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· Niranjan Saikumar · Ali Ahmadi Dastjerdi · Nima

Karbasizadeh · S. Hassan HosseinNia

Received: date / Accepted: date

Abstract A controller with the frequency response of
a complex order derivative may have a gain that de-

creases with frequency, while the phase increases. This

behaviour may be desirable to ensure simultaneous re-

jection of high frequency noise and robustness to vari-

ations of the open loop gain. Implementations of such
complex order controllers found in the literature are un-

satisfactory for several reasons: the desired behaviour

of the gain may be difficult or impossible to obtain, or

non-minimum phase zeros may appear, or even unstable
open loop poles. We propose an alternative non-linear

approximation, combining a CRONE approximation of

a fractional derivative with reset control, that does not

suffer from these problems. An experimental proof of

concept confirms the good results of this approxima-
tion, and shows that non-linear effects do not preclude

the desired performance.

Keywords Reset control · Fractional calculus ·
Complex order derivatives · Micro precision

1 Introduction

Fractional order derivatives and integrals have been

successfully used to develop controller design techniques
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with good performances in terms of robustness. Frac-
tional PID control [17] and first and second genera-

tion CRONE1 control [8,10] are examples of such tech-

niques, and already have industrial applications [5].

Fractional Calculus, as is well known, is a misnomer,

since the notions of derivative and integral, studied in
Calculus, are thereby extended to any non-integer or-

der — which may be fractional, but also irrational, or

even complex. Complex order derivatives also have con-

trol applications, such as the third generation CRONE

control technique [9].

In that technique, the frequency response of a com-

plex derivative is found for the open loop, within the

bandwidth of interest; from this desired open loop fre-

quency behaviour, limited in range, and from the fre-

quency behaviour of the plant, a suitable controller is
then identified. Thus, the complex derivative is never

directly approximated. There are in the literature two

attempts to do so. One is the CRONE logarithmic phase

controller [7]; the other, a possibly unstable or non-
minimum phase implementation [4]. Both have their

problems when used in the development of controllers,

as detailed below.

This paper proposes approximating the frequency

response of a complex derivative combining a CRONE

approximation of sα, α ∈ R
− with reset control, which

is a non-linear control technique. The advantages and

disadvantages of this implementation are discussed, and

experimental results are given to show its effectiveness.

The paper addresses, in section 2, the dynamic be-

haviour of a complex derivative, and shows why pub-
lished methods to approximate it are inconvenient. Sec-

tion 3 introduces the proposed approximation, which is

1 CRONE is the French acronym for non-integer order ro-

bust control.
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then shown to be effective in a practical implementa-

tion in section 4. Section 5 presents a discussion of the

method and of the results and draws conclusions.

2 Frequency response of sα+jβ

There are several possible definitions of a derivative of

complex order [16,12,18], usually denoted by operator

Dα+jβ . For our purpose, it does not matter which one is

used, provided that the Laplace transform of a deriva-
tive of order α+ jβ ∈ C will originate a complex power

of the Laplace variable s:

L
[

Dα+jβf(t)
]

= sα+jβ
L [f(t)] (1)

It is also irrelevant whether or not terms resulting from

initial conditions have to be added to the right hand

side of the equality above, or what they are. What is
under consideration is the frequency response of the

corresponding transfer function G(s) = sα+jβ , the sim-

plest complex order transfer function conceivable. It is

given by

G(jω) = jαωαjjβωjβ (2)

=
(

cos
απ

2
+ j sin

απ

2

)

ωα×

× e−
βπ
2 (cos(β logω) + j sin(β logω))

20 log10 |G(jω)| = 20 log10

(

ωαe−
βπ
2

)

= 20α log10 ω + 20 log10 e
−βπ

2 (3)

argG(jω) = 6
{(

cos
απ

2
+ j sin

απ

2

)

×

× [cos(β logω) + j sin(β logω)]}

=
απ

2
+ β log(10) log10 ω (4)

The Bode diagram of G(s) is given in Figure 1.

Notice that when α < 0, β > 0 the gain decreases

with frequency, while the phase (and thus the phase
margin) increases. This behaviour may be desirable in

a controller, inasmuch an increase in the gain of the

open-loop, due e.g. to an increase in the gain of the

plant, will correspond to a higher gain crossover fre-

quency, at which the controller will have a larger phase
margin, thereby likely compensating any decrease of the

plant’s phase margin. Robustness in presence of plant

gain uncertainties can thus be expected (just as in a

second generation CRONE controller).
Frequency response (2) can be approximated, for

the said case α < 0 and β > 0, in a limited range

of frequencies, as proposed in [4], by using a CRONE

approximation of sα, described below in section 3.1, re-

placing the real order α with −α − jβ; the result is
a transfer function N(s)

D(s) with a numerator polynomial

N(s) and a denominator polynomial D(s) having com-

plex coefficients. The approximation is then obtained

as

sα+jβ ≈ D(s) ∗ D̄(s)

ℜ[N(s) ∗ D̄(s)]
(5)

where ∗ denotes convolution, and D̄(s) is a polyno-
mial with coefficients that are the complex conjugates

of those of D(s). However, [4] indicates that this often

leads to either unstable poles or non-minimum phase

zeros to appear in the controller, and thus in the con-

trol open-loop. This may render this implementation
prone to cause an unstable closed-loop when the gain

increases or decreases, when robustness to gain varia-

tions is precisely what is being sought.

An alternative is the CRONE logarithmic phase con-

troller [7], which has, by construction, only real, stable

poles and minimum phase zeros:

G̃(s) = C

2N
∏

m=1

1 + s
ωz,m

1 + s
ωp,m

(6)

ωz,m = ωcη
m−N− 1

2 (7)

ωp,m = ωcθ
m−N− 1

2 (8)

Poles ωp,m, m = 1, . . . , 2N and zeros ωz,m, m = 1, . . . , 2N

are centred on ωc, and equally spaced in a logarithmic

scale of frequencies by recursion coefficients θ and η.
The approximation is valid in [ωp,1, ωp,2N ]

⋂

[ωz,1, ωz,2N ],

being poor near the limits of this range. Transfer func-

tion G̃(s) has 1/log10 θ poles per decade and 1/log10 η

zeros per decade. The effect of a pole is to decrease the

phase by 90◦, and the effect of a zero is to increase the
phase by 90◦, and thus the slope of the phase of G̃(s)

will be 90◦

log10 β
− 90◦

log10 α
. The phase of G̃(s) is

arg G̃(jω) =

(

π

2

1

log10 β
− π

2

1

log10 α

)

log10 ω + arg G̃(jω)
∣

∣

∣

ω=1

(9)

It suffices to choose recursion coefficients θ and η so that
π
2

1
log10 β

− π
2

1
log10 α

= β log(10) and arg G̃(jω)
∣

∣

∣

ω=1
=

απ
2 to turn G̃(s) into an approximation of G(s) = sα+jβ

(cf. the CRONE approximation of sα described in de-

tail in section 3.1 below). Gain |G̃(jω)|, however, bears
no relation to |G(jω)|; it may have a positive slope,

and consequently it may happen that an increase in the
gain of plant will result in the amplification of higher

frequencies.

The disadvantages of both these approximations can

be overcome using instead the approximation next pro-

posed.
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Fig. 1 Bode diagram of sα+jβ .

3 Proposed approximation of sα+jβ

It is possible to approximate G(s) = sα+jβ combining

a CRONE approximation of sα with reset control.

3.1 CRONE approximation of sα

A first generation CRONE controller consists in an ap-
proximation of sα, α ∈ R−, with N real stable poles

and N real minimum phase zeros, valid in a limit fre-

quency range [ωl, ωh], and with α chosen to increase

the phase margin of the plant by a suitable value of
90◦ × |α|:

sα ≈ C
N
∏

m=1

1 + s
ωz,m

1 + s
ωp,m

(10)

ωz,m = ωl

(

ωh

ωl

)
2m−1−α

2N

(11)

ωp,m = ωl

(

ωh

ωl

)
2m−1+α

2N

(12)

The correct gain at 1 rad/s, which is |(jω)α| = 1, ∀α,
must be set by adjusting C. (Using frequency 1 rad/s
makes calculations easier, but, if 1 /∈ [ωl, ωh], the cor-

rect gain at any other suitable frequency will be ad-

justed instead.)

In practice, this approximation is poor in the half-
decade above ωl and in the half-decade below ωh but

rather good in the rest of the frequency range, pro-

vided that there are at least one zero and one pole

per decade. The variation of the gain with the loga-

rithm of the frequency is quite close to linearity because

each pole lowers the slope of the gain by −20 dB per
decade, and each zero increases the slope by +20 dB

per decade; by construction, poles and zeros alternate

in are equally spaced in a logarithmic scale of frequen-

cies, as seen in Figure 2, and if the recursion coefficients
δ and ζ are as shown, the average slope of the gain will

be −20 log10 δ

log10 δ+log10 ζ
dB per decade. The need for at least

one zero and one pole per decade is to ensure that rip-

ples will not be significant, and the successive changes

in slope merge. As to the phase, it decreases −90◦ with
each pole and increases +90◦ with each zero, as also

seen in Figure 2, and so it remains roughly constant,

around a value that depends on the effect of the first

zero or pole.

3.2 Reset control

In its simplest form, reset control is a non-linear control

technique that consists in setting the output of an inte-

gral controller to zero whenever its input is zero. This
pole at the origin with reset is known as a Clegg inte-

grator. Figure 3 shows the output of such a controller,

Ĝ(s) =
✁
✁✕1
s
, for a sinusoidal input; reset is denoted by

an arrow. Since the output never becomes sinusoidal in

steady-state, there is no frequency response, but, since

it is periodic, it can be studied using a describing func-
tion, that considers only the first term of a Fourier se-

ries of the output, and neglects all the higher harmon-

ics (which may in some cases be indeed neglectable and



4 Duarte Valério ∗ et al.
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log10 ζ

one decade

−20 dB/decade
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log10 ζ

log10 δ
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Fig. 2 Bode diagram asymptotes of a CRONE approxima-
tion of sα (adapted from [7]).

then again may in others not be neglectable at all). It

is straightforward to show that [18]

20 log10 |Ĝ(jω)| = −20 log10 ω + 20 log10

√
16 + π2

π
(13)

arg Ĝ(jω) = − arctan
π

4
≈ −38◦ (14)

Notice that there is a phase lead of 52◦ compared to
the linear (i.e. without reset) integrator. The slope of

the gain is not affected, though the gain is shifted up.

(When an integrator is reset in a more complex con-

troller, such as e.g. a first-order filter, this means that

the cut-off frequency will change, even though the asymp-
totic behaviour for both low and high frequencies re-

mains the same.) Figure 3 also shows the output when

the reset is not total: rather than the output being set to

zero, which is the same as being multiplied by γ = 0,
the output is in this case multiplied by γ = 0.5. Of

course, any other value of the reset coefficient γ ∈ R

could be used, though it is usual to make −1 ≤ γ ≤ 1

(|γ| > 1 risks causing instability). When γ = 1 there

is in fact no reset at all; γ < 0 causes the sign of the
output to be reversed.

In the more general case, reset is applied not directly

to the output of a plant, but rather to itsN states, there
being a different reset coefficient γm, m = 1, . . . , N for

each state. (Of course, if it is in fact the output of the

plant that has to be reset, it suffices to use a state-space

representation where the output is a state, to set that
state’s reset coefficient to the desired value, and let all

other reset coefficients be 1. The observable canonical

form [6] is a possible state-space representation for this

t

−2

−1

0

1

2

π 2π 3π 4π

sin t, input of Ĝ(s)

output of Ĝ(s) without reset, γ = 1

output of Ĝ(s) with total reset, γ = 0

output of Ĝ(s) with reset, γ = 0.5

Fig. 3 Response of two reset integrators to a sinusoidal in-
put.

purpose.) Reset coefficients are collected in a diagonal

matrix Aρ = diag (γ1, . . . , γN ), the reset matrix:

ẋ(t) = Ax(t) +Be(t), if e(t) 6= 0 (15)

x(t+) = Aρx(t), if e(t) = 0 (16)

u(t) = Cx(t) +De(t) (17)

In this state-space representation of the controller Ĝ(t),

the input is e(t) and u(t) is the controller’s output (i.e.

the plant’s input). It can be shown that the correspond-

ing describing function Ĝ(jω) is given by [3]

Ĝ(jω) = C(jωI−A)−1(I+ jΘγ(ω))B+D (18)

Θγ(ω) = −2ω2

π
∆(ω)

[

Γγ(ω)−Λ−1(ω)
]

(19)

Λ(ω) = ω2I+A2 (20)

∆(ω) = I+ e
π
ω
A (21)

∆γ(ω) = I+Aρe
π
ω
A (22)

Γγ(ω) = ∆−1
γ (ω)Aρ∆(ω)Λ−1(ω) (23)

Notice that if Aρ = I there is no reset, the controller

is linear, Θγ(ω) = 0, and the usual expression for the

transfer function corresponding to a state space is re-

covered.

With these expressions, it is easy to prove an intu-

itive result: the smaller phase lag of a Clegg integrator

increases as γ is increased from γ = 0 (total reset) to
γ = 1 (no reset), just as the response is closer to a sinu-

soid, and thus the weight of higher order harmonics de-

creases. For γ < 0 the phase lag decrease is even larger

than 52◦, but the response is more and more farther
from being sinusoidal, and the importance of higher or-

der harmonics increases. Obviously, the farther from

linearity a system is, the less the phase margin can be
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related to stability, since non-linear effects may suffice

to cause instability.

For more details and developments of reset control,

see [14,11,2,15].

3.3 Approximating sα+jβ with alternating zeros and

reset poles

If the poles of a first generation CRONE controller (10),

that approximates sα
′

, α′ < 0, are reset, then the phase

will increase 90◦ with every zero, but decrease less than
90◦ with each pole. As a result, it will increase with fre-

quency. At the same time, the asymptotic gain slopes of

poles and zeros will not be affected. However, the cut-off

frequencies of the reset poles will decrease slightly [13].
The net result is that the gain will still decrease with

the frequency. As the system is non-linear, its frequency

behaviour must now be studied with a describing func-

tion. The asymptotes from which this describing func-

tion is to be found are shown in Figure 4.

log10 ζ

log10 δ

log10 ζ

log10 δ

log10 ζ

one decade

−20 dB/decade

−90◦

0◦

log10 ζ

log10 δ

log10 ζ

log10 δ

log10 ζ

Fig. 4 Describing function asymptotes of the approximation
of subsection 3.3 (compare with figure 2).

So this describing function has a phase that in-

creases with frequency, and a gain that decreases with

frequency. As seen in Figure 4, because poles and zeros
are regularly spaced in a logarithmic scale of frequen-

cies, both gain and phase will be linear in a Bode dia-

gram. Thus, in the frequency range where the approxi-

mation is valid, its describing function will approximate
the frequency behaviour of sα+jβ , α < 0, β > 0. Notice

that the slope of the gain will correspond to a value α

which is not the order α′ for which the approximation

was originally built for, due to the changes of the cut-

off frequencies. Also notice that this implementation

is an approximation both because it is only valid in a

limited frequency range and because it is non-linear.

High frequency harmonics may eventually deteriorate
its performance.

The transfer function of the approximation described

above will be

sα+jβ ≈ C









✟✟✟✟✟✟✟✯
Aρ

N
∏

m=1

1

1 + s
ωp,m









N
∏

m=1

1 + s
ωz,m

1 + s
ω̃p,m

(24)

Notice that, since only the N poles are reset, these have

to be implemented separately from the N zeros, which
have to remain linear, without any change due to re-

set. So as to render the linear part of the controller

causal, N additional poles ω̃p,m, m = 1, . . . , N have to

be added at high-frequencies (high enough to prevent
them from disturbing what happens in the frequency

range of interest [ωl, ωh]). The state space representa-

tion of the above is

ẋ1(t) = A1x1(t) +B1e(t), if e(t) 6= 0 (25)

x1(t
+) = Aρx1(t), if e(t) = 0 (26)

y1(t) = C1x1(t) +D1e(t) (27)

ẋ2(t) = A2x2(t) +B2y1(t) (28)

y2(t) = C2x2(t) +D2y1(t) (29)

where matrixes A1, B1, C1, D1 correspond to the poles
of the CRONE approximation which are reset, and ma-

trixes A2, B2, C2, D2 correspond to the zeros of the

CRONE approximation and the high frequencies poles,

and thus

y1(t)

e(t)

∣

∣

∣

∣

Aρ=I

= C1 (sI−A1)
−1

B1 +D1 =

N
∏

m=1

1

1 + s
ωp,m

(30)

y2(t)

y1(t)
= C2 (sI−A2)

−1
B2 +D2 =

N
∏

m=1

1 + s
ωz,m

1 + s
ω̃p,m

(31)

3.4 Example of the effects

To verify the effect of resetting the poles of a CRONE

controller as in (25)–(29), a particular case Ĝ(s) ≈
s−0.5 was studied, with N = 2 poles and zeros in fre-
quency range [ωl, ωh] = [ 1√

10
, 10

√
10] rad/s; the approx-

imation is thus valid in [1, 10] rad/s. The two high-

frequency poles are set one decade above ωh, at ω̃p =



6 Duarte Valério ∗ et al.

100
√
10 rad/s; thus,

Ĝ(s) =









✘✘✘✘✘✘✘✘✘✘✘✘✿Aρ

1

(s+ 0.56234)(s+ 5.6234)









×

× 17783(s+ 1.7783)(s+ 17.783)

(s+ 316.2)2
(32)

where Aρ = diag(γ1, γ2). Three different state-space

representations of the reset poles were tried: the ob-
servable, controllable, and diagonal forms, as given by

[6]. Figure 5 shows the (average) slope of the gain, the

(average) slope of the phase, and the minimum value

of the phase, calculated in the [1, 10] rad/s frequency
range, using the describing function given by (18)–(23),

for the controllable state-space representation, when

−1 ≤ γ1, γ2 ≤ 1. (The minimum value of the phase

is relevant, since it is undesirable to decrease the phase

of the open loop near the crossover frequency.) Similar
plots can likewise be found for other state space repre-

sentations, for values of α other than−0.5, and for other

values of [ωl, ωh]. It is to be remarked that the slope of

the gain is not always roughly −10 dB/decade, as when
there is no reset, but that there are pairs of values γ1, γ2
for which that slope is attained, corresponding to dif-

ferent slopes of the phase.

For instance, it can be seen in Figure 5 that, if (32) is

to have a gain slope of−20 dB/decade and a phase slope

of 20◦/decade, it is necessary to make γ1 ≈ 0.8 and

γ2 ≈ −0.6331. The describing function corresponding

to more precise values of γ1 and γ2 is shown in Figure 6,
together with the desired slopes. It can be seen that the

approximation is reasonable in [1, 10] rad/s.

3.5 Tabular method to find a reset controller

The results above suggest a simple method to find a

reset controller that approximates sα+jβ in a frequency

range of one decade. For this purpose, several CRONE

approximations were built for sα, α = −0.1,−0.2,−0.3, . . . ,−1.9,
withN = 2 poles and zeros in frequency range [ωl, ωh] =

[ 1√
10
, 10

√
10] rad/s. The two high-frequency poles are

set at ω̃p = 100
√
10 rad/s again. The effect of varying

−1 ≤ γ1, γ2 ≤ 1 was studied and for each approxima-

tion the pairs of values γ1, γ2 for which the slope of the
gain remains equal to α90◦ were kept. From the differ-

ent slopes of the phase obtained, those corresponding

to 10◦, 15◦, 20◦, . . . , 90◦ per decade were tabulated. The

results are given in Table 1 when the controllable canon-
ical form is used; similar tables for the observable and

diagonal forms are available online as supplementary

material for this paper.

Fig. 5 Slope of the gain (average), slope of the phase (av-
erage), and minimum value of the phase, in [1, 10] rad/s, for
(32), when the poles are reset as described in section 3.4,
using a controllable state-space representation.
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Fig. 6 Describing function of (32) when γ1 ≈ 0.8, γ2 ≈
−0.6331, corresponding to a gain slope of of −20 dB/decade
and a phase slope of 20◦/decade.

In short, the algorithm to find a controller is as fol-

lows:

– Find the desired order of sα+jβ from the correspond-
ing slopes of gain and phase, per the relations in

Figure 1.

– Find a CRONE approximation of sα, using (10)–

(12) withN = 2, ωl =
1√
10

rad/s, and ωh = 10
√
10 rad/s.

– Convert that approximation into a state space rep-
resentation given by (25)–(31), using ω̃p = 100

√
10 rad/s,

using the controllable (or the observable, or the di-

agonal) canonical form for the matrixes in (25) and

(27).
– Find in Table 1 (or in the tables of the supplemen-

tary material for this paper, if the observable or the

diagonal canonical forms were used instead of the

controllable) the values of γ1, γ2, the diagonal ele-

ments of Aρ.
– If the frequency range where the controller should

approximate sα+jβ is not [1, 10] rad/s, multiply all

poles and zeros by a suitable constant.

3.6 More general algorithm to find a controller

Using tables to find coefficients is a method with signif-
icant disadvantages. First, the frequency range where

the approximation is valid is fixed in advance and can-

not be changed. Second, this method restricts results to

tabulated values, or causes interpolation errors. While
such errors cannot be eliminated in the following man-

ner of finding a reset controller that approximates sα+jβ ,

they are however minimised:

– Find the desired order of sα+jβ from the correspond-

ing slopes of gain and phase, per the relations in

Figure 1.

– Find a CRONE approximation of sα, using (10)–

(12) with N = 2 or N = 3, and the desired values
of ωl and ωh. Remember that performance is poor

near the limits of the frequency range [ωl, ωh]; con-

sequently, it will only be verified in [ω′
l, ω

′
h], omitting

e.g. half a decade on either side. When N = 2, it is
difficult to obtain a good approximation if [ω′

l, ω
′
h]

spans more than one decade. When N = 3, the ap-

proximation holds over two decades.

– Convert that approximation into a state space rep-

resentation given by (25)–(31), using ω̃p = 10ωh,
using the observable, controllable, or the diagonal

canonical form for the matrixes in (25) and (27).

– Find the (average) slope of the gain in [ω′
l, ω

′
h], when

−1 ≤ γ1 ≤ 1 and −1 ≤ γ2 ≤ 1 (and, if N = 3, also
−1 ≤ γ3 ≤ 1), using some suitable discretisation,

e.g. γi = −1,−0.95,−0.09, . . . , 0.95, 1, i = 1, 2 (and

3, if N = 3).

– Retain those values of Aρ = diag(γi) for which the

(average) slope of the gain is 20α dB/decade. Find
for each of them the (average) slope of the gain in

[ω′
l, ω

′
h], and also the minimum value of the phase in

that interval.

– If N = 2, there will be only one value of Aρ =
diag(γ1, γ2) that has the desired phase: it is the one

chosen, and the algorithm ends.

– If N = 3, retain the values of Aρ = diag(γ1, γ2, γ3)

that have the desired phase. Eliminate those for

which the minimum value of the phase in [ω′
l, ω

′
h]

is negative, as we do not want to reduce the phase

margin of the open loop. Among the others, that for

which gain and phase are closer to linearity (mea-

sured e.g. by the quadratic error, and weighting 1 dB
of deviation from a linear gain as much as 1◦ of de-

viation from a linear phase) is chosen.

This algorithm has been implemented in Matlab and

is available at [1].

When N > 3, it is possible to use some numerical

minimisation method to find suitable values for γi, i =
1, . . . , 4, but results are not more satisfactory than with

N = 3. In particular, gain and phase are very often

far less linear. So, this possibility does not seem very

interesting from the practical point of view.

4 Experimental validation

The performance of the approximation of sα+jβ has

been validated experimentally using a precision planar

positioning stage. The purpose was not to find the best
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Table 1 Values of γ1 and γ2 when the controllable canonical form is used in the method of section 3.5.

dB per ◦ per decade

decade 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

−2 γ1 0.8335 0.6491 0.5212 0.4232 0.3459 0.2840 0.2331 0.1912 0.1571 0.1297 0.1076 0.0907 0.0783 0.0701 0.0656 0.0647 0.0670 0.0725 0.0810
γ2 0.9430 0.8972 0.8304 0.7528 0.6697 0.5815 0.4904 0.3970 0.3013 0.2035 0.1040 0.0025 −0.1010 −0.2064 −0.3139 −0.4233 −0.5349 −0.6484 −0.7640

−4 γ1 0.8167 0.6273 0.4982 0.4025 0.3285 0.2694 0.2217 0.1831 0.1518 0.1276 0.1087 0.0948 0.0854 0.0801 0.0784 0.0802 0.0853 0.0935 0.1044
γ2 0.9000 0.8594 0.7967 0.7234 0.6434 0.5603 0.4745 0.3866 0.2973 0.2057 0.1130 0.0187 −0.0773 −0.1748 −0.2739 −0.3746 −0.4768 −0.5807 −0.6860

−6 γ1 0.7985 0.6027 0.4752 0.3812 0.3097 0.2531 0.2089 0.1738 0.1456 0.1245 0.1087 0.0977 0.0913 0.0888 0.0901 0.0947 0.1026 0.1132 0.1265
γ2 0.8628 0.8278 0.7679 0.6973 0.6219 0.5428 0.4611 0.3777 0.2934 0.2073 0.1204 0.0322 −0.0573 −0.1480 −0.2399 −0.3330 −0.4272 −0.5226 −0.6189

−8 γ1 0.7789 0.5768 0.4489 0.3580 0.2892 0.2366 0.1946 0.1630 0.1383 0.1201 0.1074 0.0995 0.0961 0.0967 0.1009 0.1083 0.1188 0.1320 0.1480
γ2 0.8307 0.8010 0.7446 0.6767 0.6034 0.5274 0.4496 0.3701 0.2897 0.2083 0.1262 0.0432 −0.0409 −0.1258 −0.2115 −0.2981 −0.3854 −0.4734 −0.5619

−10 γ1 0.7552 0.5480 0.4222 0.3330 0.2675 0.2178 0.1797 0.1503 0.1296 0.1146 0.1052 0.1003 0.1003 0.1039 0.1111 0.1214 0.1345 0.1506 0.1685
γ2 0.8046 0.7810 0.7254 0.6590 0.5879 0.5142 0.4390 0.3631 0.2857 0.2081 0.1300 0.0512 −0.0283 −0.1083 −0.1887 −0.2697 −0.3510 −0.4327 −0.5144

−12 γ1 0.7294 0.5175 0.3916 0.3055 0.2434 0.1967 0.1630 0.1374 0.1200 0.1082 0.1023 0.1010 0.1042 0.1110 0.1213 0.1344 0.1507 0.1687 0.1894
γ2 0.7836 0.7646 0.7101 0.6447 0.5748 0.5027 0.4292 0.3553 0.2809 0.2063 0.1313 0.0560 −0.0196 −0.0955 −0.1715 −0.2476 −0.3238 −0.3998 −0.4757

−14 γ1 0.6988 0.4832 0.3596 0.2778 0.2188 0.1761 0.1450 0.1237 0.1099 0.1018 0.0997 0.1020 0.1087 0.1189 0.1322 0.1488 0.1672 0.1883 0.2110
γ2 0.7673 0.7515 0.6970 0.6316 0.5620 0.4907 0.4190 0.3466 0.2743 0.2020 0.1296 0.0571 −0.0153 −0.0876 −0.1598 −0.2318 −0.3034 −0.3746 −0.4454

−16 γ1 0.6666 0.4471 0.3272 0.2471 0.1925 0.1542 0.1280 0.1107 0.1004 0.0967 0.0986 0.1047 0.1151 0.1287 0.1454 0.1647 0.1862 0.2096 0.2345
γ2 0.7514 0.7405 0.6846 0.6187 0.5489 0.4782 0.4069 0.3360 0.2652 0.1946 0.1242 0.0541 −0.0156 −0.0849 −0.1538 −0.2221 −0.2898 −0.3569 −0.4230

−18 γ1 0.6334 0.4116 0.2935 0.2189 0.1691 0.1349 0.1126 0.0994 0.0938 0.0947 0.1005 0.1106 0.1248 0.1421 0.1620 0.1843 0.2086 0.2340 0.2608
γ2 0.7340 0.7274 0.6707 0.6033 0.5335 0.4629 0.3923 0.3222 0.2525 0.1833 0.1145 0.0465 −0.0209 −0.0876 −0.1535 −0.2186 −0.2828 −0.3460 −0.4082

−20 γ1 0.6019 0.3791 0.2640 0.1936 0.1474 0.1188 0.1011 0.0929 0.0923 0.0974 0.1074 0.1220 0.1399 0.1605 0.1837 0.2088 0.2352 0.2627 0.2908
γ2 0.7081 0.7091 0.6520 0.5848 0.5146 0.4437 0.3737 0.3041 0.2353 0.1673 0.1001 0.0338 −0.0315 −0.0959 −0.1591 −0.2212 −0.2821 −0.3419 −0.4004

−22 γ1 0.5820 0.3530 0.2418 0.1758 0.1347 0.1103 0.0970 0.0942 0.0979 0.1076 0.1224 0.1407 0.1620 0.1861 0.2120 0.2393 0.2674 0.2965 0.3250
γ2 0.6604 0.6817 0.6267 0.5593 0.4894 0.4192 0.3496 0.2807 0.2128 0.1458 0.0801 0.0155 −0.0479 −0.1099 −0.1705 −0.2298 −0.2877 −0.3442 −0.3992

−24 γ1 0.5815 0.3435 0.2335 0.1706 0.1327 0.1129 0.1049 0.1058 0.1148 0.1288 0.1470 0.1691 0.1940 0.2201 0.2485 0.2766 0.3061 0.3352 0.3644
γ2 0.5743 0.6368 0.5890 0.5246 0.4561 0.3869 0.3182 0.2502 0.1833 0.1178 0.0536 −0.0091 −0.0705 −0.1299 −0.1883 −0.2445 −0.2995 −0.3527 −0.4044

−26 γ1 0.6147 0.3583 0.2443 0.1835 0.1475 0.1319 0.1285 0.1335 0.1454 0.1632 0.1848 0.2093 0.2356 0.2636 0.2929 0.3216 0.3517 0.3798 0.4086
γ2 0.4160 0.5636 0.5336 0.4757 0.4112 0.3440 0.2770 0.2108 0.1457 0.0820 0.0198 −0.0410 −0.0997 −0.1568 −0.2123 −0.2655 −0.3177 −0.3673 −0.4159

−28 γ1 0.6893 0.4098 0.2865 0.2220 0.1874 0.1738 0.1722 0.1796 0.1937 0.2135 0.2365 0.2620 0.2889 0.3169 0.3453 0.3733 0.4023 0.4290 0.4568
γ2 0.1465 0.4413 0.4477 0.4049 0.3483 0.2861 0.2229 0.1597 0.0974 0.0364 −0.0230 −0.0809 −0.1367 −0.1908 −0.2430 −0.2931 −0.3421 −0.3883 −0.4338

−30 γ1 0.7816 0.5056 0.3676 0.2942 0.2586 0.2415 0.2390 0.2466 0.2613 0.2804 0.3032 0.3268 0.3532 0.3785 0.4058 0.4311 0.4576 0.4824 0.5072
γ2 −0.1918 0.2405 0.3137 0.3010 0.2586 0.2070 0.1507 0.0929 0.0353 −0.0215 −0.0775 −0.1306 −0.1834 −0.2328 −0.2818 −0.3278 −0.3730 −0.4159 −0.4576

−32 γ1 0.8558 0.6346 0.4871 0.4033 0.3618 0.3382 0.3320 0.3356 0.3456 0.3621 0.3809 0.4022 0.4240 0.4477 0.4698 0.4939 0.5155 0.5375 0.5599
γ2 −0.4796 −0.0501 0.1115 0.1468 0.1294 0.0967 0.0526 0.0048 −0.0443 −0.0949 −0.1441 −0.1927 −0.2391 −0.2851 −0.3280 −0.3710 −0.4109 −0.4500 −0.4881

−34 γ1 0.9048 0.7493 0.6256 0.5376 0.4872 0.4547 0.4442 0.4398 0.4436 0.4543 0.4682 0.4837 0.5006 0.5194 0.5375 0.5570 0.5754 0.5938 0.6119
γ2 −0.6773 −0.3428 −0.1538 −0.0652 −0.0442 −0.0489 −0.0758 −0.1080 −0.1449 −0.1857 −0.2265 −0.2668 −0.3066 −0.3462 −0.3835 −0.4209 −0.4563 −0.4907 −0.5238

−36 γ1 0.9322 0.8326 0.7407 0.6680 0.6159 0.5835 0.5618 0.5475 0.5463 0.5482 0.5568 0.5687 0.5797 0.5924 0.6058 0.6201 0.6348 0.6503 0.6636
γ2 −0.7916 −0.5739 −0.4066 −0.3041 −0.2510 −0.2337 −0.2333 −0.2419 −0.2651 −0.2908 −0.3221 −0.3554 −0.3859 −0.4171 −0.4481 −0.4784 −0.5087 −0.5387 −0.5659

−38 γ1 0.9542 0.8838 0.8210 0.7675 0.7270 0.6905 0.6721 0.6490 0.6438 0.6435 0.6444 0.6453 0.6542 0.6659 0.6739 0.6819 0.6922 0.7035 0.7142
γ2 −0.8791 −0.7222 −0.5997 −0.5109 −0.4558 −0.4129 −0.4033 −0.3871 −0.3978 −0.4133 −0.4301 −0.4469 −0.4721 −0.4997 −0.5216 −0.5434 −0.5669 −0.5912 −0.6139

possible controller for this plant, but rather to use it as a

proof of concept for the desirable characteristics of this

non-linear approximation of a complex order controller.

4.1 The three-degree-of-freedom planar precision

“Spyder” stage

The precision planar positioning stage used for perfor-

mance validation is shown in Figure 7. Since SISO con-
trollers are being designed, only one of the actuators

(the one marked as 1A) was used, for position control

of mass number 3 attached to same actuator, thus re-

sulting in a SISO system. LM388 power amplifier is
used to power the actuator with position feedback of

resolution 100 nm, obtained through a Mercury M2000

linear encoder placed under the mass 3. A chirp signal

was applied to the system, and the frequency response

obtained is shown in Figure 8. From this frequency re-
sponse, the following transfer function model can be

found using Levy’s method [14]:

G(s) =
5.049× 104

s2 + 48.05s+ 7421
(33)

A complex order controller was designed for this system

for crossover frequency of 75 Hz (471.2 rad/s), accord-

ing to the details provided in the next subsection.

4.2 The controllers

The complex order controller designed for the crossover

frequency of 75 Hz (471.2 rad/s) includes an approxi-

mation Ĝ(s) ≈ s−0.5+j0.6064, thus corresponding to a

Fig. 7 A precision planar positioning stage named ‘Spyder’.
3 masses (indicated by the number 3) are actuated by voice
coil actuators 1A, 1B and 1C. These masses are constrained
using leaf flexures with additional flexures connecting them to
the central mass (indicated by 2). Position feedback is pro-
vided by linear encoders (indicated by 4) placed under the
masses labelled with number 3.

−10 dB/decade slope of the gain, and a 80◦/decade

slope of the phase. This approximation uses the control-

lable canonical form, with N = 2 poles and zeros in the
[23.5, 2356] rad/s frequency range, being thus expected

to be a good approximation in the [74.5, 745] rad/s fre-

quency range. The high frequency poles used to ensure

causality of the linear part are placed at 10 times the
crossover frequency, i.e. at 4712 rad/s. A PI controller

is also concatenated to Ĝ(s), to improve tracking per-

formance at low frequencies. The overall designed con-
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Fig. 8 Frequency response data of the system. Input: actu-
ator 1A. Output: position of mass 3 attached to the same
actuator.

troller is given by

C1(s) = Ĝ(s)
4.6202× 107(s+ 47.12)

s

(s+ 1325)(s+ 132.5)

(s+ 4712)2

(34)

where

Ĝ(s) =





✘✘✘✘✘✘✘✘✘✘✿Aρ
1

(s+ 41.9)(s+ 419)



 (35)

with

Aρ =

[

−0.351 0

0 0.1345

]

(36)

As a term of comparison, the following PID con-

troller was also designed for the same bandwidth, and

also ensuring the same phase margin is achieved by both

controllers:

C2(s) =
2.5708× 109(s+ 174)(s+ 47.12)

s(s+ 4.712× 104)(s+ 4712)(s+ 1276)
(37)

An experimental comparison with approximations ob-
tained with the methods from section 2 will not be pre-

sented, because from the approximations of s−0.5+j0.6064

got with those methods no good results can be ex-

pected. An approximation obtained with (5) has four

zeros and four poles; one of the poles is unstable. A rea-
sonable approximation obtained with (6) must have at

least six zeros and six poles, and still its performance is

poor. Compare this with the two (reset) poles of (35).

This is supported by Figure 9 that shows the Bode dia-
grams of the two approximations obtained with (5) and

(6), together with the describing function of the reset

approximation used to build (34).
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Fig. 9 Describing function of the reset approximation of
s−0.5+j0.6064 used to build (34), and Bode diagrams of the
corresponding approximations (5) and (6); gains were ad-
justed so that at bandwidth frequency 75 Hz all approxima-
tions have gain 0 dB.

Figure 10 compares the open loop with controller

(34), found with (18)–(23), with the open loop with

controller (37), showing that the phase margin is, in-
deed, the same. The effect of the positive slope of the

phase of the controller in the frequency range of design

can also be seen in this figure.
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Fig. 10 Open loop frequency response with both controllers.
Obtained using describing function of controller (34) and
Bode diagram of PID (37).

Both the controllers are discretised for a sampling

frequency of 20 kHz for implementation.

The next two sections present experiments to vali-

date the complex order controller. Its main character-
istics we wish to verify are: positive phase slope in the

region of cross over frequency, negative gain slope in

the same region and the extent to which higher order



10 Duarte Valério ∗ et al.

harmonics affect performance in closed-loop. Step re-

sponses obtained with system gain deviations are used

to verify the first and third; closed loop frequency re-

sponses are obtained to verify the first; finally, noise

attenuation performance is checked for the second and
third characteristics.

4.3 Experimental step responses

The step response for both controllers is obtained on

the precision positioning stage for a displacement step

of 10 µm and shown in Figure 11. Although the con-
trollers are designed to have the same phase margin, as

shown in Figure 10, the overshoot of the complex order

controller is less than that of the PID.
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Fig. 11 Step response obtained for both controllers

Furthermore, to validate the concept of robustness

to gain variations (which should result from an increased
phase margin for an increased system gain, in the case

of the complex order controller, as seen in Figure 10),

the gain of the system was increased so that the new

crossover frequency is 100 Hz. Since all other controller

parameters remain unchanged, this results in an in-
creased phase margin compared to the value at 75 Hz.

The controller gain was then decreased to obtain a

bandwidth of 55 Hz, resulting in a decreased phase mar-

gin. These changes in gain were also carried out for the
designed PID controller. However, in the case of the

PID, increasing the crossover frequency results in a re-

duced phase margin and vice-versa. The step responses

obtained in all the cases are shown in Figure 12.

The responses validate the complex order controller
behaviour, since the step response achieved at higher

crossover frequency results in a faster response, but

with lesser overshoot, indicating an increase in the phase
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Fig. 12 Step response of both controllers compared for
changes in bandwidth

margin of the system, while the opposite is true for re-

duced crossover frequency. It also validates the use of
describing function for both design and analysis of the

complex order controller behaviour achieved through

the nonlinear reset technique. The step responses of

PID are as expected from linear control theory.

4.4 Experimental frequency responses

The closed loop complementary sensitivity responses
are obtained for both the controllers at all three crossover

frequency values by applying a chirp reference. The ob-

tained plots, shown in Figure 13, further validate the

concept of complex order behaviour realised through re-

set. In the case of PID, an increase in bandwidth results
in a decrease in the phase margin and this is directly

seen in the complementary sensitivity as an increase in

peak. The opposite is true in the case of complex order

controller, for which a decrease in peak is seen.

4.5 Experimental responses in the presence of noise

The use of reset to achieve complex order behaviour
results in the introduction of higher order harmonics

which are not considered in the design or analysis of

the controllers. These harmonics may have negative ef-

fects on control performance especially in the case of

precision systems. This is especially true in the case of
noise attenuation which needs to be achieved for higher

frequency signals. To study the noise attenuation prop-

erties of the closed loop system, and verify if it cor-

responds to the desired frequency behaviour or if this
is prevented by high frequency harmonics, white noise

with a maximum amplitude of 5 µm is added into the

sensor signal. This is done for both PID and complex
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Fig. 13 Closed loop complementary sensitivity for designed PID and complex order controllers. The coherence value is also
plotted to show the reliability of obtained responses.

order controller, and for the three different bandwidths.
The resulting system response is shown in Figure 14.

The noise attenuation and hence steady state pre-

cision achieved in the presence of noise is significantly

better for complex order controller compared to PID.

Furthermore, in the case of PID, an increase in band-
width results in higher gain at higher frequencies and

hence reduced noise attenuation and vice-versa as seen

in the same figure. However, in the case of the com-

plex order controller, due to the nonlinear nature of
reset control used, no significant difference is seen in

the noise attenuation for different bandwidth values,

although the precision achieved is better than that of

the PID in all cases. Finally, from these results it is ap-
parent that the higher order harmonics present when

reset control is used do not have a negative influence

on noise attenuation.

5 Discussion and conclusions

Experimental results confirm that it is possible to im-
plement a stable, non-linear controller, that approxi-

mates, in a desired range of frequencies, the behaviour

of a complex derivative sα+jβ , α < 0, β > 0. The fre-

quency response of this complex derivative has the gain
decreasing with frequency, while the phase increases.

This additional phase lead provides at the same time

rejection of high frequency noise and lower overshoots in

time responses when the open-loop gain increases. The
describing function of the proposed non-linear approx-

imation is close to the desired frequency response over

more than one or two decades, depending on the num-

ber of reset poles employed. Larger frequency ranges

were not obtained because of numerical problems.

An experimental proof of concept, using a precision
planar positioning stage, confirmed the usefulness and

correctness of the expected results. What is more, these

experimental results show that the effects of higher har-

monics, resulting from the non-linearity of the controller,
and not considered by the describing function approach,

do not perturb the expected behaviour, be it of the

frequency responses, or of the time responses and the

corresponding overshoot, or of noise rejection.

The proposed approximation of a complex order

derivative overcomes the shortcomings of the alterna-
tives found in the literature, that either approximate

the desired phase behaviour but not the desired gain be-

haviour, or run the risk of having non-minimum phase

zeros or even unstable poles, both undesirable in a con-

trol loop.

While the experimental results were obtained solely
as a proof of concept, we expect in the future to be

able to develop high-performing controllers for indus-

trial problems where the specifications correspond to

those that can be obtained with complex order control.
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Fig. 14 System response to added noise.
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