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Abstract

Master of Philosophy

Reservoir Computing with Neuro-memristive Nanowire Networks

by Kaiwei FU

We present simulation results based on a model of self–assembled nanowire

networks with memristive junctions and neural network–like topology. We

analyse the dynamical voltage distribution in response to an applied bias and

explain the network conductance fluctuations observed in previous experi-

mental studies. We show I − V curves under AC stimulation and compare

these to other bulk memristors. We then study the capacity of these nanowire

networks for neuro-inspired reservoir computing by demonstrating higher

harmonic generation and short/long–term memory. Benchmark tasks in a

reservoir computing framework are implemented. The tasks include non-

linear wave transformation, wave auto-generation, and hand-written digit

classification.
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Chapter 1

Introduction

This thesis presents a study on neuromorphic nanowire networks. These

represent a unique type of neuromorphic system created by bottom-up self-

assembly of nanowires into a complex, disordered network with a neural net-

work–like topology and cross-point junctions with resistive switching mem-

ory (memristive). New simulation results are presented based on a physically-

motivated model of nanowire networks. The results reveal diverse neural-

like dynamical properties and show how these properties can be used for

neuro-inspired information processing in a reservoir computing framework

Chapter two presents a survey of the current literature on neuro-inspired

computing relevant to this thesis. We highlight the most relevant aspects

of artificial neural networks before reviewing the most salient literature on

neuromorphic computing and reservoir computing.

Chapter three describes the methods (Sec. 3.2) developed and applied in

this work and presents the simulation results (Sec. 3.3). The results can be

broadly subdivided into two categories: dynamics at the individual switch

junction level and at the network level; and implementation of reservoir com-

puting tasks.

Our analysis of switch junction and network dynamics (Sec. 3.3.1) re-

veals: (i) The dynamical state changes of individual memristive switch junc-

tions. Importantly, this type of study is not possible in hardware experi-

ments and thus shows the value of simulations in this case; (ii) The interplay

between the junctions and complex network circuit and its impact on the en-

tire network. Simulations show how voltage is dynamically redistributed as

switches turn on and current paths form.
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Key results from the application to reservoir computing (Sec. 3.3.2) are: (i)

An accuracy of 95% − 98% can be readily achieved for the nonlinear wave-

form transformation task using piece-wise linear regression. These results

are better than that obtained in previous studies. (ii) Sine wave auto-generation

is demonstrated with 100% accuracy. (iii) Handwritten digit classification to

an accuracy of 92% achieved with linear discriminant analysis. This result is

better than that obtained in previous studies using multiple bulk memristors.

The main conclusions of the thesis and an outlook for future work are

presented in Chapter four.
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Chapter 2

Literature Survey – Neuro-inspired

computing

The human brain is the most complex organ of the human body, composed

of roughly 86 billion neural cells (neurons) and just as many non-neuronal

cells (e.g. glial cells). Each neuron typically has thousands of electrically

stimulated synapses connecting it to other neurons [2]. Neurons and their

synaptic connections form a vastly complex network in which the total length

of neural connections can reach thousands of kilometers [3]. Information is

continuously and effortlessly exchanged between neurons via their dynamic

synapses (cf. Figure 2.1). No physical connection exists between the neu-

rons, with a gap of about 20 nanometers, rather information is transmitted

primarily via neurotransmitter molecules [4, 3].

FIGURE 2.1: Schematic illustration of neurons and synapse.
Electrical signals propagate down the axon of a stimulated neu-
ron, causing release of neurotransmitter molecules that trans-
mit the encoded information to a receptor neuron via its ion

channels (adapted from [5]).
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In the simplest representation, a neuron can be thought of as a cell with

several states including two main states: excitation and inhibition. The state

of a neuron depends on the amount of input signal received from other neu-

rons and the strength (inhibition or excitation) of the synapse. Above a cer-

tain voltage threshold, a neuron is excited and produces electrical impulses

[6]. Electrical impulses are transmitted along the axons and across synapses

to other neurons.

Neuro-inspired information processing aims to broadly mimick the pro-

cess of electrical signal transduction. The goal is to use biological mecha-

nisms operating within the brain’s neocortex, where higher-order brain func-

tions such as cognition and sensory perception originate, as a blueprint to

construct novel computer architectures, in both software and hardware (cf.

Figure 2.2) [7, 8, 5, 9]. In software, the most well-known type of neuro-

inspired computing architectures are Artificial Neural Networks (ANNs).

In hardware, brain-like architectures underlie the rapidly growing research

field known as neuromorphic computing, the subject of this thesis.

FIGURE 2.2: Cartoon illustrating the premise of neuro-
inspired computing and potential for future cognitive comput-

ing (adapted from [10]).

2.1 Artificial neural networks

Artificial Neural Networks (ANNs) are computational algorithms that are

loosely based on the biological neural network in the brain [11]. ANNs are an

active area of research that has emerged in the field of artificial intelligence
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since the 1980s [12, 9]. The algorithms abstract the brain’s neural network

from the perspective of information processing, typically using a bipartite

network structure. ANNs use nodes (artificial neurons) interconnected by

edges (artificial synapses). Each node is bound by a specific output function,

called an activation function. Each connection between two nodes has a cor-

responding weighted value for the signal passing through, representing the

strength of the connection [13].

From a system perspective, although ANNs are inspired by the neural

network structure of the brain, their computation method differs from the

brain’s method of information processing [14]. In ANNs, learning is gener-

ally implemented using a mathematical update rule known as backpropa-

gation and with gradient descent optimisation to train the network weights

[15]. The brain’s neural network, on the other hand, does not learn this way

and does not have static, quantifiable weights, but rather highly dynamic and

adaptive synapses [5]. Fig.2.3 shows the basic structure of a Feed-forward

Neural Network (FNN), which is the simplest type of ANN. In FNNs, infor-

mation flows from neurons in an input layer to output neuron(s) via a hidden

layer of neurons. Every single neuron processes the information by a preset

function and adjustable weights [16].

FIGURE 2.3: The structure of a general Feed-forward Neural
Network (FNN), a classic, broadly-used ANN in which infor-
mation flows from the input layer to the output layer via a hid-

den layer. [16]
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Spiking Neural Networks (SNNs) are an important type of neural net-

work as they emulate the spiking nature of biological neurons. With the

development of the EU Human Brain Project and the US BRAIN Initiative,

spiking neural networks have increasingly become a major focus of research

[17, 5]. As a phenomenological model, the neurons in SNNs are not linked by

weight or activation function as in traditional ANNs. Instead, each neuron

in an SNN owns a potential threshold which may be measured by voltage (in

a physical device) or weight (in an algorithm) [17]. If the voltage exceeds a

threshold, a spike is generated and passed to all connnected neurons. Fig.2.4

depicts this process.

FIGURE 2.4: Schematic of a neuron in an SNN. Multiple inputs
(x1, x2, x3 from other neurons) activate the neuron, prompting a
spike output yj when its potential Vj exceeds a threshold Vth.

The potential weight in each neuron can be treated as a kind of mem-

ory, thus SNNs are able to provide temporally dynamic activation patterns

and increased computing power [18, 19]. Different SNN learning algorithms

have also been developed. The first unsupervised learning algorithms to be

developed are based on Hebbian rules and Spike-Timing-Dependent Plastic-

ity (STDP) [20]. Then there are more typical learning algorithms for SNN

like gradient descent learning algorithm, [21] supervised STDP learning al-

gorithm and learning algorithm based on pulse sequence convolution [22].

Another type of ANN is a Recurrent Neural Network (RNN). This is a

recursive neural network that takes sequence data as input, recurses the evo-

lution direction of the sequence, and all nodes (recurrent units) are connected
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in a chain [23]. As the artificial neurons (nodes) in RNNs can participate sev-

eral times in a network computation, efficiency is enhance. In RNNs, many

neurons are interconnected through the same abstract synaptic connections

(or links), so that activation can be propagated throughout the network. The

difference between RNN and the more widely used FNN is that the connec-

tion topology in RNNs has many loops (i.e. delay lines) that produce nonlin-

ear feedback and enable efficient temporal signal processing [24]. As shown

in Fig. 2.5, the structure of a general RNN is fully recurrent, with every ba-

sic building block (artificial neuron) directly connected to every other basic

building block. In this respect, it is similar to an FNN (i.e. fully connected).

A crucial difference, however, is that information no longer flows only in one

direction. This creates an internal state of the network that allows it to exhibit

rich temporal dynamics [16].

FIGURE 2.5: The structure of a general Recurrent Neural Net-
work (RNN), in which the artificial neurons also support recur-
sive connections (i.e. feedback loops), so information can be

transmitted in any direction [16]

.

2.2 Neuromorphic computing

Although ANN methods are powerful, they have certain limitations, such

as "catastrophic forgetting", which prevents them from being able to adapt

to changing tasks [14, 25]. This lack of generalisability means that ANN

approaches cannot lead to genuinely brain-like Artificial Intelligence (AI).

As the best agent in nature, the biological brain is the most important refer-

ence for AI research. Therefore, studying brain mechanisms and developing
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brain-inspired technologies are active research areas with potential for sig-

nificant advances and impact in the future intelligence era [26].

The field of neuromorphic engineering is based around the broad goal of

emulating the biological nervous system in electronic hardware [27]. An im-

portant sub-field of this is neuromorphic computing, which aims to emulate

the information processing capability of neurons in the brain’s neocortex [9].

Neuromorphic computing can be broadly subdivided into two approaches:

emulating spiking neurons in silicon chips [28] and emulating synapses us-

ing novel nanomaterials that exhibit analogue conductance properties [14].

To achieve the high-performance, low-power, and parallel computing op-

erating mechanism of the biological brain, neuromorphic computing goes be-

yond the conventional von Neumann architecture [29], implementing com-

puting components that integrate memory and processing and that can mimic

some of the biological functionalities thought to be important for learning

[29].

2.2.1 Spiking neurons in silico

In neuromorphic computing research, a significant focus is on implementing

SNN algorithms in silicon-based hardware. Silicon aim to neurons emulate

the electrophysiological spiking behavior of real neurons when their mem-

brane action potential exceeds a voltage theshold. These are implemented in

hybrid analog/digital very large scale integration (VLSI) circuits [30]. Sim-

ulation of spiking neurons in an SNN framework is more power efficient in

hardware than in software. This is in large part attributed to the co-location

of processing and memory in neuromorphic chips. Commercial neuromor-

phic chips, such as IBM’s TrueNorth and Intel’s Loihi, have been developed

specifically as hardware accelerators for ANN training, which is notoriously

power hungry. Fig.2.6 compares the power consumption of various silicon-

CMOS based chips, including neuromorphic chips, to that of other technolo-

gies and to the brain. Note, however, that in terms of energy per operation,

the brain remains superior to all other existing technologies, including neu-

romorphic chips.
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FIGURE 2.6: Infographic comparing power consumption
of neuromorphic and conventional computing hardware
(red and black circles, repsectively). Also shown for
comparison are power consumption of other man-made
technologies and of the brain. Image credit: www.the-
scientist.com/infographics/infographic–brain-like-computers-

provide-more-computer-power-65799.

Silicon-CMOS-based circuitry offers a medium suitable for large-scale neu-

romorphic computing, as has been demonstrated with the EU-funded Brain-

ScaleS and SpiNNaker systems1. BrainScaleS is based on mixed-signal and

analog emulations of spiking neurons and synaptic plasticity models. SpiN-

Naker, on the other hand, is used to train and run SNN models (scripted in

Python) in real-time on its digital multicore neuromorphic chips. In general,

VLSI circuits provide tangible advantages in the investigation of questions

concerning the strict real-time interaction of the system with its environment

[31, 32]. They are also suitable for various platforms like single chips or dis-

tributed across chips. These characteristics make this field very promising.

1humanbrainproject.eu/en/silicon-brains/

https://www.the-scientist.com/infographics/infographic--brain-like-computers-provide-more-computer-power-65799
https://www.the-scientist.com/infographics/infographic--brain-like-computers-provide-more-computer-power-65799
https://www.the-scientist.com/infographics/infographic--brain-like-computers-provide-more-computer-power-65799
https://www.humanbrainproject.eu/en/silicon-brains/
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Fig.2.7 shows an example of a basic Si-CMOS circuit implementing the

Integrate-and-Fire (I&F) model. The I&F model is the simplest impulse neu-

ron model. It abstracts the neuron as an RC circuit. After a neuron receives

input current, its membrane potential rises until it reaches the activation

threshold and releases the pulse ("fires"). After the pulse is released, the neu-

ron membrane potential immediately returns to the resting potential [33, 34,

17].

FIGURE 2.7: An example of a basic circuit that implements the
integrate-and-fire model of spiking neurons [30].

While SNNs offer enormous promise for realising a more brain-like learn-

ing paradigm than ANNs (which technically are optimisation algorithms), no

existing SNN algorithm can match the performance of ANNs on published

datasets. However, recent research has demonstrated this may be overcome

with a novel algorithm that converts a trained ANN model into very sparse

spikes (only two) to achieve highly efficient learning [35]. It will be interest-

ing to see if the predicted efficiency gains can be realised in neuromorphic

hardware [36].
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2.2.2 Memristor synapses

The concept of a memristor was first proposed by Chua [37] and Strukov

and Williams [38]. Decades later, this concept was generalized to a class

of nanoelectronic devices exhibiting resistive switching memory, as more

and more memristive materials were discovered. The following paragraph

briefly summarizes the characteristic fingerprints of memristive devices [39].

The first fingerprint is a pinched hysteresis loop that passes through the

origin in an I − V response curve [40]. The response to periodic excitation

could be a periodic steady-state solution or a chaotic attractor solution, where

the I − V curves deviate in each sweep, but remain relatively localized in

the phase-space. In both cases, the solution must pass through the origin,

i.e. i(t) = 0 when v(t) = 0. With the shortening of the periodic excitation

period, or a decrease in amplitude, the area enclosed by the response curve

also decreases and theoretically eventually becomes zero (see Fig. 2.8). This

is because the memristance is a piecewise-continuous function of I/V, so the

integral of the change of the memristance over time is proportional to I/V

over the time interval.

The second fingerprint of a memristor is its response is inversely pro-

portional to frequency. This behaviour is evident at frequencies ω above a

threshold ω∗. As ω increases, the area enclosed by the I − V loops eventu-

ally becomes zero. This character means the interval of memristance over

time has a certain range which depends on a particular model.

Since 2000, researchers have studied the use of a variety of materials to

make physical non-volatile memristive devices [10]. The vast majority are

bulk metal oxides (e.g. TiO2 [41]), but other more novel devices have been re-

alised with various low-dimensional nanomaterials (e.g. Ge nanowires [42]).

2.3 Reservoir computing

Reservoir computing is a sub-category of neuro-inspired computing that uses

an RNN as a higher-dimensional reservoir [43]. The concept of a reservoir is

inspired by the information processing capacity of the human brain, which is

a high dimensional and complex system. [44] Thus typically, the reservoir is
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FIGURE 2.8: I − V curves of the Hewlett-Packard (HP) TiO2

memristor for different amplitudes A of the input periodic volt-
age signal. Each loop exhibits the pinched hysteresis that is

characteristic of memristors [40].

a sparse, large, undirected or directed recurrent network with many nodes.

The input and the previous states of the reservoir’s nodes determine the cur-

rent states which can be treated as the output of the reservoir. The node out-

puts are trained, usually using a simple linear regression or decision tree, or

classification scheme (i.e. supervised learning). This is the general process of

reservoir computing. A characteristic feature of this process is that the reser-

voir has a fixed internal structure and a certain amount of memory [43, 45,

24]. The reservoir must be complex enough to capture all the salient features

of the input and behave as a time-dependent non-linear kernel function that

maps the input into a higher-dimensional feature space with linearly sepa-

rable outputs [46]. This approach is inspired from Cover’s theorem [47] that

states that if a high dimensional ANN meets certain mathematical properties,

training only the readout layer is sufficient to achieve excellent performance

[24].

2.3.1 Echo state networks

There are two main reservoir computing models, namely echo-state network

(ESNs) [48] and Liquid State Machines (LSMs) [49]. ESNs are based on con-

tinuous reservoir states (RNNs are used in ESNs), whereas LSMs are based
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on threshold states, similar to spiking neurons (SNNs are used in LSMs).

Chua [50] experimentally proved that ESNs and LSMs are essentially iden-

tical. Although the two methods have different angles, their essence can be

considered as an alternative to traditional RNN training algorithm.

As mentioned above, a reservoir needs to have memory. This memory

can be described as the output of the reservoir at any time being dependent

on previous states [48]. Additionally, in ESNs, the influence of input on out-

put decreases gradually with time. This property is similar to the "echo"

in a closed room, where the correlation of the data is the "sound", and the

reservoir itself is the echo "room". As well as using an abstract mathematical

RNN as the reservoir, it is also possible to build an ESN with hardware using

memristors which will be described below in Sec.2.3.2.

FIGURE 2.9: The simplest ESN includes an input weight Win,
output weight Wout and a dynamical reservoir W. Z−1 repre-
sents the effective time delay in the recurrent dynamics of the
reservoir. u(n), x(n), y(n) are the states of inputs, ESN and out-

puts, respectively [24].

Fig.2.9 shows the simplest structure of an ESN. The inputs u(n) are weighted

by Win, while the outputs y(n) are obtained by weighting the reservoir states

x(n) by Wout. Z−1 represents the time delay related to the recurrent dynam-

ics of the reservoir. Win is constant while Wout is trained and W dynamically

evolves in time. The training process generally only needs to solve a linear

problem. Compared to conventional RNN training, the biggest advantage of

ESNs is that training Wout is vastly more efficient than training W.
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2.3.2 Physical reservoir computing

Physical reservoir computing is based on the concept that any physical dy-

namical system has the potential to serve as a reservoir if it meets several re-

quirements. According to Tanaka et al. [51], these include: high dimension-

ality, non-linearity, fading memory and separability of outputs. A number

of different physical reservoir models fulfil these requirements, including in

particular ones based on analog circuits [52] and memristors [37]. Memristor-

based physical RC is attractive because of the synapse-like dynamical elec-

trical switching properties of memristive devices [53, 54, 37, 55, 56]. This has

led to the development of a class of neuromorphic systems and circuits in

which memristive RC has been successfully implemented, as evidenced by

the ability to perform benchmark learning tasks such as hand-written digit

and speech pattern recognition, as well as the Mackey-Glass nonlinear time

series forecasting task [57, 58, 59].

Nanowire networks represent another class of neuro-memristive systems

with an additional neuromorphic property: their neural network-like topol-

ogy, which arises from their self–assembly, analogous to biological neural

networks [60, 61] (cf. Fig.2.10). Inorganic nanowires comprised of silver

readily self–assemble into a complex network, forming two-terminal mem-

ristive junctions where nanowires intersect. Memristive switching occurs at

the junctions as a result of the formation of a conductive Ag filament above

a voltage threshold [62].

FIGURE 2.10: Comparison of network graphs. Left – C. Ele-
gans biological neural network (277 neurons) [60]. Middle –
nanowire network (300 nanowires). Right – random network

(300 nodes) [63].

Previous experimental and simulation studies based on Ag-Ag2S-Ag atomic

switch nanowire networks developed by Stieg, Gimzewski and colleagues at

UCLA demonstrated their potential for physical RC [64, 62, 65, 66, 67]. While
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the synthesis of those particular nanowire networks was aided by a pre-

patterned substrate, the resulting network topology was sufficiently complex

to observe emergent nonlinear (i.e. power-law) dynamics at the network

level. Figure 2.11 shows a Multi-Electrode Array (MEA) device fabricated

for Ag2S-Ag atomic switch nanowire network measurement and characteri-

sation. Ag nanowires were grown by self-assembly on a substrate that was

lithographically pre-patterned with seed Cu posts [65], thus demonstrating

their compatibility with CMOS technologies.

(a) (b)

FIGURE 2.11: (a) Multi-Electrode Array (MEA) fabricated
for Ag-Ag2S atomic switch nanowire network characterisation
(scalebar = 4 mm). (b) SEM image (scalebar = 0.5 mm) of MEA

atomic switch nanowire network device [66].

Fig 2.12 shows the I −V curve of an Ag2S-Ag atomic switch nanowire net-

work [67]. Two main states (related to the on/off of current path) mark the

formation of the conductive Ag filament. This differs somewhat from a tradi-

tional memristor, which stores information by multiple conductance states,

while nanowire networks accomplish this by network dynamics [67]. The

two stable states in Fig 2.12 correspond to zero current and Ohmic current

transport regimes, whereas switching and fluctuations correspond to nonlin-

ear, non-Ohmic regimes.
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FIGURE 2.12: A 1.5 V voltage sweep for an Ag2S-Ag atomic
switch network [67] which shows stable states (straight line
segments) and hard switching (abrupt increase in I), as well

as stochastic fluctuations.

Stieg et al. [68] and Avizienis et al. [64] also investigated the response

of atomic switch networks to a constant DC bias. Fig. 2.13 shows current

time series measured under 1 V DC over three different timescales. Persistent

fluctuations are evident as well as abrupt changes in current that increase in

magnitude ∆I over time. This behavior was attributed to voltage redistribu-

tion by recurrent loops in the network. The authors considered the influence

of the DC bias on the filamentary mechanism of each junction. Stochastic

(thermodynamic) breakdown of some filaments causes a memristive junc-

tion to reset. Under DC, the reset is partial, so switching events continue and

cause increasing ∆I. The authors also concluded that the current fluctuations

persisting over long durations is a whole-of-network collective effect. The

recurrent loops in the network are not steady under DC bias, so the voltage

redistributes across the network continuously with the on and off switching

of those loops.
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FIGURE 2.13: Current time series under 1 V DC bias for Ag-
Ag2S atomic switch nanowire networks, showing abrupt jumps
and persistent fluctuations of varying maximum magnitude,
∆I, over varying timescales: 100 s (top), 1 s (middle) and 10 ms

(bottom) [64].

Fig 2.14 shows the corresponding Power Spectral Density (PSD) of I(t)

measured for Ag2S-Ag atomic switch networks and also for Ag-Ag nanowire

networks (i.e. un-functionalised). A power-law over several decades in fre-

quency is clearly evident for Ag2S-Ag networks (with slope ≈ −1.3), but not

for Ag-Ag networks. This demonstrates that the memristive switching dy-

namics introduced by functionalising the nanowires results in scale-invariant

non-linear dynamics at the network level. Similar broadband power-law

spectra has also been found from electrical measurements of the human brain

[69].

Fig. 2.15 shows the Fourier amplitude spectrum for current measured

under a 2 V, 10 Hz AC input into an Ag2S-Ag atomic switch network [64]. The

spectrum reveals many higher harmonics. This higher harmonic generation

was exploited by Demis et al. [67] to perform nonlinear wave transformation

using an RC implementation. The authors input a 2 V, 1 Hz triangular wave

into one source electrode in contact with the atomic switch network and read

out current from other randomly selected electrodes, as shown in Fig. 2.16.

Then the non-linear transformation task is implemented using this network.

This time the input is sine-wave and the target is effectively transforming the
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FIGURE 2.14: Power Spectral Density (PSD) of measured I(t)
under 1 V DC for Ag2S-Ag atomic switch network (black) and
an un-functionalised Ag-Ag network (grey). The slope of the

power-law PSD (black) is ≈ −1.3 [64].

input to cosine, triangle, sawtooth and square waveforms, as shown in Fig.

2.17. Linear regression was then applied to the readout signals. Accuracy

is lowest for the square waveform regression because this requires infintely

many higher harmonics.
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FIGURE 2.15: Fourier amplitude spectrum of current measured
from an Ag2S-Ag atomic switch network under AC input (2 V,

10 Hz) [64].

FIGURE 2.16: Reservoir computing implementation of nonlin-
ear wave transformation using an Ag2S-Ag atomic switch net-
work device: (a) electrodes used for input (red circle), drain
(black circle) and readout (other coloured circles). Inset shows
the unipolar 2 V, 1 Hz triangular input signal. (b) Voltage read-
outs from other electrodes, showing nonlinear variations pro-

duced by the network [67].
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FIGURE 2.17: Nonlinear wave transformation RC task by
Demis et al. [67]. Voltage readouts from an input 11 Hz sine
wave were linearly regressed to generate different waveforms.

Corresponding accuracies are shown.

Another implementation of physical RC is hand-written digit recognition,

which is a benchmark machine learning task. This task requires not only

non-linearity but a fading memory of the reservoir. Du et al. [57] studied the

fading memory of memristors and performed handwritten digit recognition

with separate memristors. Each digit from the MNIST data was first trans-

formed to a temporal impulse stream row by row and input into separate

memristors. The outputs of each memristor (either current or conductance)

was read out. The set-up is shown in Fig.2.18. The authors used an ANN

to perform classification on the readouts. The computing resources in this

implementation was found to be much smaller than using an ANN directly

in a conventional approach, while still achieving an accuracy of 90%.

Polymer (PVP) coated Ag nanowires also self–assemble into a densely

interconnected, complex network (cf. Fig.2.19). When electrically activated,

PVP-Ag nanowire networks also exhibit similar emergent dynamical proper-

ties as Ag2S-Ag networks, even though their memristive junctions differ [70].
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FIGURE 2.18: Physical RC implementation of hand written
digit classification using individual separate memristors. The
digits are transformed into multiple voltage streams (left box)
and input into separate memristors (middle box). Classification

is performed on the readouts (right box) [57].

It has been demonstrated that these PVP-Ag nanowire networks can associa-

tively learn spatial patterns by recalling previously established current path-

ways [71, 72]. Studies to date show that PVP-Ag nanowire networks meet the

requirements of high dimensionality, non-linearity, and fading memory, thus

suggesting that physical RC may also be implemented on PVP-Ag nanowire

networks. This thesis presents the results of a simulation study based on a

physically motivated model of self-assembled PVP-Ag nanowire networks.

The simulations allow us to modify various parameters at the junction level

and to explore the junction-level dynamics, which is impossible to do experi-

mentally. Simulations also enable us to develop and test learning tasks using

the reservoir computing framework.



22 Chapter 2. Literature Survey – Neuro-inspired computing

FIGURE 2.19: SEM image (scalebar = 0.5 µm) of self-assembled
PVP-coated Ag nanowires [73].

2.4 Motivation and rationale for this thesis

This thesis is motivated by recent developments in neuromorphic informa-

tion processing using self-assembled nanowire networks. These neuromor-

phic systems are unique in exhibiting not just memristive junctions, but also

neural network-like circuitry. To better understand the potential of neuro-

morphic nanowire networks for information processing, a simulation study

was carried out using a physically motivated model based on PVP-Ag nanowire

networks. The focus of this thesis is on the simulation results that demon-

strate the rich dynamical behavior of nanowire networks and how these dy-

namics can be harnessed for information processing in a reservoir comput-

ing framework. Several benchmark tasks are implemented and their per-

formance evaluated. It is envisaged these simulations will provide valuable

information on how to implement similar tasks on a physical nanowire net-

work neuromorphic hardware device.
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3.1 Introduction

As discussed in the previous Chapter, neuromorphic nanowire networks ex-

hibit memristive switching junctions due to conductive filament formation

by electro-chemical metalisation [74]. In addition, their network topology is

sparse, exhibiting small-worldness and modularity [60]. This makes electri-

cal signal transmission more complex to analyse than in a conventional elec-

trical circuit of bulk memristors. This warrants modeling and simulation to

gain insights into the switch and network dynamics that could not otherwise

be directly gained from experimental measurements. This chapter investi-

gates the switch junction and network dynamics under an applied bias using

simulations based on a physically–motivated model, outlined in Sec.3.2.1.

Results are presented in Sec.3.3.1 that shows how network-level states are re-

lated to junction states, which are determined by the applied voltage and the

evolution of filament states. The impact of dynamical voltage distribution on

current path formation is studied under a DC bias and network I − V curves

for an AC input signal are also presented and compared with previous stud-

ies.

Following this, reservoir computing (RC) methods (outlined in Sec.3.2.2)

are used to perform three temporal signal processing supervised learning

tasks: (i) nonlinear wave transformation, where an input sine wave is linearly

regressed to different waveforms; (ii) sine wave generation, where auto-regression

is used to predict the next time step; and (iii) handwritten digit recognition

using linear discriminant analysis (LDA) classification. The results are pre-

sented in Sec.3.3.2. Previous studies that have implemented RC using mem-

ristors [57] and memristive atomic switch networks (ASNs) [62, 67] demon-

strated that the nonlinear memristive properties are useful for reservoir learn-

ing from temporal input signals. Demis et al. [67] and Sillin et al. [62] per-

formed the nonlinear transformation RC task using ASNs both experimen-

tally and in simulation, respectively. Du et al. [57] performed handwritten

digit recognition using RC on a memristor hardware device. We compare

our RC simulation results for nanowire networks to those obtained in these

previous studies. It is envisaged that our simulations will inform RC imple-

mentation on a nanowire network hardware device in a follow-up study.

Some of the results presented in this chapter were presented at the 2020

International Joint Conference on Neural Networks (IJCNN), which was part
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of the IEEE World Congress on Computational Intelligence (WCCI), held

(virtually) in Glasgow, UK, 19-24 July 2020. The presented paper has been

published as the following peer-reviewed article:

K. Fu, R. Zhu, A. Loeffler, J. Hochstetter, A. Diaz-Alvarez, A.

Stieg, J. Gimzewski, T. Nakayama, Z. Kuncic, “Reservoir Com-

puting with Neuromemristive Nanowire Networks”, 2020 Inter-

national Joint Conference on Neural Networks (IJCNN), 2020, pp.

1-8, 10.1109/IJCNN48605.2020.9207727 [1].

3.2 Methods

All simulation results are based on a model developed by Kuncic et al. [75]

and Kuncic et al. [76]. The model has been validated against experimental

measurements [75, 70, 74]. All simulations were performed in Matlab 2019a.

3.2.1 Modeling switch and network dynamics

Self-assembled nanowire networks were modeled, as described in Kuncic

et al. [75] and Kuncic et al. [76]. Nanowire–nanowire junctions were mod-

eled as ideal voltage–controlled memristive junctions described by a state-

dependent Ohm’s law, I = G(λ)V, where I is current, G is conductance, V is

voltage and λ = λ(t) is a state variable representing flux in memristor theory

[64, 70]. At each junction, λ represents the conducting filament which param-

eterizes the conductance. All junctions are initially in a high resistance “off”

state. After a voltage bias is established, an individual junction switches to

a low resistance “on” state when λ ≥ λcrit, where λcrit is a set threshold.

The ratio of these resistance states is set to Roff/Ron = 103, with Ron = G−1
0 ,

where G0 = (13 kΩ)−1 is the conductance quanta.

A junction’s state λ(t) depends on its past history of voltage input. The

evolution of λ(t) is prescribed by the following bipolar threshold voltage

https://doi.org/10.1109/IJCNN48605.2020.9207727


26
Chapter 3. Nanowire network model and reservoir computing

implementation

model [75, 76]:

dλ

dt
=











(|V(t)| − Vset)sgn[V(t)] , |V(t)| > Vset

0 , Vreset < |V(t)| < Vset

b(|V(t)| − Vreset)sgn[λ(t)] , |V(t)| < Vreset

(3.1)

where Vset is the on-threshold and Vreset is the off-threshold, and b is a posi-

tive constant relating the relative rates of decay and formation of the conduc-

tive filament, such that when a junction switches off, the filament state can

immediately return to the state λ = λcrit/b to suppress fluctuations around

λcrit. The following default parameter values were used for all the simula-

tion results presented here: Vset = 10−2 V, Vreset = 10−3 V and b = 10. These

values were found to produce simulation results that most closely matched

experimental measurements [75, 70].

A self–assembled nanowire network was modeled using equation (3.1)

for the junctions and a modified nodal analysis [77] to solve Kirchoff’s circuit

law equations at each time point. This is done by first defining the weighted

adjacency matrix W and the weighted degree matrix D as

D = diag (di) , di =
N

∑
k=1

Wik , (3.2)

to obtain the graph Laplacian L = D −W and the expanded graph Laplacian

of the network:

L† =

[

L C

C 0

]

,

where C is either 1 if the nanowire node is connected to an external electrode

or 0 otherwise. Finally, the system of linear equations L†V = I is solved at

each time point to obtain the conductances of each junction [63].

As shown in Fig. 3.1, the model simulates wires scattered on a plane

with uniformly random distributions of orientations and positions and with

lengths sampled from a gamma distribution. At the intersection of overlap-

ping nanowires, memristive junctions that have switched on are shown as

large circles, while those that are off are small squares. The wire and junction

color reflect the network voltage distribution (with wires as equipotentials)

and white arrows indicate the current flow across the network, from source

(green star) to drain (red star). The voltage distribution and hence current

flow continuously adapt to the dynamically changing memristive junctions
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and to the network’s structural connectivity [60].

FIGURE 3.1: Snapshot visualisation of a neuromorphic
nanowire network simulation: self-assembled nanowires form
a neural-like network, with each intersection of overlapping
nanowires forming a memristive junction. For visual clarity, a
network with only 100-nanowires and 262-junctions is shown.
A voltage bias applied across the network (green and red stars
denote source and drain) induces memristive switching from
a low conductance state (small squares) to a high conductance
state (large circles). Wire and junction color reflects voltage dis-

tribution and white dashes denote current flow.

3.2.2 Reservoir computing implementation

Reservoir Computing (RC) was implemented using the nanowire network

as a reservoir by allocating specific input and readout nodes and training

the readout using either linear regression or classification, depending on the

task. Two temporal information processing tasks were performed: (i) nonlin-

ear waveform transformation; and (ii) wave generation. A third task, MNIST
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handwritten digit classification, was also performed by converting the im-

ages into a continuous-time stream and delivering them to network nodes.

For the temporal tasks using reservoir computing, the output signal error

was calculated using the mean square error (MSE):

MSE =
1

M

M

∑
m=1

[T(tm)− y(tm)]
2 (3.3)

where T(tm) is the target signal, y(tm) is the trained readout result, and M is

number of time points. Performance accuracy is quantified by 1 − RNMSE,

where RNMSE is the root–normalized MSE:

RNMSE =

√

√

√

√

√

√

√

√

M

∑
m=1

[T(tm)− y(tm)]2

M

∑
m=1

[T(tm)]2
(3.4)

Nonlinear transformation

For this task, RC was implemented by setting two of N total nanowires in the

network as the source and drain. The voltage of all other nanowire nodes was

used to record the reservoir state at each time point. In an experimental set-

ting, this readout scheme may be implemented using a multi-electrode array.

A sine wave was used as the input voltage signal and the target signal T(t)

was one of either four waveforms: sawtooth, square, doubled–frequency

sine, and cosine. The voltage readout was trained by linear regression to

nonlinearly transform the input by solving the system of linear equations

X(t)θT = T(t) (3.5)

where

X(t) = [v1(t), v2(t), v3(t), · · · , vn(t)] (3.6)

is the reservoir state, represented by a vector containing n elements (the volt-

age values of the N nanowires in the network reservoir), and θ is the output

weight. The procedure is shown schematically in Fig.3.2.
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FIGURE 3.2: Schematic depicting nonlinear transformation
of an input signal (e.g. sine wave) using a nanowire net-
work reservoir. In our implementation, one reservoir node
(nanowire) receives the input signal and others serve as read-
out nodes which are trained by linear regression to produce the

desired output signal (e.g. square wave).

To train the readout and solve (3.5) for θ, the MSE was used as the cost

function,

J(θ) =
1

M

M

∑
m=1

[T(tm)− y(tm)]
2 (3.7)

with y(t) = X(t)θT, and minimized using the gradient descent method:

∂J(θ)

∂θn
=

1

M

M

∑
m=1

[T(tm)− y(tm)]vn(tm) (3.8)

where θn is the weight for each readout node (N totally readouts). The train-

ing of weights was achieved in Matlab 2019a using the regress command.

To increase the accuracy of regression, piecewise linear regression was

used [78]. Using 1000 time points in each period, the input and target signals

were segmented into several equal (i) intervals that were linearly regressed

independently, i.e.

X(ti)θ
T
i = T(ti) (3.9)

where X(ti) is the voltage readout of every nanowire in time interval ti and θi

are the corresponding output weights. Each segment is a matrix, with rows

representing the nodes (n) and columns representing the time points ti of the

current segment.

Wave auto–generation

This task is performed differently from nonlinear waveform generation. The

goal is to generate the desired wave without any external input after a train-

ing period. The signal was divided into eight equal intervals. During the
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first 1/8 interval, the network was primed with the input signal (same sine

wave as used in the previous task) delivered to one source node, and no out-

put is readout. In this period the network is pre-activated. The training was

applied during the 2/8 – 4/8 period by delivering a teacher sine signal u(t)

to the source node. The voltage of every node was read out and the output

weights calculated using linear regression.

The predicted next time point value of the target signal u(t) is a linear

combination of u(t− 1) and the readout signal values at t and t− 1 according

to the following auto–regression equation:

u(t) = θ2N+2v0 + θ2N+1u(t − 1) +~θ · [~v(t − 1),~v(t − 2)] (3.10)

where v0 = 1 V, ~v(i) is the N-element vector containing absolute values of

voltage readout from each node at time i, and ~θ is the corresponding 2N-

element weight vector, so that the output weights are given by

Θ = [θ1, θ2, θ3, ..., θ2N, θ2N+1, θ2N+2] (3.11)

This recording of history of states is also referred to as the virtual nodes

method when the network is a delayed feedback system [58]. Two virtual

nodes are set in the sine wave generation task. After the training period, the

input was set to zero. The last 4 intervals (from 5/8 to the end) is the wave

generating period, when u(t) is used as input for the next time point. In this

way, the network generates a wave without any external input.

Handwritten Digit Classification

The nanowire network model was also applied to the popular benchmark-

ing task of classifying handwritten digits from the Mixed National Institute

of Standards and Technology (MNIST) database of handwritten digits [79].

The database consists of a total of 70, 000 gray-level images of hand-written

digits from 0 to 9, subdivided into a training set (60,000 digits) and testing set

(10,000 digits). A sample of digits is shown in Fig.3.3. Each digit is a 28 × 28

pixel matrix with a 0 − 255 gray-scale level.
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FIGURE 3.3: Sample of handwritten digits from the MNIST
database. Each digit image is a matrix of 28× 28 pixels with 256
gray-scale levels. Image credit: blog.csdn.net/weixin_44613063.

To implement this classification task using an RC approach, which is in-

herently dynamic, it is necessary to input the data to the network as a time-

series stream. Thus, pre-processing the data involved normalizing the pixel

gray-levels to a value in 0 − 1, as shown in Fig.3.4, and then delivering this

as the continuous voltage signal with duration ∆t per pixel. The digit im-

age was streamed either row-by-row or column-by-column, thus creating 28

time-series voltage vectors.

For each digit, the row or column voltage streams are input to 28 ran-

domly selected network nodes (representing contact electrodes) and one node

is set as a drain. Fig. 3.5 shows an example of the input to one electrode-node

for the digit ‘5’ using ∆t = 0.1 s (i.e. 2.8 s stream per electrode). The 28 input

streams are delivered to the network electrode nodes simultaneously. Con-

ductance between the electrode and drain is read out at 8-time points selected

evenly across each 2.8 s stream. The readout at other time points (e.g. 4, 6, 10-

time points) was also investigated, although only the 8-time-points readout

results are shown here as this was found to provide the best results for this

implementation. Both rows and columns are converted to streams and input

to the network separately. Thus, the total number of features for each image

https://blog.csdn.net/weixin_44613063
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FIGURE 3.4: Data matrix of MNIST digit ‘5’ after normalization.

is 28 × 2 = 56 and the dimension of whole output matrix is 448 × 60, 000.

FIGURE 3.5: Example of voltage time stream for one row of
digit ‘5’. The time-step is 0.1 s, corresponding to the duration of

each pixel value.

For the readout, Principal Component Analysis (PCA) is applied to re-

duce dimensionality before classification training using Linear Discriminant

Analysis (LDA). Other training methods were also considered (e.g. random

forest and bagging), however LDA was found to be superior. LDA is most

useful for multi-class classification. It attempts to find a linear combination
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of the features of different classes in order to be able to characterise or distin-

guish them. The resulting combination can be used as a linear classifier, or

for dimensionality reduction for subsequent classification.
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3.3 Results and discussion

Unless otherwise indicated, all the simulation results presented here are for

a 100-nanowire network, with 261 junctions. This is a default network used

to test results for a range of applications; other network sizes were also used

to investigate effect on different tasks.

3.3.1 Switch dynamics

Fig. 3.6 (a) shows a snapshot of the network structure upon initialisation,

where all junctions (squares) are in a high-resistance state (Roff = 10 kΩ and

λ = 0). Fig. 3.6 (b) shows the one source and one drain network’s conduc-

tance response (blue) to a square input voltage pulse (red) of amplitude 0.7 V

and duration 70 s, after which the voltage drops to 0.015 V.

This stimulation protocol was used to analyze the effect of the network’s

circuit loops on local voltage redistribution and its memory property as the

response persists with a relatively slow decay after the input signal drop.

Both reservoir fading memory, due to the recurrent network structure (feed-

back loops), and internal memory, due to the memristive junctions, con-

tribute to the network memory properties [43]. The following analysis of

switch dynamics is based on this 120 s simulation.

As shown in Fig. 3.6(b), conductance continues to increase under a DC

bias. This increase is not smooth but stepped as individual junctions switch

on. When the conductance reaches a maximum, it appears to be constant,

but actually continues to exhibit fluctuations. These fluctuations are evident

in the zoom-in shown in Fig. 3.7 for the 1 s period during 59 − 60 s. The

network and junction behavior during the 120 s simulation in Fig. 3.6 and

the fluctuations in Fig. 3.7 are explained in the following paragraphs.
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(a)

(b)

FIGURE 3.6: Nanowire network simulation geometry and acti-
vation. (a) Snapshot visualization of nanowire network at t =
0.01 s after a square pulse is delivered to a source node (green
star) with voltage 0.7 V (red star denotes drain node), showing
the distribution of nanowires (lines) and junctions (squares).
Nanowire color denotes absolute voltage and junction color de-
notes voltage drop from low (blue) to high (yellow). White lines
indicate the current direction (arrow) and value (length). (b)
Voltage bias as a function of time (orange) and the resulting
network conductance (black) between source and drain. The

voltage bias after the square pulse is 0.015 V.
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FIGURE 3.7: Zoom–in of network conductance in Fig. 3.6(b) in
the interval 59 − 60 s, revealing fluctuations.

The conductance time series reflects the voltage redistribution dynamics

in the network, which depends on the local circuitry (i.e. series vs. paral-

lel). When only one pair of source-sink electrodes are applied, as in Fig. 3.6,

there are more parallel junctions around the electrodes. This area has lower

conductance. Thus, junctions at the edge of the network where there are

fewer loops and close to the source (drain), have higher (lower) voltages,

while junctions near the center of the network receive relatively lower abso-

lute voltage. As is evident in the network snapshot visualizations in Fig. 3.6,

junctions in the peripheral regions of the network closest to the electrodes

have higher voltage (appear more yellow) than junctions closer to the center

of the network (appear mostly blue).

Fig. 3.8 shows the network and junction states at two neighboring time

points from the simulation in Fig. 3.6 . The white circle highlights a memris-

tive junction (number 244) that switches from off to on, with its voltage drop

decreasing accordingly by several orders of magnitude to a value lower than

Vreset.
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FIGURE 3.8: Network and junction states at two neighbouring
time points as shown in Fig. 3.6: t = 1.02 s (top); and t = 1.03 s
(bottom). The colourbar shows voltage absolute values. The
white circle marks a junction (number 244) whose voltage de-

creases significantly once it turns on.
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Fig. 3.9 plots V and λ for all the junctions at the corresponding two time-

points in Fig. 3.8(a) and (b), highlighting junction 244. V changes signifi-

cantly with the on/off switching of this junction. When off, V = 0.119 V,

which exceeds Vset = 10−2 V. V drops dramatically (below Vreset = 10−3 V)

when the junction switches in response to the conductance increase. Subse-

quently, this junction turns off again and regains a high voltage, switching

on again once |V(t)| > Vreset and λ > λcrit (cf. eqn. (3.1)). Thus, voltage

redistribution and switch dynamics are inextricably linked via the network’s

complex circuitry.

Under a DC bias (Fig. 3.6), the junctions in a series circuit between the

two electrodes fluctuate between on and off until the appearance of a cur-

rent path. Fig. 3.10 shows the moment a current path forms in the simula-

tion of Fig. 3.6. At t = 9.87 s, the off junctions just before the current path

forms have the highest voltage, and once the current path forms, the volt-

age rapidly redistributes. The voltage redistributes from the off-junctions in

the current path to other junctions across the whole network. This process

is accompanied by a decrease in the standard deviation (std) in voltage, as

shown in Fig. 3.11. Once the current path is formed, all junctions in it are

in the on state and the input voltage is divided equally. Since Vreset is much

smaller than Vset, this current path can be maintained even when the input is

small. Fig. 3.6 shows this process: the multiple states of conductance repre-

sent multiple current paths; conductance is still high under a low input when

multiple current paths exist.

The voltage changes at the single junction level lead directly to the fluctu-

ations observed in network conductance (cf. Fig. 3.7). Notice that each time

the junction turns off, the filament state immediately returns to its initial state

(λ drops by a factor of 10 in the model). The just-off junctions require a period

of time to evolve and turn on again, in the process creating sustained fluctu-

ations. Fig. 3.12 shows V and G fluctuations in the individual junction 244

in our network over the course of the entire simulation of Fig. 3.6. Avizienis

et al. [64] observed similar DC-driven fluctuations in current in their experi-

mental Ag-Ag2S ASN device, but in such a device, it is impossible to measure

what is happening at the single junction level.
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(a)

(b)

FIGURE 3.9: (a) Voltage (top) and filament state λ (bottom) of
each junction at t = 1.02 s, corresponding to the snapshot in
Fig. 3.8 (top) and the time-series in Fig.3.6(b). Voltage of junc-
tion number 244 is circled and marked by the red horizontal
line at V = 0.119 V. In the λ plot, the horizontal red dashed lines
mark λcrit. Junction 244 turns on at this time, when λ = λcrit. (b)
Same as (a), except for t = 1.03 s, corresponding to the snapshot

in Fig. 3.8 (bottom)
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FIGURE 3.10: Network and junction states in the simluation of
Fig. 3.6 at two neighbouring time points : t = 9.87 s (top) and
t = 9.89 s (bottom), marking the onset of current path forma-
tion. Large circles denote junctions in a high conductance state;
colour indicates wire voltage. Junctions change significantly,

indicating rapid voltage redistribution.
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(a)

(b)

FIGURE 3.11: Junction voltage redistribution and filament state
changes from (a) 9.87 s to (b) 9.89 s corresponding to Fig.3.10.

Also shown is the standard deviation (std) in voltage.
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FIGURE 3.12: Fluctuations in voltage (top) and conductance
(bottom) of an individual junction (244) in a network over the

course of the entire simulation of Fig. 3.6.

Under a square pulse (Fig. 3.6(b)), followed by a residual DC bias of

0.015 V, the network conductance exhibits fading memory immediately af-

ter the pulse ends, but still maintains a relatively high value, which suggests

capacity for long–term memory. The snapshot and the junction states are

shown in Fig. 3.13. The amplitude of residual DC bias determines the mag-

nitude of residual conductance. While short–term fading memory can be

attributed to feedback loops (i.e. delay lines) in the recurrent network struc-

ture, longer-term memory results from the change in filament state from λmax

to λcrit. The rate at which this occurs depends on the characteristic dynami-

cal time–the scale of the input signal and the voltage distribution dynamics in

the post-activation stage. While the fading memory property is essential for

reservoir computing applications [51], additional internal resistive memory

enables the network to retain information from more slowly varying input

signals, and thus provides better timescale separation that may enable the

reservoir to perform more diverse information processing tasks [43].
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(a)

(b)

FIGURE 3.13: Network snapshot (a) and junction states (b) at
t = 110 s in the simulation of Fig. 3.6, where the input is 0.015 V.
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In the final set of results, we shift from the DC bias case shown in Fig. 3.6

to investigating the dynamics under AC stimulation. As introduced in 2.2.2,

there are two main fingerprints of memristive systems: the pinched hystere-

sis loop that passes through the origin of an I − V response curve; and the

area of that loop being inversely proportional to frequency. These qualities

also exist in memristive nanowire networks. In addition to junction fluctua-

tions, the response to an AC signal can be chaotic, as is evident from the I −V

curves shown in Fig. 3.14. In this figure, conductance varies unpredictably

from cycle to cycle, forming the characteristic chaotic–attractor I − V curves

in (a) and (b). In Fig. 3.14(c), however, this is not the case. Here, the input sine

wave frequency is much higher (20 Hz), and conductance maintains a stable

periodic behavior, although the period differs from the input. The trajecto-

ries are consistent with ordered attractor dynamics. This is an interesting

result because it implies that there may exist a dynamical regime somewhere

in between chaotic and ordered states that the system could be tuned into

for optimal information processing, as has been proposed for echo state net-

works [80].

The significantly smaller area of the I − V loop and more coincident tra-

jectories in Fig. 3.14(c), compared to (a) and (b), also indicates that with two

electrodes, the network behaves like one single memristor. The result shows

the stable state and dramatic increase of conductance which are also shown

in other studies Fig. 2.12 in chapter two. This corresponds to the formation

of the current path under specific frequency.
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(a)

(b)

(c)

FIGURE 3.14: Network dynamics under AC (sine wave) stim-
ulation at varying frequencies: (a) 1 Hz; (b) 7 Hz; (c) 20 Hz. In
each plot, the top panel shows input voltage (blue) and network
conductance (red), while the bottom panel shows correspond-

ing I − V curves with characteristic pinched hysteresis loop.
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3.3.2 Application to Reservoir Computing

Nonlinear transformation

Nonlinear transformation tasks were performed with our network as a reser-

voir using a 0.1 Hz sine wave input signal delivered to one nanowire allo-

cated as the source node, with another allocated as the drain. Simulations

were performed for networks of two different sizes: 100 and 700 nanowires.

Fig. 3.15 confirms the ability of the nanowire networks to generate higher

harmonics and thus its potential to perform the waveform regression task.

FIGURE 3.15: Sine wave input and higher harmonics genera-
tion in a 100-node network. Top panel: Sine wave (0.1 Hz) volt-
age input used for nonlinear transformation tasks and corre-
sponding network conductance; Bottom panel: Power Spectral
Density (PSD) of one nanowire node, showing odd harmonics

at 3,5,7,9.
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In these simulations, the target waveforms are: sawtooth, square, cosine

and doubled–frequency sine wave. Fig.3.16 and Fig.3.17 show the linear re-

gression results for 100-node and 700-node networks, respectively. For the

700-node case, 100 readout nodes were used for better comparison against

the 100-node results. Fig. 3.18 shows the results for the 700-node network

using piecewise linear regression with 4 time intervals. Table3.1 lists the ac-

curacy results for both network sizes and for single vs. piecewise linear re-

gression with 4 segments. The 700-node network, which is a larger reservoir

with more degrees of freedom, performs consistently better than the 100-

node network for all transformation tasks. For each network, piecewise lin-

ear regression improves accuracy significantly in all cases, most significantly

for the 2 f sine and cosine transformations, which show the lowest accuracies

for single-segment regression.

TABLE 3.1: Accuracy of nonlinear transformation tasks for net-
works of different sizes (100 and 700 nodes) and for single (1)

vs. piecewise linear (4) linear regression.

Accuracy 100-node (1) 700-node (1) 100-node (4) 700-node (4)

Square 58.1 % 64.3 % 92.0 % 92.0 %
Sawtooth 39.2 % 44.9 % 88.5 % 89.3 %
2 f -sine 2.4 % 31.6 % 71.3 % 93.7 %
Cosine 2.6 % 16.9 % 88.2 % 97.2 %

Using the 2 f sine wave transformation as an example, Fig.3.19 plots the

accuracy achieved for this task as a function of the regression time segmen-

tation. For both the 100-node and 700-node networks, the accuracy increases

most rapidly up to 5-times regression. Saturation is reached by the 700-node

network (i.e. improvement is marginal) beyond this number of temporal re-

gression segments. The noticeable decrease in accuracy for the 100-node net-

work (Fig. 3.19 (a)) at 10-times regression maybe due to how the time series of

the input signal (sine wave) is segmented around the monotonically increas-

ing/decreasing intervals. A similar effect was also observed for the 700-node

network for other targets. It may be possible to improve piecewise linear re-

gression using time segments of variable length, to better resolve parts of the

waveform that change most rapidly.

These results corroborate previous experimental studies by Demis et al.
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(a) (b)

(c) (d)

FIGURE 3.16: Nonlinear transformation of an input sine
wave by a 100-nanowire network with 100 readout nodes
(target in black, result in red): top panel – sawtooth tar-
get, accuracy = 39%; middle panel – square wave target, ac-
curacy = 58.1%; bottom panel – doubled–frequency sine wave
target, accuracy = 2.4%, and the cosine wave targer, accu-

racy = 2.6%
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(a) (b)

(c) (d)

FIGURE 3.17: Nonlinear transformation of an input sine
wave by a 700-nanowire network with 100 readout nodes
(target in blue, result in red): top panel – sawtooth target,
accuracy = 44.9%; middle panel – square wave target, accu-
racy = 64.3%; bottom panel – doubled–frequency sine wave
target, accuracy = 31.6%, and the cosine wave targer, accu-

racy = 16.9%
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(a) (b)

(c) (d)

FIGURE 3.18: Nonlinear transformation of an input sine wave
by a 700-node nanowire network using piecewise linear regres-
sion (target in red, result in black): (a) sawtooth target with 4-
times regression, accuracy=89.3%; (b) square wave target with
2-times regression, accuracy=92%; (c) doubled-frequency sine
wave target with 4-time regression, accuracy=93.7%; (d) cosine

wave target with 4-times regression, accuracy=97.2%.
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[67] using their Ag-Ag2S-Ag physical nanowire reservoir for nonlinear trans-

formation tasks as shown in Fig.2.17. They applied one input electrode and

read out the voltage of other measurement electrodes in contact with their

network (the size of which is difficult to determine experimentally). The ac-

curacy of their experimental measurement is < 90 % (using standard single

regression readout). Here, piecewise regression improves the accuracy re-

markably and thus could be an effective way to process periodic signals in

RC.

(a) (b)

FIGURE 3.19: Accuracy of nonlinear transformation as a
function of linear regression segmentation for the doubled–
frequency sine wave task using: (a) a 100-node network; and

(b) a 700-node network.

Wave auto-generation

In this task, the sine wave used previously as the input signal is now gen-

erated by the network without any external input after a training period.

The result is shown in Fig.3.20 for a 700-node network. The MSE is negligi-

ble, giving an accuracy of ≈ 100 %. Notice that the length of the generated

sine wave (120 s) is longer than the training period (90 s) and indeed, the pe-

riod of auto-generation can be prolonged further for hundreds of seconds.

However, the error increases rapidly as the iteration time increases, leading

to divergence of the final result. Therefore, predictions close to 100% accu-

racy can only be maintained for a finite period of time, although they will be

longer than predicted time steps of nonlinear signals. In the particular case of

the Mackey glass signal, which is highly nonlinear, the MSE quickly diverges

(exponentially in the chaotic regime) [1, 76, 63].
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FIGURE 3.20: Sine wave generation by a 700-node network.
Top panel – target sine wave signal (teacher input). Middle
panel – training by linear regression. Bottom panel – pre-
activation period (30 s) and training period (90 s, black) fol-

lowed by generating period (120s, red). Accuracy is ≈ 100%.
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Handwritten digit classification

Fig.3.21 shows the confusion matrix for the MNIST handwritten digit classi-

fication task for a 700-node network. The average fraction of true positives

is TP= 91.6% and coefficient of determination is R2 = 0.835. The overall

MSE-based recognition accuracy achieved is 91.2%, and 90.4% for a 1000-

node network, but decreases to 87.5% for 100 nodes.

These results depend on additional parameters introduced for the specific

reservoir computing implementation adopted here. First, is the input voltage

of each pixel, which regulates memristive switching via the growth of the

conducting filament. If the input voltage is too small, it is difficult to form

current paths in the network. On the other hand, if the voltage is too large,

different input streams can cause indistinguishable high local conductance

states, thus effectively washing out the feature space. Thus the amplitude V

needs to be tuned to an optimal value. We found 1 V works well, but this in

turn depends on the timescale used for streaming the digits in our temporal

implementation; here we presented each digit for 2.8 s (i.e. 0.1 s per pixel,

with one row of 28 pixels streamed into a dedicated input electrode–node).

The distribution of the 28 electrode nodes in the network was also consid-

ered. If the distribution of electrodes is too dense, it can affect the ability

of the local network to distinguish different input streams. We considered

two configurations: a uniform distribution and a random distribution. Both

were found to give roughly the same results, with the uniform distribution

slightly better. We choose a uniform distribution of electrode nodes since it

is more realistically compatible with a CMOS multi-electrode device. While

an even higher accuracy might be attained by streaming each pixel into a

large network, this would require 28 × 28 = 784 electrode–nodes, which is

not realistically feasible in hardware.

The results presented here were obtained using LDA classification on the

readout layer. Random forest and other machine learning methods were also

investigated, but they are more complex than LDA and prone to overfitting.

They were also found to take longer to reach the same accuracy on test data

(93%). For example, the accuracy of random forest can reach 99% in training

and 92% in testing using a 700-node network. This accuracy on the test data

is close to LDA, but the training time is considerably longer ( 21 times for

700-nodes network). Considering the overfitting and efficiency problems,

LDA was found to be overall superior to these methods. Other models like
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FIGURE 3.21: Confusion matrix for MNIST handwritten digit
classification performed using a reservoir computing imple-

mentation for a 700-node network.

SVM and Multilayer Perceptrons were not compared as they perform this

task directly without a reservoir, which is used here to linearly separate the

features.

The MNIST classification accuracy obtained here compares favorably to

results obtained from a similar experimental study by Du et al. [57] using

memristors arranged in parallel as the reservoir, where recognition accura-

cies of 91.1% and 91.5% were achieved in simulation using 88 and 112 mem-

ristors, respectively, and 88.1% was achieved in experiment using 88 memris-

tors. Their experimental system differs from our memristive nanowire sys-

tem. First, they used WOx bulk memristors which exhibit multiple conduc-

tance states, while our memristive junctions only exhibit two states. Second,

they pre-processed the input voltage stream by delivering it into a separate

memristor, using the single memristor’s non-linearity and memory to create

features from the input stream. Here, the input voltage streams were directly
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delivered into multiple nodes of a memristive reservoir to create a higher di-

mensional feature space with linearly separable outputs. Another important

difference is that in addition to the long-term memory of memristive junc-

tions, the recurrent structure of our network gives it short-term (i.e. fading)

memory as well. Thus, our network has the capacity to separate features with

different dynamical timescales. For the read-out layer, logistic regression, a

generalised linear model, was used by Du et al. [57], whereas LDA was used

in this work.

Other studies have also used a memristor as a non-linear read-out layer

[81]. In Lilak et al. [81], 2-state (on/off) memristor nano-synapses were used

to record Win and Wout, with ridge regression used on the readout layer.

Their result depends on the size and implementation method of the reservoir

which is based on a CMOS cross-bar array . The best accuracy achieved on

the MNIST task in that study is 95%. Chen et al. [82] used another memristive

filter with multiple electrodes. Each filter had 8 electrodes with non-linearity

and short-term memory. This filter was able to handle multiple pixels of MN-

NIST digit images. They used 27 × 27 × 16 = 11, 664 filters and obtained an

accuracy of 96%. The accuracy is only marginally better than that obtained

here while using many more memristive devices.

Overall, the MNIST simulation results presented here demonstrate proof

of principle of the RC approach using memristive nanowire networks. This

warrants a follow-up study to implement this image classification task in

hardware, which has now commenced using the nanowire network CMOS

device developed at UCLA [83].

In general, results obtained using the RC approach are not as precise or

reproducible as those obtained using ANNs. Different statistical realisations

of a reservoir network produce slightly different results. However, results

are statistically robust (i.e. statistical variations are bounded). In our sim-

ulations, results are averaged over several network realisations. The gen-

eralisability of the RC approach is worth exploring further using different

types of data, beyond that devised for machine learning tasks. The results of

this thesis demonstrate the potential of nanowire networks for neuromorphic

computing and will provide a valuable contribution to devising new ways to

benchmark neuromorphic systems.
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Conclusions and outlook

The results presented in this thesis show that the neuromorphic dynamics

of self-assembled nanowire networks are useful for information processing

using a reservoir computing approach.

Our analysis of the network dynamics via junction-level modelling and

simulation revealed unique insights that could not otherwise be gained from

experimental measurements using hardware devices. In particular, our sim-

ulations revealed how single junction memristive switching (due to forma-

tion/decay of a conductive filament) causes dynamical redistribution of volt-

age across the whole network. This redistribution is observed as fluctuations

in the conductance time series and explains previously reported experimen-

tal results.

Simulations of the network response under AC showed that the I − V

curve exhibits the characteristic fingerprints of a memristor. From this we

conclude that a nanowire network with memristive junctions can be treated

as one single bulk memristor. This is a new result that may be leveraged in

future experimental measurements.

The network’s non-linearity was demonstrated via higher harmonic gen-

eration under AC and short/long term memory demonstrated by sustained

high conductance following a square pulse. These results are important be-

cause they confirm that the network has the potential as a physical reservoir

for reservoir computing.

Machine learning tasks were successfully implemented in the reservoir

computing framework, namely nonlinear wave regression, sine wave auto-

generation, and MNIST hand-written digit classification. Compared to other
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studies that used an array of bulk memristors as a reservoir, our method us-

ing a memristive network reservoir is easier to implement in both simulation

and physical hardware devices.

The results of this thesis open up new avenues for future research. The

chaotic attractor dynamics found as a result of the redistribution of voltage

across the network warrants further investigation to identify the transition

from ordered to chaotic dynamics under different stimulation. Additionally,

the idea that the whole network can be treated as a single memristor can

be explored further using memristor theory. And more complex learning

tasks, such as human action recognition, can be implemented using reservoir

computing to further demonstrate the network’s capacity for temporal signal

processing and compare those result with traditional ANN. Finally, The in-

fluence of many features of hardware network on the results can be studied

when we have mature hardware production process.
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