. Parity benchmark

The performance of the system was first assessed by

means of the parity benchmark. For this benchmark, a

random binary sequence u(t), with values drawn from

�1, 1f g, is fed to the network at a rate τ�1, following the

feedback system described in Sec. II B. The nth-order parity

function with delay,

Pn,δ(t) ¼
Y

n�1

i¼0

u t � (iþ δ)τ½ �, (7)

where δ [ Z
� is the delay, is then computed by the reservoir

computer. Equation (7) shows that this task requires the reser-

voir to store information about a nonlinear transform of

previous inputs, except for the case n ¼ 1, which is only a

delay line (and the identity for δ ¼ 0). For n . 1, the parity

function is not linear separable30 and depends on the input at

times t � (iþ δ)τ, while the readout is a linear transform of

the reservoir output. This benchmark thus tests the system’s

memory capacity as well as its nonlinear processing capabil-

ity. To verify that a non-linear behavior of the physical node

is necessary to implement the parity function, we ran a series

of numerical simulations for this task with β ¼ 0. For the

linear case (n ¼ 1), the simulations could achieve near

perfect success rates, even for large values of δ. However, as

soon as non-linear computations were introduced (n � 2), we

could not find any parameter set allowing even the slightest

success.

Figure 7 shows the system’s prediction overlaid on the

target [Eq. (7)] for n ¼ 2, 3, 4, 5 and δ ¼ 0. Unless other-

wise noted, all results for this benchmark were obtained by

setting the acquisition parameters to N ¼ 400, θ ¼ 0:1 ms,

τ ¼ 40 ms, A0 ¼ 82 V, fd ¼ 115:1 kHz, and α ¼ 0:5. The

success rate, displayed beside each trace of Fig. 7, represents

the fraction of correct bits, computed by comparing the signs

of the prediction and of the target during a test phase with

1000 input bits. Training is done offline after acquiring the

reservoir states for the first 3000 timesteps. While threshold-

ing the prediction for P4 still gives a near bit-perfect repro-

duction of the target, the raw signal becomes more noisy.

The prediction effectively becomes more uncertain as the

difficulty and memory requirement of the task is increased

from P1 to P6.

The mutual information,

MIn,δ ¼ pn,δ log2 2pn,δð Þ þ 1� pn,δð Þ log2 2 1� pn,δð Þ½ �, (8)

with pn,δ being the success probability for the δ-delayed

nth-order parity function, can be used to estimate the memory

capacity:30

MCn ¼
X

1

δ¼0

MIn,δ : (9)

Figure 8 shows the mutual information obtained for

n ¼ 1, 2, 3, 4 as a function of the delay δ. In all cases, the

FIG. 8. The mutual information [Eq. (8)], computed for P1, P2, P3, and P4

and averaged over 10 different trials. Error bars show the standard deviation.

FIG. 9. Memory capacity for different reservoir sizes N, averaged over 10

trials, with the error bars showing the standard deviation.

FIG. 10. Memory capacity for the parity tasks (P1, P2, P3, P4) for different

values of α. Error bars are the standard deviation for 10 trials.
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mutual information becomes negligible for δ . 8 such that

the sum of Eq. (9) can be truncated at δ ¼ 8, yielding a

linear memory capacity of (5.6 + 0.2) bits (P1), and non-

linear memory capacities of (4.4+ 0.2), (3.2+ 0.2), and

(2.1+ 0.2) bits for P2, P3, and P4, respectively, which is

comparable to results for other types of reservoirs.21,30,31

Figure 9 shows the memory capacity as a function of the

number of virtual nodes N, for a fixed value of θ ¼ 0:1 ms

(τ ¼ Nθ thus increases with N). With an increase in the

number of virtual nodes, the readout function [Eq. (5)] has

richer dynamics at its disposal for the reconstruction of the

target such that a monotonic increase in memory capacity

could be expected.30 On the other hand, the fixed training set

size of 3000 samples may not be sufficient for the larger

reservoirs (the required training set length should scale up

with N
32), which could explain the saturation or even slight

decline of the memory capacity observed for larger N.

Indeed, a training set of 3000 examples was deemed suffi-

cient (RC performance did not significantly increase past this

point) for the N ¼ 400 reservoir studied in the rest of this

paper, but this has not been studied for larger reservoirs.

Nevertheless, the decrease in memory capacity for more diffi-

cult tasks can be compensated up to a certain point by

increasing the reservoir size. The curves presented in Fig. 9

show lower memory capacities than curves in Fig. 8 due to a

less thorough parameter optimization. Detuning the system

shifts these curves vertically but does not affect the general

trend mentioned above.

As shown in Fig. 10, the memory capacity is also highly

correlated to the feedback strength α. It drops rapidly for low

feedback levels as the system has no way of storing informa-

tion about previous inputs, while too much feedback also

causes a decline in memory capacity. In the latter case, the

reservoir does not exhibit the required fading memory33 prop-

erty and becomes unstable for α � 0:7, affecting the results.

The success rate in the drive frequency–drive amplitude

plane, interpolated from a 10 by 16 points grid search, is

shown for P2 to P5 in Fig. 11. It can be seen that the area of

significant success (.50% since a random guess will in

average produce a success rate of 50%) is limited to a rather

specific region of the parameter space that shrinks as the

complexity of the task is increased from P2 to P5. Since the

drive amplitude and the drive frequency (along with the feed-

back gain) essentially determine the level of non-linearity in

our system, this shows that even though RCs, and more

generally RNNs, can operate with a multitude of different

non-linear nodes, fine tuning of the non-linearity can be

necessary, especially for more demanding tasks.

Although Fig. 11 shows that at 115.1 kHz a drive ampli-

tude of 82 V produces good results, this sinusoidal drive is

modulated by the masked input such that the drive signal

explores a certain range of voltages during normal operation.

For this experiment, it was found that the reservoir performed

well when the mask levels were adjusted such that the drive

signal envelope spanned voltage values strictly larger than

49 V. From Fig. 4, it can be seen that the drive signal thus

visits a non-linear part of the transfer function but never

explores the lower branch of the hysteresis loop. Fully span-

ning the hysteresis loop likely causes the response to be

chaotic, and various studies show that a RC operates best at

the edge of chaos,34 in the ordered phase.

B. Spoken word classification

The reservoir computer’s ability to classify more

complex signals was assessed using a spoken word classifica-

tion task. For this task, a subset consisting of the numbers

zero to nine spoken by 8 different females and 8 different

males is drawn from the TI-46 corpus.35 Utterances are then

randomly selected from this subset and processed by the RC.

Compared to usual approaches,7 the preprocessing applied

here is intentionally rudimentary to anticipate implementation

in a simple system where sound pressure would be directly

coupled to the oscillator. It involves only the normalization

of each waveform by its standard deviation, low-pass filter-

ing, and sampling of the envelope at twice the low-pass

corner frequency of 30 Hz. The output layer state for a given

utterance is obtained by integrating the consecutive readouts

FIG. 11. Success rate for the parity function (n ¼ 2 to n ¼ 5, left to right) in the drive frequency–drive amplitude ( fd , A
0) plane. The fixed parameters are

N ¼ 400, θ ¼ 0:1 ms, τ ¼ 40 ms, and α ¼ 0:5.
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for each individual virtual node during the whole utterance.

During the training phase, a vector of weights is computed

for each of the ten digits in the vocabulary. Each classifier is

trained to output a value of 1 when presented with an utter-

ance of the digit corresponding to its class, and �1 other-

wise. Prediction during the test period is then carried out by

choosing the digit with the highest classifier output value.

Figure 12 shows the confusion matrix for this task. The

prediction probabilities were obtained with a ten-fold cross-

validation: 5000 utterances were processed by the RC and

divided into subgroups of 500. Each of these subgroups was

used exactly once for testing, with the rest of the data used

for training the RC each time. Correct classification is

achieved in (78 + 2)% of occurrences, with digits such as

{6,8} being correctly classified more often and others such

as {1,3,4} being harder to discriminate. While much lower

error rates are common in the literature,10,16,17,36 they are

invariably associated with a preprocessing of the utterances

that often involves some sort of spectral analysis. Our inten-

tional lack of an elaborate preprocessing scheme certainly

calls for a more thorough parameter optimization in order to

obtain lower error rates.

IV. DISCUSSION

While the use of delay systems can simplify physical res-

ervoir implementation of RC, it has the drawback of lowering

the computation rate. The equivalent N-node traditional res-

ervoir can process the same input signal at N times the rate

of the delay-coupled reservoir because of its parallel process-

ing configuration.

For the device studied here, low error rates are achieved

for θ � 0:1 ms, which is comparable to the oscillator charac-

teristic time T ¼ 2Q=ω0 ¼ 0:13 ms. This differs from the

optimal value of θ ≏ T=5 presented elsewhere.22 While

longer values of θ tend to slightly increase the success rate,

they also reduce the processing rate. For θ ¼ 0:1 ms and

N ¼ 200, which give adequate performance in our system,

the sample clock of the input signal cycles at a rate

τ�1 ¼ N�1θ�1 ¼ 50 Hz. While this only allows for a much

slower classification rate than the 105 to 106 words per

second rates17,18 achieved with photonic reservoirs, it is suffi-

cient to classify spoken words in real time, as only the low

frequency components are necessary for this task.

The device demonstrated here occupies a relatively large

surface (≏0.1 mm2), but it is a non-issue considering a single

beam is used, and the additional space and power required

for the external circuitry for the actuation, readout, and feed-

back loop is more concerning. Gains from size reduction

instead impact the processing speed: by reducing the beam

dimensions, its natural frequency increases while the quality

factor can be kept relatively low by inducing additional

viscous damping, resulting in an increase in clock rate since

τ / θ ≏ T / Q=ω0. The same piezoresistive transduction

method could be applied27 to a nanomechanical oscillator

resonating at hundreds of MHz, allowing gains of many

orders of magnitude in processing speed to be made.

Although fast high resolution ADCs and DACs are now-

adays relatively cheap and accessible, a purely analog imple-

mentation of our system would have its appeals, such as

being less demanding on the control circuitry, or even

enabling the possibility of directly coupling different external

inputs such as pressure or acceleration to the input layer of

the reservoir. While both pre-processing and post-processing

(given that the vector of weights is known) could easily be

carried out entirely in the analog domain (which has been

done for a photonic system37), the long delay required for the

feedback loop remains nearly impossible to implement in

analog electronics. Other means, such as a mechanical delay

line, could eventually be employed to bypass this bottleneck.

Adjusting the system parameters can be a challenging

task due to the high number of possible parameter combina-

tions. Our approach of scanning the parameter space thus suf-

fered from poor resolution and limited range. Nevertheless,

once tuned the RC was found to be quite robust. For

instance, the drive frequency can be incremented much more

finely than the ≏100 Hz span insuring good performance for

the P4 task (see Fig. 11). Thus, fluctuations of device proper-

ties such as its natural frequency fn and quality factor Q,

which can happen over time or between nominally identical

silicon beams due to fabrication tolerances, can be accounted

for by adjusting the operating point as to negate their adverse

effect on RC performance. The bottom panel of Fig. 6 shows

that the measured signal contains white noise. This is essen-

tially due to the thermal noise generated by the piezoresistive

gages in a measurement bandwidth of 80 kHz, which limits

the SNR to ≏ 30 dB. Yet, the results obtained here for two

non-trivial tasks seem to indicate that the system is robust to

this level of noise and thus well suited for its projected

implementation as a smart sensor.

V. CONCLUSION

The Duffing non-linearity of a silicon beam, in conjunc-

tion with a delay-coupled reservoir architecture, allowed for

FIG. 12. The word classification benchmark confusion matrix shows the

probability (colors) that a digit presented to the device (columns) is classified

to a certain value (lines) by the reservoir computer. The numbers at the top

of each column indicate the success probability for the individual digits.

Acquisition parameters are N ¼ 400, θ ¼ 0:1 ms, τ ¼ 40 ms, A0 ¼ 78 V,

fd ¼ 115:0 kHz, and α ¼ 0:6.
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the first experimental demonstration of a MEMS reservoir

computer. The system is capable of predicting time series

and classifying spoken words with relatively good accuracy,

reliably predicting the parity of up to three consecutive input

bits (the P1 to P3 tasks) with an error rate under 0.1%, and

correctly classifying isolated spoken digits with an accuracy

of (78 + 2)%. While performance for the parity function

exceeds numerically obtained results,21 state-of-the-art per-

formance for the spoken digit classification task would

require a more thorough parameter optimization or a refined

preprocessing scheme.

The system’s memory capacity could be tuned to a certain

extent by adjusting the feedback strength α (Fig. 10), although

it could not be stabilized for delays longer than 8τ. Adding a

second feedback loop with delay 2τ and strength α0
, α

would likely improve the memory capacity.38,39 An unsyn-

chronized approach,10 where a given node is fed back the

response of a different node from the previous time step, could

also potentially increase the performance of the RC. Other

parameters could benefit from a more principled optimization.

This experiment has demonstrated that a MEMS oscilla-

tor can be used to construct a system capable of time series

prediction and spoken word classification. It is a first step to

conceiving computing substrates capable of also sensing

their environment. More in-depth study of the rich non-linear

dynamics of our oscillators will be the subject of a future

communication.
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