SOFSEM-2012 Špindlerův Mlýn, Czech Republic, January 21–27, 2012

Reset Complexity of Ideal Languages

Marina I. Maslennikova

Ural Federal University Ekaterinburg, Russia

Marina I. Maslennikova

Background and motivation

- A DFA 𝒜 = ⟨Q, Σ, δ⟩ is called synchronizing, if there exists a word w ∈ Σ* which leaves the automaton in one particular state no matter which state in Q it starts at: δ(q₁, w) = δ(q₂, w) for all q₁, q₂ ∈ Q. |δ(Q, w)| = 1.
- Any such word is said to be *synchronizing* (or *reset*) for the DFA *A*.
- $Syn(\mathscr{A})$ the language of all words synchronizing \mathscr{A} .

Background and motivation

A reset word is abba: applying it at any state brings the automaton to the state 1.

Černý conjecture

Any synchronizing $n\mbox{-state}$ automaton possesses a synchronizing word of length at most $(n-1)^2.$

- The *state complexity* of the language L (the number of states in the minimal DFA recognizing L) is denoted by sc(L).
- In what follows we consider only ideal languages: $L = \Sigma^* L \Sigma^*$.

Lemma 1.

Let L be an ideal language and \mathscr{A} the minimal automaton recognizing L. Then \mathscr{A} is synchronizing and $Syn(\mathscr{A}) = L$.

Reset complexity of an ideal language L is the minimal possible number of states in a synchronizing automaton A such that Syn(A) = L.

・ 回 ト ・ ヨ ト ・

Results

•
$$rc(L) \leq sc(L)$$
.

Proposition 1.

Let L be an ideal language over a unary alphabet. Then $sc(L)=rc(L)=\ell+1,$ where ℓ is the minimum length of words in L.

• A synchronizing automaton, whose shortest reset words have length close to $(n-1)^2$, is called *"slowly"* synchronizing.

Proposition 2.

For every "slowly" synchronizing automata \mathscr{A}_n with n states, $sc(Syn(\mathscr{A}_n)) = 2^n - n$ and $rc(Syn(\mathscr{A}_n)) = n$.

• For the language

 $L = (a + b)^* (b^3 a b^2 a + a^2 b^3 a + a b a b^3 a + a b^2 a b^3 a)(a + b)^*$ there exist two different synchronizing automata for which Lserves as the language of synchronizing words.