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Abstract: The detailed reservoir characterization was examined for the Central Indus Basin (CIB),
Pakistan, across Qadirpur Field Eocene rock units. Various petrophysical parameters were analyzed
with the integration of various cross-plots, complex water saturation, shale volume, effective porosity,
total porosity, hydrocarbon saturation, neutron porosity and sonic concepts, gas effects, and lithology.
In total, 8–14% of high effective porosity and 45–62% of hydrocarbon saturation are superbly found
in the reservoirs of the Eocene. The Sui Upper Limestone is one of the poorest reservoirs among all
these reservoirs. However, this reservoir has few intervals of rich hydrocarbons with highly effective
porosity values. The shale volume ranges from 30 to 43%. The reservoir is filled with effective
and total porosities along with secondary porosities. Fracture–vuggy, chalky, and intracrystalline
reservoirs are the main contributors of porosity. The reservoirs produce hydrocarbon without
water and gas-emitting carbonates with an irreducible water saturation rate of 38–55%. In order
to evaluate lithotypes, including axial changes in reservoir characterization, self-organizing maps,
isoparametersetric maps of the petrophysical parameters, and litho-saturation cross-plots were
constructed. Estimating the petrophysical parameters of gas wells and understanding reservoir
prospects were both feasible with the methods employed in this study, and could be applied in the
Central Indus Basin and anywhere else with comparable basins.

Keywords: reservoir quality prediction; machine learning; SOM; lithological identification; clus-
ter analysis

1. Introduction

In the oil industry, one of the most important tasks is the analysis of well-log data,
which can be a time-consuming process [1,2]. Geoscientists have worked diligently over the
past few decades to reduce the expense of obtaining these data. It is possible to evaluate the
potential for oil and gas production by analyzing important indicators, including reservoir
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permeability, and by utilizing data through petrophysical logging techniques, which is both
time- and cost-efficient [3]. The use of neural networks to simulate complicated systems in
geosciences has become increasingly popular in recent years [4,5]. Machine learning (ML)
is a branch of artificial intelligence (AI) that involves numerous methods for analyzing data,
such as clustering, classification, and regression [6,7]. The field of machine learning can
be divided into two primary categories: unsupervised and supervised approaches [2,8].
Unsupervised machine learning heavily relies on the input parameters and predicted
values [9,10]. It is becoming increasingly common practice in the petroleum industry to
employ machine-led tools that make use of wire-line logs in order to address geoscientific
problems [11]. The present study will examine ways in which the unsupervised ML can
enhance the reservoir characteristics and identify petrotypes by employing well-log data.
Faster and more accurate object classification can be trained to a computer via machine
learning. Since the 1990s, nonparametric methods including principal component analysis,
artificial neural networks, fuzzy logic, and other strategies have been widely used to
determine facies [12]. While core samples provide the most important physical data for
classifying facies, they are typically only collected from a limited number of wells within a
producing reservoir due to their high cost. Since core samples are rarely collected, the facies
projection method employs non-linear statistical methods. The self-organizing maps (SOM)
model may be preferable when there is a lack of facies information or when dealing with
unskilled geologists [2]. Cluster analysis (CA) is an ML approach designed to automatically
categorize large datasets into relevant subgroups, wherein the statistics inside every subset
have similar qualities while still being distinguishable from one another. It has various
potential applications including data compression, data mining, and vector quantization.
For persistent data, k-means CA is frequently applied. Discovering significant patterns
hidden inside vast datasets is the objective of the clustering technique. K-mean cluster
analysis is a fast and reliable approach for clustering which is also considerably simpler,
and it is particularly useful for large datasets [13].

As shown in Figure 1, the Qadirpur gas field is located in the Central Indus Basin
(CIB), which is partitioned from the Upper Indus Basin through the Sargodha High, as well
as the Pezu Uplift in the north [14,15]. National and multinational oil and gas corporations
have conducted substantial geological and geophysical examinations inside the Indus
basin, as it is a key hydrocarbon-producing region in Pakistan [5,16]. However, there is an
extreme limitation with regards to the fairly insignificant amount of published material that
addresses the reservoir characterization of the Indus Basin of Pakistan obtained via wireline
logging [17,18]. This is due to the fact that petroleum exploration corporations prefer to
keep the information they obtain private; as a result, this information is not easily accessible
for the sake of academic and scientific investigation. Wireline logs have been widely
utilized nowadays in hydrocarbon exploration to assess the reservoir capacity of drilled
rocks [19]. For the purpose of potential oil and gas field progression as well as prospective
assessment, an accurate description of reservoir characteristics is necessary [20–22]. In the
field of petroleum and natural gas exploration, petrophysics provides the most cutting-
edge technique for evaluating reservoir properties including rock–fluid interactions [23].
Petrophysics is also a one-dimensional research approach that investigates hydrocarbon
and reservoir dynamics within geological formations [24]. In order to analyze the primary
attributes of the reservoir, petrophysical investigations are performed on core samples or
outcrop data, either in laboratories or in open boreholes [25,26]. This helps to improve
awareness surrounding lithology, permeability, porosity, as well as fluid saturation within
rocks [27]. In addition to this, evaluation methods can be used to identify possible reservoir
zones, determine the type of fluid present inside a reservoir, and compute the amount of
oil resources [28,29]. Although the Central Indus Basin is a key hydrocarbon source, there
is limited information about its reservoirs from a petrophysical perspective [30].
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Since the study area is in such high demand for forthcoming oil and gas explorations,
our study will provide a comprehensive evaluation of the petrophysical assessment that
can be used to find new possibilities, establish the dependability of reservoirs, and more
comprehensively evaluate the hydrocarbon potential. The spatial distribution of poros-
ity, permeability, gas saturation, water saturation, and shale volume is still not properly
addressed. In addition, the distribution of clustering and lithofacies in a heterogeneous
environment is also complicated which makes it challenging to identify the adequate reser-
voir quality and potential. Henceforth, the current study is focused on the identification
of rock typing, spatial distribution evaluation, and reservoir quality prediction, which is
still missing in the study area. The present study will integrate SOM and CA with the
logging data to predict lithotypes, reservoir rock types, and zones of interest; decrease the
probability of errors occurring when interpreting well logs; and yield more precise results.
Furthermore, the outcomes of this study can be utilized to reduce the dangers associated
with upcoming development and exploration throughout the Indus Basin.
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2. Geological Background of the Study Area

The research area is located in the Middle Indus Basin. The major hydrocarbon-
producing area of Pakistan is the Central Indus Basin [31]. The Sember shale, the Mughalkot
shale, and the Ranikot shale are the source rocks in the Qadirpur region. Additionally,
for their source potential, the Sirki Formation was taken into consideration [32]. The Sui
Main Limestone is not evident anywhere in Pakistan [33]. The Pirkoh and Habib Rahi
Limestones represent secondary reservoirs, whereas the Sui Main Limestone as well as the
Sui Upper Limestone are the primary reservoir and source of gas, respectively [34]. The cap
rocks inside the field of research comprise Ghazij shale along with Sirki shale, as shown
in Figure 2. The Indian Shield is located to the east of the Central Indus Basin, while the
marginal zone of the Indian Plate can be found to the west and the Sukkar Rifle can be
discovered in the south [35]. Rifting of the Indian Plate from Gondwanaland is the primary
tectonic activity that influences the Middle Indus Basin’s structural trends and sedimentary
patterns (Jurassic to Early Cretaceous) [36]. In addition to the rifting, isostatic uplift along the
borders of the recently established ocean triggered uplift and eastward tilting during the start
of the Cretaceous period. Cretaceous plate tectonics could have caused some sinistral strike-
slip faulting, hot spots, and thermal doming along the Madagascar–Indian plate border during
this time period. As a consequence of this movement, the Deccan flood basalts and the NNW
striking normal faults were uplifted [37]. Sinistral transpression occurred in the western
part of the Middle Indus Basin as a result of the collision of the Himalayas throughout the
Oligocene and the present day, including fold-thrust structures being overprinted with
sinistral flower structures [38]. The tilting fault blocks inside the horst–graben structural
framework were the primary structural forces within the region. The geological and tectonic
phenomena in the Middle Indus Basin could be subdivided between pre-rift and post-rift
eras [39]. The Indian subcontinent was a component of Gondwanaland before the rupture
between the two tectonic plates. During the Triassic period, the Afghan and Iranian blocks
split off from Gondwanaland. Mesozoic sedimentation occurred in the platform region,
and the gap in sedimentation was caused by movements of orogenic plates [40]. Three key
factors, i.e., tectonic activity, sea level variations, and sedimentation rates, govern the facies
variations inside the Middle Indus Basin [41]. These elements are listed in the order of
the most essential to the least important. In the area under investigation, rifting was the
cause of fast marine transgression, which led to marine sedimentation. Paleocene is the
time period in which the tectonic activities of the Sulaiman Fold Belt occurred [42]. During
the Eocene time period, thrust faults formed along the eastern boundary of a Sulaiman
region and further south in the Marri-Bugti zone. The displacement of the Indian plate and
the tectonic forces of the Afghan block led to the formation of a Sulaiman Foredeep [43].
The portion of the Punjab Platform that is not prone to instability can be found in the
eastern part of the Sulaiman Foredeep area, as displayed in Figure 3.



Minerals 2023, 13, 29 5 of 26
Minerals 2021, 11, x FOR PEER REVIEW 5 of 28 
 

 
Figure 2. Stratigraphic chart of the QGF. Figure 2. Stratigraphic chart of the QGF.



Minerals 2023, 13, 29 6 of 26Minerals 2021, 11, x FOR PEER REVIEW 6 of 28 
 

 
Figure 3. Tectonic map of the QGF. 

3. Data and Methods 
Wire-line log data were used for the petrophysical analysis which incorporates bulk 

density (RHOB), neutron porosity (NPHI), deep resistivity (LLD), shallow resistivity 
(LLS), photoelectric effect (PEF), sonic (DT), self-potential (SP), and gamma-ray (GR)  
[27,44]. During the study of the Qadirpur gas field (QGF), the geophysical log data were 
taken from five wells (QGF-03, QGF-11, QGF-15, QGF-16, and QGF-17) within the con-
cerned block. With permission from Pakistan’s Directorate General of Petroleum Conces-
sion (DGPC), we analyzed data from five wells’ las files, which contained geophysical 
responses to carry out current investigations. The stacked geological strata are repre-
sented by their depth-dependent physical characteristic in the borehole logging. Table 1 
contains important data variables. These include the log type, the estimated physical at-
tributes at the appropriate tool, and the log interval of the QGF gas field, as observed in 
the existing study wells. 

The study was conducted to investigate the target-zone lithology, pore-fluid types, 
effective porosity, and permeability [45]. Data quality is associated with the typical mat-
ters of mud type and borehole circumstance, by which there are log interpretation impacts 
on both, i.e., the log stationary reading results are subsequently prominent to misinterpre-

Figure 3. Tectonic map of the QGF.

3. Data and Methods

Wire-line log data were used for the petrophysical analysis which incorporates bulk
density (RHOB), neutron porosity (NPHI), deep resistivity (LLD), shallow resistivity (LLS),
photoelectric effect (PEF), sonic (DT), self-potential (SP), and gamma-ray (GR) [27,44].
During the study of the Qadirpur gas field (QGF), the geophysical log data were taken from
five wells (QGF-03, QGF-11, QGF-15, QGF-16, and QGF-17) within the concerned block.
With permission from Pakistan’s Directorate General of Petroleum Concession (DGPC),
we analyzed data from five wells’ las files, which contained geophysical responses to carry
out current investigations. The stacked geological strata are represented by their depth-
dependent physical characteristic in the borehole logging. Table 1 contains important data
variables. These include the log type, the estimated physical attributes at the appropriate
tool, and the log interval of the QGF gas field, as observed in the existing study wells.
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Table 1. The data obtained within geophysical logs.

Well Logs Signs Physical Features QGF-03
(Depth, m)

QGF-11
(Depth, m)

QGF-15
(Depth, m)

QGF-16
(Depth, m)

QGF-17
(Depth, m)

Bulk density RHOB Density 836–1342 860–1408 1653–1786 837–1382 693–1401

Deep resistivity LLD Uninvaded zone
resistivity 831–1342 393–1403 1653–1783 387–1377 357–1396

Photoelectric PEF Photoelectric effect 688–1399 860–1408 1537–1791 837–1382 693–1402

Sonic DT Compressional
slowness 394–1342 390–1407 1630–1790 380–1380 372–1405

Shallow resistivity LLS Invaded zone
resistivity 830–1344 389–1402 1653–1786 386–1377 357–1390

Self-potential SP Natural log 831–1322 389–1403 1660–1790 386–1377 357–1400
Gamma ray GR Radioactivity 381–1346 388–1403 1537–1791 380–1390 357–1400

Neutron porosity NPHI Porosity 836–1340 860–1408 1537–1791 837–1382 693–1378

The study was conducted to investigate the target-zone lithology, pore-fluid types,
effective porosity, and permeability [45]. Data quality is associated with the typical matters
of mud type and borehole circumstance, by which there are log interpretation impacts
on both, i.e., the log stationary reading results are subsequently prominent to misinter-
pretations in the logs [46]. Well-log data analysis and optimum results compilation were
performed using Interactive Petrophysics (IP) software version 2019. The Sui Main Upper
Limestone Formation log response is displayed in Figure 4. Several methods were utilized
to analyze the data in this study, and are discussed below.
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3.1. Environmental Corrections

Mathematical relationships including Schlumberger charts were used to correct log-
ging data for a variety of unfavorable environmental influences [31]. Before executing
the analyses described in the present study, preliminary corrections were conducted for
wellbore impacts, temperature alterations in geologic formation when depth increases, GR
modifications for borehole variations, and NPHI log adjustments for matrix fluctuations.
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3.2. Petrophysical Parameters
3.2.1. Volume of Shale

The volume of shale must be analyzed in petrophysical examinations to address the
findings of water saturation (Sw), permeability, and porosity for the affected consequences
of the shale [27,47]. The volume of shale in the reservoir was used to determine its qual-
ity [15,48]. Various shale indicators were used to determine the quality of the shale. The
gamma-ray technique was employed to characterize the amount of shale in this study.

To calculate the shale volume, the equation given below was used.

Vsh =
GR−GRmatrix

GRshale −GRmatrix
(1)

where the GR log denotes the actual borehole-corrected GR response/reading in the study
zone. In clean zones, GRmin is the smallest borehole-corrected GR response/reading. In the
shale zone, GRmax is the maximal borehole-corrected GR response/reading.

3.2.2. Porosity Calculation

Porosity can be determined using a specific porosity log (sonic, neutron, or density
concepts) or a composite of porosity logs [49]. Porosity is considered as the total porosity
when the clay content is directly obtained from logs without amendment [50]. The effective
porosity is the porosity that remains after the clay effect is eliminated. Total and effective
porosity values were calculated using sonic logs in the current study. The process uses the
subsequent equation to investigate effective and total porosity.

Sonic porosity = φs=
(∆− ∆Tma)

(∆Tf − ∆Tma)
(2)

Shale porosityφsh=
(∆Tsh − ∆Tma)

(∆Tf − ∆Tma)
(3)

where φs denotes sonic-derived porosity, φsh denotes Shale porosity, ∆T log indicates the
interval transit time in formation, ∆Tma denotes the interval transit time in the matrix,
and ∆Tfl is the interval transit time in the fluid in formation (saltwater mud = 185 us/ft;
freshwater mud = 189 us/ft)

3.2.3. Permeability Calculation

There was a lack of core data for all of the wells accessed in the investigation. Conse-
quently, the present petrophysical study relied on determining permeability via equations.
In the absence of core data, a commonly used method is the Wyllie–Rose approach [37].
The following equation was used for calculation purposes.

K = a∗ Phi
b

Swi
c (4)

where K is permeability, Phi is porosity, and Swi is irreducible water saturation. The con-
stants a, b, and c (Timur) are 8581, 4.4, and 2, respectively.

3.2.4. Water Saturation

The reservoir pores contain numerous liquids which are saturated with water. Poupon
and Leveaux provided the Indonesian formula as an analytical model in 1971 [51]. This
idea was inspired by the extreme shaliness and freshwater characteristics of oil reservoirs
in Archie.

The analytical relation is expressed as follows:

Sw =

(
a× Rw

Rt ×Φm
t

) 1
n

(5)
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where Sw is water saturation, Rt denotes true formation resistivity, Rw is formation water
resistivity, Vsh denotes shale volume, Rsh is the resistivity of shale, φe denotes effective
porosity, m denotes the cementation factor, and a = the Archie constant (for limestone it
is 0.71).

3.2.5. Hydrocarbon Saturation

Shepherd used the following equation to estimate the hydrocarbon saturation that is
widely used in current research (Shc) [52].

Shc = 1− Sw (6)

3.3. Cut-off Estimation

In order to accurately calculate the originating oil in place and also the reservoir net
pay, it is necessary to establish cutoff values such as the shale concentration, water content,
porosity, and permeability values.

3.4. Determination of Lithology Using Cross-Plots and the SOM
3.4.1. M–N Cross-Plot

This approach is based on log and fluid characteristics, which are integrated into
three logs of porosity: density, neutron, and sonic concepts. Around 1997, Schlumberger
reported that the M–N cross-plot, also known as the tri-porosity cross-plot, is frequently
used in complicated lithology to depict the combination of minerals. The lithology be-
comes more apparent when the displayed M and N components are combined; these
functions were computed using density, neutron, and sonic concepts which are insensitive
to fundamental porosity. The following equations that give these two parameters are
porosity-independent [53].

M =

(
∆Tfluid − ∆Tlog

)
(ρmatrix − ρfluid)

∗ (0.01) (7)

N =

(
φNfluid −φNlog

)
(ρmatrix − ρfluid)

(8)

3.4.2. PEF and RHOB Crossplot

It is hard to assess a reservoir without first identifying its lithological characteristics.
The term “lithology” is commonly used to describe the solid (matrix) portion of a rock. By
utilizing a PEF-versus-RHOB cross-plot, a comprehensive investigation of the lithology
feature of the current research region was carried out.

3.4.3. Determination of Lithology Using SOM

Recognizing the lithotype is a primary task within reservoir identification. Tradi-
tional approaches to lithotype identification using core data are both time-consuming
and resource-intensive, and they present significant obstacles when applied to uncored
wells. The most significant benefit of a SOM is its simplicity in terms of data interpretation
and comprehension [54]. The elimination of unnecessary dimensions and the utilization
of grid clustering make it easy to recognize patterns of similarity within the data [55].
These clusters are generated by SOMs, taking into account all of the information in the
input, and the weight given to various types of data can be adjusted to achieve the desired
results [56]. The SOM can summarize the data in a way that is informative, interactive,
and easy to understand, and it can handle multiple categorization tasks at once [57]. The
primary drawback of a SOM is that it needs adequate data to create significant clusters [58].
Information that can properly categorize and differentiate inputs is required for the weight
vectors. Groupings will be more disorganized if the weight vectors are incomplete or



Minerals 2023, 13, 29 10 of 26

contain irrelevant information. Finding the right information requires identifying the
important components, which might be challenging or even unattainable in some cases.
When considering the decision to utilize a SOM, the ability to identify a high-quality set of
data is crucial [59]. An additional issue associated with using SOMs is that it can be chal-
lenging to obtain a proper mapping in which each cluster truly stands alone [60]. Instead,
mapping irregularities emerge when two distinct clusters share an identical map. Multiple
sub-clusters of specific neurons can emerge when a larger cluster is separated. This can be
avoided with proper map initialization, but not if the ultimate map configuration is not
immediately apparent. This study presents a far less costly technique for the objective and
systematic assessment of lithotype from well-log data using Kohonen’s self-organizing
maps. SOMs are artificial neural networks that organize the input vector into subgroups in
a topology-like architecture that is formed in accordance with alternations in the input data
and they do not require supervision [61,62].

The empirical relationship can be defined this way:

Ed =
1
n

n

∑
i=1

∑w
j=1 hbi,j‖xi−wj‖2

∑w
j=1 hbi,j

(9)

3.5. Clusters Analysis

A reliable evaluation of the reservoir rock type is crucial for the oil and gas industry
as it determines the reservoir’s rate of production [12]. Rock type quality in the Sui main
limestone reservoir is evaluated using a technique called cluster analysis. Throughout the
several stages of this method, clusters can be relied upon to perform multiple functions.
The three most essential methods are the nearest neighbor method, the farthest neighbor
method, and the mean method. The distance between two points can be calculated using
the Euclidean method formula, as follows [12,63].

xy =
√

∑n
i=1(xi− yi)2 (10)

where x and y represent two points in the n-dimensional Euclidean space, xi and yi
reflect the Euclidean vectors extending outward from the space’s beginning point, and n
symbolizes the n-dimensional Euclidean space.

4. Results

In order to estimate the petrophysical parameters of the current research region, well-
log data were employed. Based on the hydrocarbons, porosity values, gas effect, and GR
response, a petrophysical interpretation was accomplished for the Habib Rahi Limestone
between 836 and 1342 m in depth, as well as for the zone of interest between 1010 and
1220 m in the QG well 03, as shown in Figure 4.

4.1. Lithology

As shown in Figure 5, the Eocene reservoir in the research area prominently comprises
limestone along with the content of subordinate argillaceous, revealed by the cross-plots of
lithology (bulk density vs. photo-electric effect). There are dolomitic zones in the Habib
Rahi and Sui Main Limestones.
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Figure 5. QGF well 03 PEF via RHOB cross-plot of reservoir zone.

A comprehensive analysis of borehole lithology (LLD, CALI, LLS, GR, MSFL, SP, DT,
NPHI, and RHOB) was provided by the wire-line log evaluation from the information
of primary significance [8,27]. The bit-size log and caliper log always coincide with each
other. When the caliper log displays values that are smaller compared to the bit size, a
permeable formation is generated; conversely, it represents an impermeable formation
(Figure 4 Track-6). The clean limestone deposited on shale is distinguished by natural
gamma rays, which are utilized to analyze the lithological formation. Shale concentrations
are shown to be greater in impermeable zones. The lower the permeability and effective
porosity, the higher the shale content. Sandstone, limestone, and dolomite are common
lithologies in permeable zones. However, the majority of rocks in this research region are
limestone [64]. Increasing resistivity logs can be traced to high neutron log, gamma ray,
and density log values, all of which contribute to favorable conditions for the development
of shale. The diagenetic process i.e., compaction or cementation without water, causes an
increment in the resistivity log (Figure 4).

The uniformity of the M–N cross-plots was identical, the calcite point had a significant
concentration of data points, and a few points were pushed more toward the shale zone,
confirming the non-clastic character of the reservoir. The data points moved to the north
and west, indicating the presence of the gas effect. According to this explanation, the
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primary lithology of the Eocene reservoir of the present study is limestone, with some
shale intercalations present in all wells. Secondary porosity can be observed in each well
based on a small number of data points; this is caused by tectonic forces that lead to local
fractures [14,65], as shown in Figure 6.
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In addition, this study developed and trained the SOM. The SOM was developed
with the intention of elaborating the electrical well-log estimations that were acquired
throughout the Qadirpur gas field in order to establish the lithological segment and identify
various lithotype classes. It is also possible to determine the quality of the SOM map
by computing the quantization error. The color coordinate codes of this kind of facies
were established as horizontal and vertical distribution functions to proceed with the
lithology characterization of the anticipated wells. Facies coded in brown indicate pure
limestone, whereas those in fuchsia and aqua indicate the presence of shaly limestone
and shale. The SOM model also demonstrates the magnitude and scope of the variability
within hydrocarbons, as previously established. Pure limestone displays a highly effective
gas-bearing lithotype, while limestone containing a middle–low-gas-bearing lithotype
is distinguished by its low shale percentage. This strategy makes it relatively simple to
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determine whether the particular group has favorable or unfavorable facies characteristics
for the log’s potential, as shown in Figures 7 and 8.
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4.2. Water Saturation Assessment

For the QGF, the essential components of the Archie equation—namely, a, m, n, and
Rw, were not accessible. Because temperature logs and data on the resistivity of the mud
filtrate were not available, the Pickett template method was used to determine a, m, and n
for every well, in addition to the salinity of the formation water. The reliability of water
saturation estimates relies on the accuracy of these unspecified Archie’s parameters. The
results of a, m, n, and Rw within the rock interval that was analyzed are shown in Table 2,
which can be used to estimate the precise water saturation values inside the wells that
are currently investigated. The significant findings of the Eocene reservoir’s Pickett plot
are presented in Figure 9. The existence of higher gas-bearing sections was denoted by
clusters that shifted to the northeast and are occupied among water content divisions of
50% and 20% within the ordinal scale of a resistivity log. This indicates the presence of
better zones. The computed Sw color coding of the z-axis displays a realistic agreement
between the displaying results and the quantitative procedures. Data points that lie below
the line depicting 100% water saturation represent the Sw 100%.

Table 2. Archie parameters for the QGF.

Well ID a m n Rw

Qadirpur-03 1 1.9 2 0.007
Qadirpur-11 1 1.9 2 0.007
Qadirpur-15 1 1.9 2 0.007
Qadirpur-16 1 1.9 2 0.007
Qadirpur-17 1 1.9 2 0.007
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Petroleum Institute.

4.3. Buckles Plot

In the current investigation, a succession on bulk volume water (BVW) hyperbola
confirmed the series of examined reservoirs via plotting porosity, mostly as the factor of
Sw, while a BVW value of 0.04 indicated the presence of some Swirr prospects and oil
production without water. The highest values indicated that only water was produced,
whilst the lower values revealed that oil and water were produced together. These values
suggested that oil and water were produced together as the values grew. The lower the
BVW value, the more reliable the reservoir, which is characterized by higher permeability,
larger coarse-grained particle sizes, and higher pore interconnectivity (Figure 10).
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Figure 10. QGF well 03 Buckles plot.

4.4. Cut-off Determination

For the purpose of separating productive and unproductive zones in the Eocene
reservoir, several cross-plot frameworks were utilized to characterize reservoir cutoffs.
Specifically, the thresholds for water saturation, shale volume (Vsh), permeability, and
effective porosity were set at 40%, 3%, 60%, and 0.1 mD, respectively (Figure 11). In essence,
a large proportion of net pay effective zones of interest exhibited effective porosity above
3%, shale content below 40%, water content below 60%, and permeability above 0.1 mD.
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4.5. Spatial Variations

The petrophysical parameters of the Eocene reservoir can be seen in a vertical and hor-
izontal orientation, respectively, using litho-saturation cross-plots with iso-parametersetric
visualizations. The horizontal distribution of petrophysical parameters is depicted in
Figures 12–16, and their vertical distribution is depicted in Figure 17. For contouring and
upscaling, a map is shown with mean mathematical data from several wells inside the
reservoir interval. The results of the numerical analysis for every conceivable interval
are summarized in Table 3. One of the most useful indicators of reservoir quality is the
presence or absence of shale, which can be used to separate reservoir rock from other rock
types [66]. A lower shale concentration signifies a more sustainable reservoir. According to
the projected geographical distribution of shale volume, the smallest amount of shale was
found in well QGF-5 (30%), whilst the largest amount was found in well QGF-17 (43%).
The shale percentage was particularly low in the northwest and southwest. In contrast, it
increased in the southeast and northeast of the study region, as displayed in Figure 12. A
deeper examination of the effective porosity distribution map reveals that the reservoir had
a higher porosity overall. It varied between 8% and 14% in the QGF-11 and QGF-17 wells,
as shown in Figure 14. The analysis demonstrates that Sw values changed between 38%
in QGF-15 and 51% in QGF-3. The reservoir’s water level dropped in the northwest and
southwest of the research region, whereas it increased in the northeast and the southwest,
as indicated by the water saturation map shown in Figure 15. There was a wide variation
in the amount of gas accumulation (Sg) in the Eocene reservoir, ranging from 45% at well
QGF-16 to 62% at well QGF-16. Considerable Sg closures were found in the northwest and
southwest of the studied region, while the rest of the region showed a significant decrease
in gas saturation, as shown in Figure 15. There was a wide range in K values between
wells, with 5 mD in well QGF-17 and 31 mD in well QGF-16, as shown on the permeability
map. The proximity of high permeability was evident on the southwest side of the field, as
demonstrated by the permeability map. Permeability was lowest in the north, as shown in
Figure 16.
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Table 3. A brief synopsis of the petrophysical characteristics of the Qadirpur gas field.

S.
No.Well

Proposed Zone
Top Bottom

Thickness
(m)

Φeff
%

K
mD

Vsh
%

Sw
%

Sg
%

Qadirpur-3 1010 1220 210 12 22 39 51 49
Qadirpur-11 927 1145 218 8 7 35 42 58
Qadirpur-15 1734 1784 50 9 8 30 38 62
Qadirpur-16 900 940 40 10 11 37 55 45
Qadirpur-17 925 1010 85 14 5 43 46 54
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4.6. Cluster Analysis

Results from the cluster analysis indicate that the studied rock sections could be
divided into four distinct lithotypes. Table 4 displays the “cluster means” results for every
well, which were used to describe individual facies based on the average value of the
parent log curves. The results of the cluster evaluation show that log facies 1 and 2 inside
the Sui main limestone reservoir represented the most significant areas for the area under
investigation. The histograms and cross-plots among the input curves that were created
through the use of k means clustering for the different facies’ groups are displayed in
Figure 18. Additionally, the log facies feature of reservoir rock types is given in Table 5.

Table 4. Outcomes of the cluster analysis for every type of rock.

K-Mean Clustering Results

Facies Points Rock Typing GR Mean Φeff Mean Perm Mean Sw Mean

1 137 Excellent-quality rock type 58.873 0.05641 38.474 0.52641

2 16 Good-quality rock type 86.53 0.00833 0.37459 0.3541

3 41 Moderate-quality rock type 90.967 0.14072 637.82 0.30895

4 109 Poor-quality rock type 92.27 0.08073 134.89 0.53928
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Table 5. Detailed description of the features of log facies.

S. No Rock Typing GR Φeff Perm Sw

Facies-01 Excellent-quality rock type Very low Good to excellent Good to excellent Very low

Facies-02 Good-quality rock type Low Good good low

Facies-03 Moderate-quality rock type Medium Fair to good Fair to good Medium

Facies-04 Poor-quality rock type High Low Low Very high
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5. Discussion

Wire-line log investigations that rely on previously established formulas and com-
putations, cross-plots, and charts are included in the petrophysical analysis, revealed the
hydrocarbon potential outcomes of the Eocene reservoir. Variations in the lithology and
existence of shale can be detected using the DIA porosity (PEF/NPHI) cross-plot. Neverthe-
less, there are a few limitations with the well-log data. Since multiple companies evaluated
and analyzed the log curves, numerous charts were employed in this study to estimate
several parameters that could have an impact on the accuracy of the findings. Because
of this, it is necessary to make a comparison including a tri-porosity (M-N) cross-plot to
validate the accuracy of the data. Petrophysical variables confirmed that the Habib Rahi
Limestone is a natural gas-bearing reservoir (Table 3). QGF well 03 is a highly productive
net pay zone in the upper and lower parts of Habib Rahi Limestone. Although the Sui
Upper Limestone in its entirety is not a reservoir, a 210 m-thick section was found with a
depth ranging between 1010 and 1220 m containing a significant amount of hydrocarbon
(59%), as shown in Table 3. Hydrocarbon-rich strata in the Habib Rahi Limestone were
discovered at a depth of 927 to 1145 m and a thickness of 218 m in QGF well 11. (Table 3).
The confirmation of gas existence is supported by the gas effect and significant formation
resistivity. The zone was characterized by a low shale volume and high effective porosity
(8%). The hydrocarbon saturation reached up to 58%. It is suggested that mud filtrate in
the flushed zone with movability to the well bore was displaced due to 58% hydrocarbon.
With QGF-15, the Sui Main Limestone had low water saturation (38%) reservoir zones
ranging from 1734 to 1784 m. The average hydrocarbon saturation reached up to 62%
(Table 3). With QGF-16, the Habib Rahi Limestone was the source of the most abundant
hydrocarbon-saturated zone with a depth of 900 to 940 m and a thickness of 40 m. This
zone included up to 45% hydrocarbon. This zone was validated as a net pay zone by the
presence of values of effective porosity (10%), water saturation (55%), and shale volume
(30%) (Table 3). The water–gas transition zone could be identified by the absence of a gas
effect, as well as a dramatic decrease between the sonic and neutron porosities. Gas–water
contact was found at a depth of 940 m. The presence of high shale content in the Sui Upper
Limestone was attributed to non-reservoirs, causing diminutive hydrocarbon saturation, as
well as poorly effective and total porosities. QGF-17, the key reservoir zone in Habib Rahi
Limestone, had a thickness of 85 m (in the rage of 925–1010 m). The net pay zones were
marked where the presence of gas was clear from gas effects, high hydrocarbon saturation
(54%) and low water saturation (46%), low volume of shale (43%), and high effective poros-
ity (14%), as exhibited in Table 3. The current findings suggest that the Eocene reservoir
is a minimal shale volume reservoir, validating the adoption of the Pickett method. The
Pickett plot technique provides a constant framework for assessing Archie’s parameters
and determining the Sw under these conditions. Unsupervised machine learning was used
in the investigation of the QGF in Pakistan in order to classify the various lithotype. The
primary findings of this study were found with a simplified technique to categorize the
lithotypes in the QGF in Pakistan by utilizing the SOM approach; an assessment of every
different classifier of unsupervised learning methods; higher precision outcomes; and an
evaluation of log-facies classification grounded on unsupervised learning. The results
obtained by the SOM in the lithotype categorization were more reliable. Additionally, the
machine learning model accurately predicted lithotype values reflecting changes in rock
physical attributes throughout depth zones due to variations in compaction as well as
diagenetic mechanisms [11]. The specificity of this finding can fluctuate at deeper intervals
in relation to the post-depositional events because of each formation endured; however, the
machine learning model has an enormously high performance and efficiently supports geo-
logical examinations within a significantly shorter period of time [67]. Most crucially, our
research has shown that the efficacy of the SOM could be assessed from both a geological
as well as a machine learning aspect. It is common practice that determining the quality of
the reservoir rock types is essential for oil and gas firms, considering that these assessments
determine the rates of reservoir production. The performance of the zones of interest was
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evaluated using a hierarchical clustering method to analyze the reservoir rock type (RRT) [68].
The different kinds of rocks represent reservoir formations with a well-defined correlation
among effective porosity, deliverability, gas and oil storage capacity, and the volume of
a specific water content [69,70]. This method provides an accurate estimation of the total
amount of oil present inside the reservoir as well as the amount that can be extracted [71].
Based on the petrophysical characteristics computed and the type of rock that operates as
the reservoir, it is clear that there are commercially extractable quantities of hydrocarbons
within four linked reservoir limestone units.

6. Conclusions

The Eocene sequence in the Central Indus Basin of the Qadirpur area was studied with
the potential of the reservoir using various parameters of petrophysics, and a detailed study
for the cut-off factor was performed. The findings and conclusions are mentioned below.

The criteria for estimating the depth of oil and gas deposits were set by the cutoff. The
volume of shale, water saturation, permeability, and porosity were approximately 40%,
60%, 0.01 mD, and 3%, respectively. If a rock’s petrophysical properties are less than these
threshold values, it is not considered a good reservoir.

The primary goal of the SOM is to classify the reservoir’s underlying lithotype. It is
a highly effective technique used for determining the lithology of complex geological
structures. This study classifies the reservoir’s lithotype into three groups, each with its
unique degree of heterogeneity (limestone, shaly limestone, and shale).

1. In terms of lithology, the reservoir is mainly composed of Sui main limestone with
little shale, while in terms of mineralogy, it is made up of calcite, as evidenced by the
cross-plot results.

2. The results of the cluster analysis show that the most intriguing parts of the Eocene
reservoir for the Sui man limestone are in log facies 1 and 2.

3. The effective thickness of a QGF rises within the northwest and southwest regions of
the research area, whereas water saturation increases in the northeast and southwest
parts, as a result of spatial variations throughout petrophysical features. Furthermore,
the petrophysical information obtained from the QGF provides crucial data on regional
geologic variations to facilitate future studies in the research area’s SW and NW
onshore blocks.
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