
Reset Sequences for Finite Automata 
with Application to Design of Parts Orienters 

David Eppstein 

Computer Science Department 
Columbia University 

New York, NY 10027 

CUCS-297-87 

Natarajan reduced the problem of designing a certain type of mechanical parts 
orienter to that of finding reset sequences for monotonic deterministic finite au
tomata. He gave algorithms that in polynomial time either find such sequences 
or prove that no such sequence exists. In this paper we present a new algorithm 
based on breadth first search that runs in faster asymptotic time than Natara
jan's algorithms, and in addition finds the shortest possible reset sequence if 
such a sequence exists. We give tight bounds on the length of the minimum 
reset sequence. We further improve the time and space bounds of another algo
rithm given by Natarajan, which finds reset sequences for general automata in 
the special case that all states are initially possible. 

Keywords: a.utomated design of parts orienters, determlnistic finite automata, 
reset sequences, breadth first search 

October 31, 1987 



1 

In trod uction 

Natarajan [5] considered the design of automated parts orientersj that is, devices which accept 
mechanical parts in any orientation or in a wide class of orientations, and output them in some 

predetermined orientation. One such orienter is a pan handler, in which the part slides around on 
a tray as that tray is tilted, turning in a well·defined way when it hits the walls of the tray. These 

devices had been previously been described in [2] and [4]. 

For a given tray and object, and for a given set of possible initial orientations for the object, 
one has the problem of determining whether there is a sequence of tilt angles that will cause the 

object to always end up in the same orientation. Natarajan made the assumptions that the set of 
angles is finite, that the set of orientations in which the part can rest on a tray face is also finite, 

that tilting the tray with a given angle and with the object in a given initial orientation always 

results in the same final orientation, and that this relation between angles, initial orientations, 

and final orientations is known. \Vith these assumptions he reduced the problem to the following 
combinatorial one. 

One is given a deterministic finite automaton (S, E). S = {Sl' S2,"" sn} is the set of the states 
of the automaton, corresponding to orientations of the part to be oriented. E = {0"1' 0"2, ••• ,CTk} is 

the set of the transition functions of the automaton, which we also identify with the input alphabet; 

these functions correspond to the angles at which the pan may be tilted. One is further given a set 

of initial states, or orientations, XeS. 
In what follows, sequences of input symbols to the automaton will be denoted using the letter 

T. The effect of the input sequence T on the states of the automaton is given by the composition 

of the transition functions for each input symbol of Tj as with the input symbols themselves, we 

identify T with its effect as a transition function. Note that, if T = Tl T2, then T( s) = T2( Tl (s)). If 

T is the empty input sequence, T(S) = s. We denote the set of all possible input sequences by E·. 
The problem to which Natarajan reduced the pan handler problem is to find an input sequence 

TEE· such that JT(X)J = 1; that is, such that the application of T will leave the automaton in 

one particular state no matter which state in X it started at. We call T a reset sequence for (S, E) 

and X. 
In the special case that X = S, Natarajan gave an algorithm that finds a reset sequence if 

it exists. This algorithm takes O(kn4) time. The sequence produced is not guaranteed to be the 

shortest possible, but Natarajan bounded its length by O(kn3 ). As one of the results of this paper, 

we improve this algorithm to take time O(n3 + kn 2 ), and working space bounded by O(n2 ). We 

also prove a tighter bound of O( n3 ) on the length of the resulting sequence, and show that finding 

the minimum length reset sequence is NP-complete. 

It turns out that for general automata and general X, finding a reset sequence is PSPACE
complete. However Natarajan observed that the automata arising in the pan handler problem have 

.a property which he called monotonicity, and that with this property the problem becomes solvable 
in polynomial time. He gave algorithms with asymptotic time complexity O(kn4) (or O(kn3 10g n) 

when X = S), which find sequences of length at most O(kn3) (respectively O(kn2 log n)). The 

sequences found are again not guaranteed to be optimal. 
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This paper presents a new algorithm for finding reset sequences on monotonic automata, which 
takes time O(kn2) and is guaranteed to find the shortest possible sequence. Further, this leads to 

tight worst case bounds ofn2 -2n+ 1 on the number of input symbols in the optimal reset sequence. 
The algorithm works by defining a new automaton, the states of which correspond to intervals in 

the cyclic order of the original automaton's states. Reset sequences in the original automaton 

correspond to paths in the new automaton leading to a singleton interval. Therefore we can find 
our desired sequence using a simple bread th first search technique. 

Definitions and Lemmas 

First. we define monotonic automata. Assume that the states of a given deterministic finite au

tomaton (DFA) are arranged in some known cyclic order SI, S2,'" ,Sn' A transition function 
a is monotonic if it preserves the cyclic order of the states. Formally, the sequence of states 

a(sJ), a(s2)"'" a(sn), after removal of possible adjacent duplicate states, must be a subsequence 
of a cyclic permutation of SI, S2, ... ,Sn' If a set of transition functions is monotonic, then all 
compositions of those transition functions will also be monotonic. 

\Ve call an automaton monotonic when all of its transition functions are monotonic. From now 

on when we refer to the automaton (S, E) we will assume that it is monotonic. 

Next let us define an interval [Si,Sj]. This consists of all those states between Si and Sj 

(inclusive) in the cyclic order of the states; e.g., [SI,S3] = {SI,S2,S3}. Note that there are n 
different ways of representing the full set of states S as an interval lSi, si-dj any other set of states 
that can be represented as an interval has exactly one such representation. We say that an interval 

[Sh, sd is contained in another interval [Sg, Sj] when the endpoints of the intervals appear in the 
cyclic order Sg, Sh, Si, Sj. Containment as an interval implies containment as a set of states, but the 

reverse may be false in the case that the containing interval is all of S. 

Lemma 1. For all TEE-, and for any interval I, T-1 (1) is an interval. 

Proof: If not, there would be Sj I' Si1' SiJ' and Si. in cyclic order such that T( Sil) and T( Si3) 

are in I but r(si1 ) and r(si.) are not; but this violates monotonicity .• 

It turns out that, unlike the inverses of transition functions, the original transition functions of 
the DFA do not necessarily take intervals to intervals. However we can define a new set of transition 
functions, corresponding to the original ones, that do take intervals to intervals. For a E E, let 

a'([si, Sj]) be (1) [a(si), a(sj)] if a(s;) i- a(sj); (2) a([8i' sjD if this is a singleton; that is, if a maps 

the whole interval to one statej and (3) undefined otherwise. 

The new transition functions we have defined give us a new DFA (S x S, E') whose states are 

the intervals of the original automaton, and which takes the same input alphabet as the original 

automaton. Note that this DFA, which is of size O(kn2), can be constructed in time linear in its 

size. The only complication is how to determine whether the result of a transition in which the 

two endpoints are mapped to a single point should be that point or undefined. This can be done 
by first constructing for each a E E and S E S the interval a-I (s), which must exist by lemma 1. 

This construction takes time O(n), and there are O(kn) intervals to construct, so all such intervals 

can be constructed in time O(kn2). Then determining which transitions are undefined can be done 

in constant time, as follows. If the endpoints of interval I are mapped by a to the same state s, 
a'(1) is defined if and only if Ie a- 1(s). The containment above should be interpreted as being 
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between sets rather than as the interval containment defined earlier; it can be calculated using 

a constant number of comparisons between interval endpoints to determine interval containment, 

together with a test for the special case that 0'-1 (S) = S, which is the only case in which set and 
interval containment can differ. 

If T is a composition of transition functions O'jO'jO'k"', we define 1" to be the corresponding 
composition of interval transition functions O'iO'jO'~ . ". If any of the individual transitions in r'(I) 
is undefined, the result as a whole is also undefined. If r is the empty input sequence we define 

r'(I) = I. 
Lemma 2. For all 0' E E, and all intervals I, if 0"(1) is defined, then 0'(1) C 0"(1). 

Proof: Let 1= [Sj, Sj]. If O'(Sj) = O'(Sj), then O'(I) = 0"(1) = {O'(sd}, so we need only consider 
the case that 0' takes Sj and Sj to different states, in which case 0"(1) = [O'(Sj),O'(Sj)]. Now 

clearly both O'(sd and O'(Sj) are in [O'(sd,O'(Sj)]' For each remaining S E [Sj,Sj), if o-(s) = O'(sd 
or O'(s) = O'(Sj) then again O'(s) E [O'(sd,O'(sj»)' Otherwise O'(Sj), O'(s), and O'(Sj) are distinct, 
so monotonicity forces them to appear in that cyclic order; but this is the same as saying that 

O'(s) E [O'(sd,O'(sj)]' Thus all states in 0'(1) are contained in [O'(sd,O'(sj)]' • 

Lemma 3. For all r in E*, and all intervals I, if r'(I) is defined, then T(I) c 1"(1). 
Proof: We use induction on the length of r. If r is empty, r'(1) = I = r(1). Otherwise 

assume T = fO'; i.e., let 0' be the last input symbol of r. Then 7"'(I) and O"(f'(1») must be 
defined, or r'(I) would be undefined. By induction we have that f(l) C 7"'(1)j further, by lemma 2, 

0'(7"'(1) c 0"(7"'(1». Putting this together gives r(1) = O'(f(l» C 0'(7"'(1» c 0"(f'(I) = r'(1) .• 

Lemma 4. Given r E E*, and an in terval I such that r'(1) is defined, then for all intervals i C I, 
with containment as intervals rather than as sets, r'(1) is also defined and r'(1) C r'(1). 

Proof: We use induction on the length of T. If r is empty the lemma obviously holds, so assume 

r = fO'. By induction f'(1) C f'(I). Let f'(1) = [Sj,Sj]. If Sj = Sj, then O"([Sj,Sj)) is easily seen to 

satisfy the conditions of the lemma, so assume the two states are different. If O'(si) 1= O'(Sj), then 

by monotonicity these two states appear in the correct order within r'(1), and again the lemma 

is satisfied. The remaining case to check is that 0'( sd = 0'( S i), and that there is some state S in 

[Sj, sjl such that O'(s) 1= O'(Sj). But for this to occur without violating monotonicity, it must be 

that O'(s) ~ O"(f'(I), and since S E 7"'(1) this contradicts either lemma 2 or the assumption that 

r' (1) = 0" (f' (1» is defined .• 

Lemma 5. Given 0' E E, and states of the original automaton Sj and S j, if O"([Sj, sil) is undefined, 

then O"([s j, sd) is defined and a singleton. 

Proof: Assume for a contradiction that both O"([Sj, sil) and O"([Sj, sjD are undefined. Then 

we would have two states Sh E [Sj,Sj) and Sk E [sj,Sd, such that O'(Sh) 1= O'(sd = O'(Sj) 1= O'(S,I:). 
But these states occur in cyclic order Sj,Sh,Sj,Sk, so the above equalities and inequalities violate 

monotonicity. Therefore, if the conditions of the lemma hold, o-'([s i, sd) must be defined, and since 

O"([Sj,Sj)) is undefined O'(sd = O'(Sj) and O"([Sj,sd) is a singleton .• 

Lemma 6. For all 0' E E and all intervals i, if I is a representation of 0'-1(1) as an interval 

(which by lemma 1 must exist), and if I is not all of S, then 0-'(1) is defined and a subset of 1. 
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Proof: Let I = [Si,Sj). If al([Si,Sj)) were undefined, then al([sj,sd) would be defined and a 

singleton by lemma 5. But then a(S) = a(1U [sj,sd) = a(1) U a([sj,s;D C lu {a(sj)} = 1, which 

contradicts the assumption that I = a-1 (1) f; S. Therefore al (1) is defined. By the definition of I, 
a(s;) and a(sj) are both in 1; by monotonicity, they must appear in the correct cyclic order within 

that interval. It follows that a l (l) C 1 .• 

\Ve now prove the main lemma, which shows the equivalence between reset sequences in the 

original automaton and paths to a singleton in the interval automaton. 

Lemma 7. Given r E E-, then I r( X) I = 1 if and only if there is a representation of r- 1 (r( X)) 
as an interval I such that rl(1) is defined and ITI(1)1 = 1. 

Proof: If there is some such I then, by lemma 3, rl(1) :) r(I) :) reX), so Ir(X)1 = 1. In the 

other direction, assume we are given r and X with Ir(X)1 = 1. We want to find a representation 

of r-1(r(X)) as an interval meeting the terms of the lemma. We will use induction on the length 

of r. As the base case, if r is empty then X is itself a singleton interval satisfying the lemma. 

Otherwise let r = af; i.e., unlike the proofs of the previous lemmas let a be the first input 

symbol in r. Now f(a(X)) = reX) is a singleton, so by induction there is a representation of 

f- 1 ( f( a( X))) = f- 1 ( r( X)) as an interval 1 such that r (1) is defined and a singleton. Then 
r-l(r(X)) = a-1(1). 

First assume 1 = a-1(1) is not all of S. By lemma 6 we see that a l (1) C 1. Therefore, using 

lemma 4, rl (1) = fl ( al (1)) C fl (1) is defined and a singleton, as was to be shown. 

The remaining case is that a-1(1) = S. Choose the interval [s;, Sj) such that Sj and Sj are 

both in a(S) (and therefore also in 1), and also such that a(S) C [s;, Sj) C 1, with the first inclusion 

as sets and the second as intervals. This can be done by taking Sj to be the first member in 1 that 

is also in a(S), and Sj to be the last such member. 

N ow if Sj = S j, then a( S) = Sj, and any representation of S as an interval 1 will give us rl (1) 
defined and a singleton, satisfying the lemma. So assume Sj :f:. S j. This implies that a-I (s j) is not all 

of S, so by lemma 1 this set has a unique representation as an interval [Sh, Sk]. Using monotonicity 

and the fact that a(S) C [s;,Sj]' it can be shown that that a(sk+d = Sj. Therefore al([Sk+l,Sk]) is 

defined and equal to [Sj,Sj). By lemma 4 we see that r l([Sk+l,Sk]) = r([sj,sj]) C r(1) is defined 

and a singleton .• 

Reset Sequences for Monotonic Automata 

Theorem 1. A minimum length reset sequence for monotonic automaton (S, E) and initial states 

X = {Sjl,S;2""} can be found in time bounded by O(kn2). 
Proof: First one constructs the automaton (S x S, E/) as described above. By lemma 7, a 

minimum reset sequence for the original automaton will also be a minimum length path in the new 

automaton from some interval containing X to a singleton interval, and vice versa. By lemma 4, 

we need only consider starting from the minimal intervals containing X, rather than all intervals 

containing X; these minimal intervals can be found as [s;;' Sj;_J. Finally, the shortest path from 

one of these intervals to a singleton can be found using the standard breadth first search algorithm .• 

Theorem 2. If a minimum length reset sequence for monotonic automaton (S, E) and initial 

states X exists, its length is ~ n2 - 2n + 1. 
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Proof: The path constructed by the breadth first search in theorem 1 will visit each state of 

the constructed automaton at most once, and there are n 2 states. But in fact the sequence need 

involve at most one interval representing all of S, and at most one singleton; thus there are at least 

2n - 2 states not included in the minimum length path .• 

Theorem 3. For any n, there exists a monotonic automaton (S, E) with lSI = n, and a set 

of initial states X, such that the minimum length reset sequence for (S, E) and X has length 

n 2 
- 2n + 1. 

Proof: Name the sta.tes S1, S2, ... Sn, in that cyclic order. Let E consist of only two transition 

functions, 0"1 and 0"2. Let both functions take Sn to S1, but let 0"1 take all states Sj other than Sn 
to Sj+l, and let 0"2 take all states Sj other than Sn to themselves. "Ve take X = S. 

Assume we have a reset sequence 1', and define rj to be the prefix of l' consisting of the first i 

symbols of r. Also define lei) to be the length of the shortest interval containing all the states in 

rj(S). If by 11'1 we denote the number of input symbols in 1', then clearly 1(11'1) = 1. Finally, define 

t(j), for each j, to be the leasti such that l(i) ~ j. 

We prove below that, for each j < n - 1, t(j) ~ t(j + 1) + n; that is, there must be at least 

n input symbols processed between each point at which the shortest interval containing the states 

becomes shorter. The theorem then follows, because the total number of steps in the reset sequence 

must be at least n(n - 2) for the n - 2 gaps of n steps each, plus one initial step to reduce I(t) from 

n to n - 1. 

First note that, if j :I 1, the ith input symbol is 0"1, and ri(S) C [Sj,Sk], then ri-l(S) C 

[Sj-1,sk-tl. If j :I 1, the ith input symbol is 0"2, and rj(S) C [Sj,Sk], then rj-l(S) C [Sj,Sk]. 
Therefore, no matter what the input symbols of r are, if ri(S) C [Sj, Sk], we can see using induction 

that ri-j+1(S) C I for some interval I of length k - j + 1. 

Next observe that if the ith input symbol is 0"1, then lei - 1) = lei); therefore for each j the 

input symbol at position t(j) must be 0"2, and further it must be the case that rt(j)-l(S) C [sn,Sj]. 
U sing the previous observation we see that 1'( t(j) - n) C I for some interval I of length j + 1, and 

therefore t(j + 1) ~ t(j) - n as was to be proved. The theorem then follows as described above .• 

Various generalizations of the algorithms and bounds above may be taken. For instance, let 

us consider the case that what is desired as the result of the reset sequence is a particular state 

rather than just any single state. The same algorithm as in theorem 1, but with the breadth first 

search terminating only when it reaches the singleton interval corresponding to the desired state, 

will always find the minimum such reset sequence when it exists, again taking time O(kn2). The 

upper bound of theorem 2 must be relaxed to n2 - n, because it is now possible for the path in the 

interval automaton to go through all singleton intervals before it gets to the desired one. And the 

example used in theorem 3, with the desired singleton state being Sn, requires n2 - n steps for a 

reset sequence, showing that this new bound is tight. 

Reset Sequences for General Automata 

In this section we will relax the requirement that the automaton (S, E) be monotonic, and instead 

restrict our attention to reset sequences for all of S; that is, we will assume that the automaton 

may initially be in any of its states, rather than in a state drawn from some subset X of its states. 
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The reason that the case we study is easier than the general case is that we can never get stuck: 
if there exists a reset sequence T, then no matter what sequence T we have chosen already, TT will 

still be a reset sequence for the whole set. We can proceed by red ueing the size of f( S) a step at a 
time, without ever having to worry about backtracking. 

The following algorithm, due to Natarajan, works in the above manner to find a reset sequence 

for any automaton (S,E), with the initial set of states being all of S. The reset sequence it finds is 
not necessarily the shortest possible such sequence. We will put off describing the implementation 

details of some of the steps until later. 

Algorithm 1: 
begin 

end 

X+- Sj 
T +- the empty sequencej 
while IXI > 1 do begin 

pick Sj, Sj E X with Sj :f. Sj; 

find a sequence f taking Sj and Sj to the same state; 
X.- f(X); 
T +- Tfj 

end; 

Theorem 4. Assuming the steps in the loop of algorithm 1 can be computed, the algorithm 

terminates after O( n) repetitions of the loop, and finds a reset sequence for (S, E) if such a sequence 

exists. If the algorithm ever chooses a pair of states Sj, Sj such that no sequence T takes the two 
states to a single state, then no reset sequence exists. 

Proof: Each time through the loop, the size of X decreases by at least one; therefore the loop 

can be executed at most n times. 'When the size of X has decreased to one, T will then be a reset 

sequence. If any reset sequence T exists, it will a fortiori satisfy the conditions for f .• 

The two steps of the algorithm that take the most time are finding f and applying it to X. We 

now describe some preprocessing that allows these steps to be done quickly and with little space. 

Theorem 5. Algorithm 1 can be executed in time O(n3 + kn2 ). 

Proof: As in the monotonic case, we first form a new automaton of size O(kn2) and perform 

a breadth first search in it. The states of the new automaton consist of each (unordered) pair of 

states from the original automaton, together with one state for each of the original automaton's 

states. The result of applying any the original automaton's input symbols a to a pair of states 

(Sj, S j) will be (a( Sj), a( S j)); if a( sd = a( S j) then the result will be that singleton state. 

Before we run algorithm 1 itself, we perform a breadth first search on the new automaton. 

finding for each pair of original states (Sj,Sj) a shortest input sequence Tj,j taking that pair to 
a singleton state. This can be performed in time O(kn2), and the result can be represented as a 

shortest path forest in space O(n2 ); paths in this forest lead from each pair to a singleton, along the 

sequence of pairs found by applying each transition function in Tj,j successively to the pair (Sj, S j). 

In the following description we will call the above breadth first search stage 1. If we only desire 

to know whether there is a reset sequence, without needing to know what that reset sequence is, 
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then we may stop now, having taken time O(kn2 ): a reset sequence ex.ists if and only if for every 

pair (Sj,Sj) such a sequence Tj,j leading to a singleton can be found. 

Next, as stage 2 of our preprocessing, for each pair of states (Sj,Sj) and each state Sk of the 
original automaton, we compute Tj,j{Sk)' This is done by performing a pre-order traversal of the 

shortest path forest computed in stage 1. Whenever we visit a pair (Sj,Sj), we compute in constant 

time Tj,j(Sk), for all states Sk, as follows. Let Tj,j = O'Tg,h, where 0' is the first transition function 
in Tj,j, and O'«Sj,Sj)) = (Sg, Sh). If Sg = Sh let Tg,h be the empty sequence of transition functions, 
which corresponds to the identity function. Then Tj,j{Sk) = Tg,h(O'(Sk)) can be computed as one 
function evaluation of O'(Sk) followed by a table lookup of the value of Tg,h(O'(Sk)); because we are 
performing a pre-order traversal the latter value will have already been computed. Since there are 

O(n 3 ) computations to be performed, each taking constant time, the total time for this stage is 
O(n 3 ). 

Now we show how to perform the steps of the main algorithm described above. To find r for 

Sj and Sj, we simply look up Tj,j in the forest we calculated in the first stage; there are O(n2 ) pairs, 
so the shortest sequence Ti,j resulting in a singleton is at most O(n2 ) symbols long, and therefore 
this step takes time bounded by O(n 2 ). To find reX) we simply look up, for each member S of 

X, f(s) as calculated in the second stage; IXI ::; n so this step takes time O(n). The inner loop is 
executed O(n) times, so the execution of algorithm 1 as a whole takes time O(n3 + kn2 ), which is 

also the time taken by the preprocessing stages .• 

Recall that we claimed that we could reduce the working space used to O( n2 ) while keeping 
the time bounds described above. We do not count the length of the output sequence, for which 

the best bound we have is O( n3 ), as part of this space bound. 

The pair automaton we constructed would seem to take O( kn2 ) space, but in fact we need only 
to use constant storage space for each pair of the automaton, and construct the outgoing arcs from 

each pair as needed from the original automaton. A more serious obstacle to reducing the space is 

that the space required to store Ti,j(Sk) is O(n3
). However it turns out to be possible to reduce the 

space required, by keeping Tj,j(Sk) only for certain pairs (Sj,Sj) rather than all such pairs. First 

let us describe an algorithm to compute the pairs for which we will calculate the values of Ti,j' 

This algorithm is given as input a forest of size x, and a.nother integer para.meter y. It calculates 

a partition of the forest into O(xjy) subtrees, each of depth at most y. 

Algorithm 2: 
for each vertex v of the forest, in a post-order traversal, do begin 

size(v)-l; 

end 

for each vertex w such that (w, v) is an edge in the forest do 
if mark( w) = 0 then size ( v) - size( v) + size( w); 

if size(v) < y then mark(v) - 0; 
else mark(v) - 1; 

Lemma 8. Algorithm 2 takes time linear in x, the number of vertices in the forest it processes. 

After it has been executed, there will be at most xjy vertices v of the forest with mark(v) = 1. 

Further, if we break the outgoing link of each such marked vertex, no tree in the new forest so 

created will have depth greater than y. 
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Proof: The post-order traversal guarantees that size ( w) and mark( w) in the inner loop of the 
algorithm will have been calculated before we process vertex v. For each vertex v, size( v) computes 

the number of vertices in the subtree of unmarked vertices rooted at v. Each marked vertex has 

at least y - 1 unmarked vertices in its subtree, so there can be at most x/V marked vertices. If 
any tree of unmarked vertices rooted at a marked vertex had depth greater than y, the number 
of unmarked vertices on any path of length greater than y to the root would be enough to have 
caused one of the vertices along that path to have been marked; therefore the depth of each such 

tree is at most y .• 

Theorem 6. Algorithm 1 can be executed in time O(n3 + kn 2 ) as in theorem 5. using working 
space bounded by O( n 2 ). 

Proof: vVe compute stage 1 as before. But before performing stage 2, we run algorithm 2 on 

the shortest path forest computed in stage 1, with x being the number n(n + 1)/2 of pairs and 
singletons in the forest, and y equal to n, the number of states in the original automaton. 

In stage 2 we now only compute li,Ask) for those pairs (sj, Sj) that were marked by algorithm 2. 
Again we will process each such pair in order by a pre-order traversal of the forest. We first compute 

the shortest prefix of li,j that takes (Si' S j) to another marked pair (Sg, Sh); call this shortest prefix 
f. By lemma 8, the number of transition functions in f is at most n. Then li,j(Sk) = Ig,h(f(Sk)), 

which can be computed with at most n function evaluations followed by a table lookup. Using 

lemma 8 again we see that there are at most O(n) marked pairs, and for each such pair we have to 

perform n computations each taking time O(n), so the total time for the new version of stage 2 is 

again bounded by O(n3). We store li,j(Sk) for only O(n) pairs (Si,Sj), so the total space used is 

bounded by O(n2 ). 

In algorithm 1 itself, the only changed step is in computing li,j(X), Here (Si, Sj) might not 

be marked, but as in stage 2 we can find a shortest prefix f of li,j taking (Si, Sj) to a marked pair 
(Sg,Sh). Again f has length at most n, so for each member S of X we can find li,j(S) = Ig,h(f(s)) 

by O(n) function evaluations followed by a table lookup. The entire computation of Ti,j(X) takes 

time bounded by O(n2 ), which does not reduce the running time of the algorithm from that of 
theorem 5 by more than a constant factor .• 

Theorem 7. The reset sequence found by algorithm 1, as implemented in theorems 5 and 6, has 
length at most O( n3 ). 

Proof: There are O(nl) pairs and singletons in the derived automaton, so each li,j has length 
bounded by O( n l ). The reset sequence as a whole is the concatenation of at most n such sequences, 

so its length is bounded by O(n3 ) •• 

A more exact analysis shows that, if the pair (Si,Sj) is always chosen to have the shortest 

sequence li,j among all pairs remaining in X, which can be done within the same asymptotic time 

and space bounds as before, the length of the resulting reset sequence will be at most n 3 /3 - n2 + 
5n/3 - 1. • 

Theorem 8. Finding the shortest possible reset sequence for an automaton is NP-complete. 

Proof: More precisely the problem is, given an automaton and an integer parameter m, to test 

whether the automaton has a reset sequence of length less than or equal to m. By theorem 7, such 
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a sequence need have at most polynomial length, so the problem is in N P. We prove completeness 

by reducing 3-SAT [1] to the problem. 
Assume we are given a satisfiability problem in conjunctive normal form, with m variables 

XI. X2, ... X m , and with n clauses. The automaton we construct will need only two transition 
functions 0'1 and 0'2. There will always be a reset sequence of length m + 1 (in fact any input 

sequence of that length will reset the automaton), but any reset sequence of length m or less will 
correspond to a satisfying assignment. The assignment is constructed by letting x j be true if the 

jth input symbol of the reset sequence is 0'1, or false if the jth input symbol is 0'2. Conversely the 

opposite transformation will produce a reset sequence of length m from any satisfying assignment. 

The automaton itself is constructed as follows. It will have one special state r, and mn + m 

other states 8i,j for 1 ~ i ~ nand 1 ~ j ~ m + 1. For all states 8i,m+1, and for state r, both 
transition functions will lead to state r. If the ith clause of the formula contains x j, 0'1 will take 

state 8i,j to r; if that clause contains Xj, 0'2 will take 8i,j to r. We call these transitions to r from 

states other than 8i,m+l shortcuts. All remaining transitions take 8i,j to 8i,j+1' 

It can be seen that, as we stated above, any input sequence will take all states to r in at most 
m + 1 steps. Further, all states except 8i,1 will always be taken to r in m steps, so we need only 
concern ourselves with the former states. If a reset sequence of length m or less exists, then each 

of these initial states 8i,1 must be taken by that sequence across a shortcut transition, because 

otherwise an initial state 8i,1 would progress through all the states 8i,j before reaching r, and that 

would take m + 1 steps. 

The variable assignment computed from the reset sequence must have a true variable in each 

clause, corresponding to the shortcut taken by the initial state corresponding to that clause. Thus 
we see that a satisfying assignment to the formula can be derived from a short reset sequence. 

Conversely, if an assignment satisfies the formula, the derived input sequence would cause each 

initial state 8i,1 to take a shortcut corresponding to the first true variable in the corresponding 
clause, and we would have a reset sequence of length m. Thus we see that the formula will be 

satisfiable if and only if the derived automaton has a short reset sequence .• 

Conclusions and Open Problems 

We have shown that, given a monotonic DFA and a set ofinitial states it may be in, we can construct 

a minimum length sequence (if one exists) that takes all the initial states to one particular state. 

This construction can be performed in time bounded by O(kn2 ). Further, we have shown that the 

length of the resulting sequence is at most n2 - 2n + 1; there are DFAs for which the minimum 

reset sequence exists and is this long, so this bound is tight. 

\Ve have also shown that, in the general case in which the automaton is not monotonic, we can 

still find a reset sequence for all of S in time bounded by O(n3 + kn2 ) and working space bounded 

by O(n2
). The length of the resulting sequence is not necessarily optimal, but is bounded by O(n3 ). 

Some questions remain open. For instance, the algorithm for monotonic automata may be 
performed in polylogarithmic parallel time using Kucera's breadth first search algorithm [3], and 

similarly we may perform the preprocessing in stages 1 and 2 of our algorithm for general automata 

in NC. But the main part of the latter algorithm seems to be inherently sequential; a natural 

question is whether it too can be performed in parallel, or whether some other algorithm exists 

--- ------
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that can find reset sequences in parallel. A partial result in this direction is that a reset sequence 

can be found in random NC; this can be done by choosing a long random sequence of pairs of states 

(Sj, S j) and concatenating the sequences Tj,j that take each random pair to a singleton. If there are 
at least n3 pairs in the random sequence, then with very high probability the corresponding input 
sequence will be a reset sequence, and this can be tested in parallel. 

Another open problem is the gap between the O( n3 ) upper bound on the length of reset 
sequences for general automata, and the f!( n 2 ) lower bound given for the special case of monotonic 
automata. 
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