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Abstract. A new public-key model for resettable zero-knowledge (rZK)
protocols, which is an extension and generalization of the upper-
bounded public-key (UPK) model introduced by Micali and Reyzin [Eu-
roCrypt’01, pp. 373-393], is introduced and is named weak public-key
(WPK) model. The motivations and applications of the WPK model are
justified in the distributed smart-card/server setting and it seems more
preferable in practice, especially in E-commerce over Internet. In this
WPK model a 3-round (optimal) black-box resettable zero-knowledge
argument with concurrent soundness for NP is presented assuming the
security of RSA with large exponents against subexponential-time ad-
versaries. Our result improves Micali and Reyzin’s result of resettable
zero-knowledge argument with concurrent soundness for AP in the UPK
model. Note that although Micali and Reyzin’ protocol satisfies concur-
rent soundness in the UPK model, but it does not satisfy even sequential
soundness in our WPK model.

Our protocol works in a somewhat “parallel repetition” manner to reduce
the error probability and the black-box zero-knowledge simulator works
in strict polynomial time rather than expected polynomial time. The
critical tools used are: verifiable random functions introduced by Micali,
Rabin and Vadhan [FOCS’99, pp. 120-130], zap presented by Dwork and
Naor [FOCS’00, pp. 283-293] and complexity leveraging introduced by
Canetti, Goldreich, Goldwasser and Micali [STOC’00, pp. 235-244].

1 Introduction

The strongest notion of zero-knowledge to date, resettable zero-knowledge (rZK),
was recently put forward by Canetti, Goldreich, Goldwasser and Micali [g].
Roughly speaking, an rZK protocol is an interactive system in which a veri-
fier learns nothing (except for the verity of a given statement) even if he can
interact with the prover polynomial many times, each time restarting an in-
teraction with the prover using the same configuration and random tape. rZK

E. Biham (Ed.): EUROCRYPT 2003, LNCS 2656, pp. 123-[139] 2003.
© International Association for Cryptologic Research 2003



124 Y. Zhao et al.

enlarges the number of physical ways to implement zero-knowledge protocols
while guaranteeing security is preserved. For example, rZK makes it possible to
implement the zero-knowledge prover by using those devices that may be possi-
bly (maliciously) resetted to their initial conditions or can not afford to generate
fresh randomness for each new invocation. An example of those devices is the
ordinary smart card. rZK is also guaranteed to preserve the prover’s security
when the protocol is executed concurrently in an asynchronous network like the
Internet. Actually, rZK is a generalization and strengthening of the notion of
concurrent zero-knowledge introduced by Dwork, Naor and Sahai [12].

1.1 Previous Results

Under standard complexity assumptions, non-constant-round resettable zero-
knowledge proof for NP was constructed in [8]22] by properly modifying the
concurrent zero-knowledge protocol of Richardson and Killian [2§]. Unfortu-
nately, there are no constant-round rZK protocols in the standard model, at
least for the black-box case, as shown by Canetti, Killian, Petrank and Rosen
[9]. To get constant-round resettable zero-knowledge protocols Canetti, Goldre-
ich, Goldwasser and Micali [8] introduced an appealingly simple model, the bare
public-key (BPK) model, and presented a 5-round rZK argument for A'P in this
model. The round complexity was further reduced to four by Micali and Reyzin
[24].

A protocol in the BPK model simply assumes that all verifiers have deposited
a public key in a public file before any interaction among the users. This public
file is accessible to all users at all times. Note that an adversary may deposit
many (possibly invalid) public keys in it, particularly, without even knowing
corresponding secret keys or whether such exist. We remark that the BPK model
is a weak version of the frequently used Public-Key Infrastructure (PKI) model,
which underlies any public key cryptosystem or digital signature.

Resettable zero-knowledge protocols also shed hope on finding ID schemes
secure against resetting attack. Feige, Fiat and Shamir [16/14] introduced a
paradigm for ID schemes based on the notion of zero-knowledge proof of knowl-
edge. In essence, a prover identifies himself by convincing the verifier of knowing
a given secret. Almost all subsequent ID schemes followed this paradigm, and
were traditionally implemented by the prover being a smart card. However, up
to the emergence of rZK all the previous Fiat-Shamir like ID schemes fail to
secure whenever the prover is resettable. Using constant-round rZK protocols
in the BPK model above, Bellare, et al. [3] provided identification protocols se-
cure against resetting attack. Unfortunately, there is a main disadvantage of this
rZK-based solution since it only preserves the identity prover’s security but does
not guarantee to preserve any security of the identity verifier when the iden-
tification protocol is concurrently executed in an asynchronous setting like the
Internet. Actually, if an adversary is allowed to concurrently interact with the
identity verifiers then the adversary can easily impersonate the identity prover.
The reason is just that the underlying resettable zero-knowledge protocols in the
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BPK model [8124] do not guarantee to preserve verifier’s security when they are
concurrently executed.

The various security notions of the verifier in public-key models were first
noted and clarified by Micali and Reyzin [24)27]. In public-key models, a verifier
V has a secret key SK, corresponding to its public-key PK. A malicious prover
P* could potentially gain some knowledge about SK from an interaction with
the verifier. This gained knowledge might help him to convince the verifier of a
false theorem in another interaction. In [24] four soundness notions in public-key
models were defined in which each implies the previous one: one-time soundness,
sequential soundness, concurrent soundness, resettable soundness. In this paper
we focus on concurrent soundness which roughly means that a malicious prover
P* can not convince the honest verifier V' of a false statement even P* is al-
lowed multiple interleaved interactions with V. As discussed above, resettable
zero-knowledge protocols with concurrent soundness are really desirable in most
smart-card and Internet based applications. Unfortunately, up to now we do
not know how to construct resettable zero-knowledge protocols with concurrent
soundness for NP in the BPK model. In a stronger version of BPK model intro-
duced by Micali and Reyzin [25] in which each public-key of an honest verifier
is restricted to be used at most a priori bounded polynomial times, the upper-
bounded public-key (UPK) model, Micali and Reyzin gave a 3-round black-box
rZK argument with sequential soundness for NP in the UPK model [25]. And
Reyzin [27] further proved that it also satisfies concurrent soundness in the UPK
model.

Regarding the round-complexity of resettable zero-knowledge protocols for
NP in public-key models, Micali and Reyzin [24]25] showed that any (resettable
or not) black-box zero-knowledge protocol in public-key models for a language
outside of BPP requires at least three rounds (using an earlier result of Goldreich
and Kraczwyck [20]). For efficient 4-round zero-knowledge protocols for NP,
readers are referred to [7]. We also note that 2-round public-coin black-box and
concurrent zero-knowledge protocols for NP do exist under the assumption that
the prover is resource bounded[13]. Here, resource bounded prover means that
during protocol execution the prover uses certain limited amount of (say, a-priori
polynomial bounded) time or non-uniform advice.

1.2 Owur Contributions

In this paper, we introduce a new public-key model for resettable zero-knowledge
(rZK) protocols, which we name it weak public-key (WPK) model. Roughly
speaking, in the WPK model the public-key of an honest verifier V' can be used
by an (even malicious) prover P* for any polynomial times just as allowed in
the BPK model. But for each theorem statement x selected by P* on the fly x
is restricted to be used at most a priori bounded polynomial times with respect
to the same verifier’s public key. Note that if the same verifier’s public-key is
restricted to be used at most a priori bounded polynomial times just as required
in the UPK model then for each common input z selected by P* x is also
restricted to be used at most a priori bounded polynomial times with respect
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to the same verifier’s public key. It means the WPK model is an extension and
generalization of the UPK model. Really, the WPK model just lies between the
BPK model and the UPK model. That is, the WPK model is stronger than the
BPK model but weaker than the UPK model.

The main result of this paper is a 3-round black-box resettable zero-
knowledge argument with concurrent soundness for NP in the WPK model.
The round complexity is optimal according to Micali and Reyzin’s result. In
comparison with Micali and Reyzin’s 3-round rZK argument with concurrent
soundness for AP in the UPK model [25], we remark that our protocol in the
WPK model is also an rZK argument with concurrent soundness for AP in
the UPK model since the WPK model is an extension and generalization of the
UPK model. But, the concurrent soundness of Micali and Reyzin’s protocol is
not preserved in our WPK model. The reason is that the concurrent soundness
of Micali and Reyzin’s protocol relies on the restriction that the public-key of
V' can not be used by P* more than a priori bounded polynomial times and
without this restriction P* can easily cheat V with non-negligible probability
(even with probability 1). Since this restriction is removed in our WPK model,
it means that Micali and Reyzin’s protocol not only does not satisfy concurrent
soundness in our WPK model but also even does not satisfy sequential sound-
ness in the WPK model. Our protocol can be viewed as an improvement and
extension of Micali and Reyzin’ result.

Motivations, applications, and implementation of the WPK model. As
an extension and generalization of the UPK model, roughly speaking, almost all
the ways to implement the UPK model [25] can also be used to implement our
WPK model. A simple way is to just let the honest verifier to keep a counter
for each common input on which he has been invoked. This is an extension of
the implementation of the UPK model in which an honest verifier keeps a single
counter for all common inputs (selected on the fly by a malicious prover) on
which he has been invoked.

Note that one of the major applications of resettable zero-knowledge is that
it makes it possible to implement zero-knowledge prover by those devices that
may be possibly maliciously resetted to their initial conditions or can not afford
to generate fresh randomness for each invocation. The most notable example of
such devices is the widely used smart card. Also as argued above resettable zero-
knowledge provides the basis for identification protocols secure against resetting
attacks [3]. Then we consider the distributed client/server setting in which the
clients are implemented by smart cards. We remark that this setting is widely
used in practice, especially in E-commerce over Internet. When a resettable
identification protocol is executed in this distributed smart-card/server setting
we view the identity of each smart-card as the common input. An adversary may
hold many (any polynomial number of) smart-cards but in our WPK model we
require that each smart-card can be used by the adversary at most a priori
polynomial times. Note that in practice each smart-card has an expiry date that
corresponds to in some level the a-priori bounded polynomial restriction required
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in our WPK model. We remark that in this distributed smart-card /server setting
there usually exists a central server that may be located in a central bank or
other organizations and plays the verifier’s role. In practice the central server
keeps a record for each smart card and dynamically updates its information. It
is easy for this central server to keep a counter in each record to remember how
many times the corresponding smart-card has been used. We stress that in this
distributed smart-card /server setting since the server (verifier) may be invoked
and interacted concurrently with many smart-cards, the design of rZK protocols
with concurrent soundness in the WPK model is really desirable.

1.3 Organization of This Paper

In Section 2, we recall the tools we will use in this paper. In Section 3, we provide
the formal description of the WPK model. In Section 4, we present the 3-round
black-box resettable zero-knowledge argument with concurrent soundness for
NP in the WPK model.

2 Preliminaries

In this section, we present some main tools used in this paper. However, one
critical tool, zap presented in [11], is absent from this section and is provided in
Section 3 together with the definition of resettable witness indistinguishability.
We remark that all these tools can be constructed assuming the security of RSA
with large prime exponents against subexponential-time adversaries.

Definition 1 (one-round perfect-binding commitments). A one-round
perfect-binding commitment scheme is a pair of probabilistic polynomial-time

(PPT) algorithms, denoted (C, R), satisfying:

— Completeness. Yk, Vv, let ¢ = C,s, (1%, v) and d = (v, s,), where C is a

PPT commitment algorithm while using s, as its randomness and d is the

corresponding decommitment to ¢, it holds that Pr[(c, d) & C(1%, v) :

R(1*, ¢, v, d) = YES| = 1, where k is security parameter.

— Computational hiding. For every v, u of equal p(k)-length, where p is a posi-
tive polynomial and k is security parameter, the random variables C,, (1%, v)
and Cs, (1%, u) are computationally indistinguishable.

— Perfect binding. For every v, u of equal p(k)-length, the random wvariables
C,, (1%, v) and C,, (1%, u) have disjoint support. That is, for every v, u and
m, if Pr[Cs, (1%, v) = m] and Pr[C,, (1%, u) = m] are both positive then
u=v and S, = Sy.

A one-round perfect-binding commitment scheme can be constructed based
on any one-way permutation [17].

Definition 2 (Pseudorandom Functions PRF [19]). A pseudorandom
function family is a keyed family of efficiently computable functions, such that
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a function picked at random from the family is indistinguishable (via oracle ac-
cess) from a truly random function with the same domain and range. Formally,
a function PRF: {0,1}" x {0,1}* — {0,1}" is a pseudorandom function if for
all 2" -size adversaries ADV, the following difference is negligible in n.:

’Pr [PRFKey <™ {0,1}" : ADY PRF(PRIKer. ) ]
—hr [F 5 ({0,131 ADVTO) = 1} ‘
The value « is called the pseudorandomness constant.

Definition 3 (non-interactive zero-knowledge NIZK [24]). Let NIP and
NIV be two probabilistic interactive machines, and let NIoLen be a positive
polynomial. We say that < NIT, NIV > is an NIZK proof system for an NP
language L, if the following conditions hold:

— Completeness. For any x € L of length n, any o of length NIoLen(n),

and N'P-witness y for x € L, it holds that Pr[Il L NIP(o, x, y) :
NIV (o, z, II)
= YES| =1.

— Soundness. Vx ¢ L of length n, Pr[o £ {0, 1}NIeken(n) . 3 [T 5. ¢,
NIV (o,x,II) = YES| is negligible in n.

— Zero-Knowledge. 3 o > 0 and a PPT simulator NIS' such that, V sufficiently
large n, Vx € L of length n and N'P-witness y for x € L, the following two
distributions are indistinguishable by any 2" -gate adversary:

(0", IT') <&~ NIS(z): (¢, I'] and
[0 <& {0, 1}VIoLen(), T L2 NTP(o, 2, y) : (0, IT)].
The value « is called the NIZK constant.

Non-interactive zero-knowledge proof systems for NP can be constructed
based on any one-way permutation [I5] and one-way permutations can be con-
structed in turn under RSA assumption [I8]. An efficient implementation based
on any one-way permutation can be found in [21]. For more recent advances in
NIZK readers are referred to [10].

2.1 Verifiable Random Functions

A family of verifiable random functions (VRF), first introduced in [26], is es-
sentially a pseudorandom function family with an additional property that the
correct value of a function on an input can not only be computed by the owner
of the seed, but also be proven to be the unique correct value. The proof can be
verified by anyone who knows the public-key corresponding to the seed.

Definition 4 (Verifiable Random Functions). Let VRFGen, VRFEval,
VRFProve and VRFVer be polynomial-time algorithms (the first and the last are
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probabilistic, and the middle two are deterministic). Let a : N — N U {0,1}*
and b : N — N be any two functions that are computable in time poly(k) and
bounded by a polynomial in k (except when a takes on {0,1}*).

We say that (VRFGen, VRFEval, VRFProve, VRFVer) is a verifiable pseu-
dorandom function (VRF') with input length a(k) and output length b(k) under
a security parameter k if the following properties hold:

1. The following two conditions hold with probability 1 — 2=2() gyer the choice
of
(VRFPK,VRFSK) < VRFGen(1*):
a) (Domain-Range Correctness):

va € {0,1}°%) VRFEval(VRFSK, z) € {0,1}%®),

b) (Complete Probability): Vo € {0,1}*%) ifv = VRFEval(VRFSK,z) and
pf = VRFProve(VRFSK, x), then

Pr[VRFVer(V RFPK, x,v,pf) = YES| > 1 —279®)

(This probability is over the coin tosses of VRFVer).
2. (Unique Probability) For every VRFPK, x,v1,v2, pf1,pf2 such that vy # va,

the following holds for either i =1 ori = 2:
Pr[VRFVer(V RFPK, x,v;,pf;) = YES] < 27°®)

(This probability is over the coin tosses of VRFVer).

3. (Residual Pseudorandomness): Let o > 0 be a constant. Let T = (Tg,Ty)
be any pair of algorithms such that Tg(-,-) and Ty(-,-) run for a total of
at most 25° steps when their first input is 1. Then the probability that T

succeeds in the following experiment is at most 1/2 4+ 1/2F"
a) Run VRFGen(1%) to obtain (VRFPK,VRFSK).

b) Run TEVRFEWL(VRFSK’ ), VRiProve(V RFSK, ')(lk, VRFPK) to obtain the pair
(z, state).

¢) Choose r &£ {0,1}.

— if r =0, let v = VRFEval(VRFSK, x)
— if r =1, choose v £ 0,1}0%)

d) Run T;RFEV&Z(VRFSK’ ), VRFProve(V RFSK, ')(1’“, VRFPK,v, state) to obtain
a guess.

e) T = (Tg,Ty) succeeds if = € {0,1}*%) guess = r, and = was
not asked by either Ty or T; as a query to VRFEval(VRFSK,-) or
VRFProve(VRFSK,-).

We call a the pseudorandommness constant.

The above verifiable pseudorandom functions can be constructed assuming
RSA with large prime exponents against subexponential-time adversaries [26].
Very recently, a new construction of VRF was provided by Lysyanskaya on an
assumption about groups in which decisional Diffie-Hellman is easy, but compu-
tational Diffie-Hellman is hard [23]. We remark that up to now the first appli-
cation of VRF, as suggested by Micali and Reyzin, is the simple construction of
an rZK argument with one-time soundness for NP in the BPK model [24]. Our
result can be viewed as another major application of VRF.
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3 The Weak Public-Key (WPK) Model

In this section, we present the formal definitions of resettable zero-knowledge
and concurrent soundness in our WPK model.

3.1 Honest Players in the WPK Model
The WPK model consists of the following:

— F be a public-key file that is a polynomial-size collection of records
(id, PK;q), where id is a string identifying a verifier and PK;4 is its (al-
leged) public-key.

— P(1™,z,y, F,id,w) be an honest prover that is a polynomial-time interactive
machine, where 1" is a security parameter, x is an n-bit string in L, y is
an auxiliary input, F' is a public-file, id is a verifier identity, and w is his
random-tape.

— V be an honest verifier that is an polynomial-time interactive machine work-
ing in two stages.

1. Key generation stage. V', on a security parameter 1™ and a random-tape
r, outputs a public-key PK and remembers the corresponding secret key
SK.

2. Verification stage. V', on inputs SK, z € {0,1}" and a random tape p,
performs an interactive protocol with a prover and outputs “accept z”
or “reject x”. We stress that in our WPK model for each common input
2 on which the verification stage of V' has been invoked the honest veri-
fier V keeps a counter in secret with upperbound U(n), a priori bounded
polynomial, to remember how many times the verification stage has been
invoked on the same z and refuses to participate in other interactions
with respect to the same x once the counter reading reaches its upper-
bound U(n). It means that each common input x can not be used (even
by a malicious prover) more than U(n) times with respect to the same
PK,;q, where id is the identity of the honest verifier V.

3.2 The Malicious Resetting Verifier and Resettable
Zero-Knowledge

A malicious (s, t)-resetting malicious verifier V*, where ¢t and s are positive
polynomials, is a t(n)-time TM working in two stages so that, on input 17,

Stage 1. V* receives s(n) distinct strings x1,--- , 24, of length n each, and
outputs an arbitrary public-file F' and a list of (without loss of generality)
s(n) identities idy, - - - ,idg(y).

Stage 2. Starting from the final configuration of Stage 1, s(n) random tapes,
Wi, , We(n), are randomly selected and then fixed for P, resulting in s(n)?
deterministic prover strategies P(x;,id;,wy), 1 < 4,5,k < s(n). V* is then
given oracle access to these s(n)? provers, and finally outputs its “view” of
the interactions (i. e. its random tape and messages received from all his
oracles).
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Definition 5 (Black-box Resettable Zero-Knowledge). A protocol <
P,V > is black-box resettable zero-knowledge for a language L € NP if there
exists a black-box simulator M such that for every (s,t)-resetting verifier V*,
the following two probability distributions are indistinguishable. Let each distri-
butions be indexed by a sequence of common distinct inputs T =1, -+, Tyn) €
LN {0,1}" and their corresponding N P-witnesses aux(T) = y1,- -+ ,Ys(n)-

Distribution 1. The output of V* obtained from the experiment of choosing
Wi, Wen) uniformly at random, running the first stage of V* to obtain
F, and then letting V* interact in its second stage with the following s(n)3
instances of P: P(x;,y;, F,id;,wy) for 1 <1i,j,k < s(n). Note that V* can
oracle access to these s(n)® instances of P.

Distribution 2. The output of MV*(xl, S Tg(n))-

Remark 1. In Distribution 1 above, since V* oracle accesses to s(n)° instances

P: P(x;,yi, Fyidj,wy), 1 < 4,5,k < s(n), it means that V* may invoke and

interact with the same P(x;,y;, F,id;, w) multiple times, where each such in-

teraction is called a session. We remark that there are two versions for V* works

in Distribution 1.

3

1. Sequential version. In this version, a session must be terminated (ei-
ther completed or aborted) before V* initiating a new session. That
is, V* is required to terminate its current interaction with the cur-
rent oracle P(x;,y;, F,id;,wy) before starting an interaction with any
P(zy,yy, F,idj,wy), regardless of (4,,k) = (¢,4',k") or not. Thus, the
activity of V* proceeds in rounds. In each round it selects one of his oracles
and conducts a complete interaction with it.

2. Interleaving version. In this version the above restriction is removed and so
V* may initiate and interact with P(z;,y;, F,id;, wy)s concurrently in many
sessions. That is, we allow V* to send arbitrary messages to each of the
P(x;,y, F,id;,w) and obtain the response of P(z;,y;, F,id;, wy) to such
message.

However, these two versions are equivalent as shown in [§]. In other words,
interleaving interactions do not help the malicious verifier get more advantages
on learning knowledge from his oracles than he can do by sequential interactions.
Without loss of generality, in the rest of this paper we assume the resetting
malicious verifier V* works in the sequential version.

Definition 6 (Resettable Witness Indistinguishability rWTI). A protocol
< P,V > is said to be resettable witness indistinguishable for an L € NP if
for every pair of positive polynomials (s,t), for every (s,t)-resetting malicious
verifier V*, two distribution ensembles of Distribution 1 (defined in Definition
), which are indexed by the same T but possibly different sequence of prover’s
NP-witnesses : auz™ (z) = y%l), e ,yia) and auz® (z) = yiQ), e ,yii)z), are
computationally indistinguishable.

In [8] Canetti et al. first gave a 4-round rWI for N"P. The round-complexity

is drastically reduced to 2 by Dwork and Naor [I1], where they named such a
2-round WI a zap.



132 Y. Zhao et al.

Dwork and Naor’s 2-round rWI proof for NP [11]. The prover P has
a private random string s that determines a pseudorandom function f,. Let L
be an N'P-Complete language and Ry, be its corresponding NP relation. Under
a security parameter n, let p be a positive polynomial and = € {0,1}" be the
common input and y be the corresponding NP-witness (kept in secret by the
prover) for z € L.

Step 1. The verifier V' uniformly selects (fixes once and for all) p(n) random
strings Ry = (Rv;, Ryy, -+, Ry,,(,,) with length NIoLen(n) each and sends
them to P.

Step 2. Let fi(z,y,Ry) = (11,72, -+ ,Tpn), Rp), where the length of Rp is
also NIoLen(n). For each i, 1 < i < p(n), on = and y, P uses r; as its
randomness to compute an NIZK proof II; with respect to common random
string Rp @ Ry,. In the rest of this paper we denote by II; NIZK (z, Rp ®
Ry,), 1 <i < p(n). Finally P sends Rp along with all the p(n) NIZK proofs
to V.

An interesting property of Dwork and Naor’s 2-round rWTI is that Ry in Step
1 can be fixed once and for all and applied to any instance of length n [11]. It
means Ry can be posted in one’s public key in the public-key model. We will
use this property in our construction later. We also note that using the general
result of existence of zaps for AP (rather than the above specific NIZK-based
construction) may further simplify the construction of the protocol presented in
Section 4. We will investigate it in a late full version.

3.3 Concurrent Soundness in the WPK Model

For an honest verifier V' with public-key PK and secret-key SK, an (s,t)-
concurrent malicious prover P* in our WPK model, for a pair positive poly-
nomials (s,t), be a probabilistic ¢(n)-time Turing machine that, on a security
parameter 1™ and PK, performs concurrently at most s(n) interactive protocols
(sessions) with V' as follows.

If P* is already running ¢ — 1 (1 < i — 1 < s(n)) sessions, it can select
on the fly a common input z; € {0,1}” (which may be equal to z; for 1 <
j < i) and initiate a new session with the verification stage of V(SK, z;, p;)
on the restriction that the same z; can not be used by P* in more than U(n)
sessions, where U(n) is the a priori bounded polynomial indicating the upper-
bound of the corresponding counter kept in secret by V for x;. We stress that
in different sessions V' uses independent random-tapes in his verification stage
(that is, p1,---,p; (1 <i < s(n)) are independent random strings).

We then say a protocol satisfies concurrent soundness in our WPK model
if for any honest verifier V, for all positive polynomials (s,t), for all (s,t)-
concurrent malicious prover P*, the probability that there exists an i (1 < i <
s(n)) such that V(SK, z;, p;) outputs “accept z;” while z; ¢ L and z; is not
used in more than U(n) sessions is negligible in n.
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4 3-Round Resettable Zero-Knowledge Argument for
NP with Concurrent Soundness in the WPK Model

In this section, we present the main result of this paper: a 3-round resettable
zero-knowledge argument for AP with concurrent soundness in the WPK model.
As discussed before, the design of such a protocol is really desirable in practice.
Three tools are crucial to our construction: verifiable pseudorandom functions
[26], Dwork and Naor’s 2-round rWT [I1] and “complexity leveraging” [8].

4.1 Complexity Leveraging

The “complexity leveraging” is used as follows. Let a be the pseudorandom
constant of a VRF (that is, the output of VRFEval is indistinguishable from
random for circuit of size 25°, where k is the security parameter of the VRF).
Let ;1 be the following constant: for all sufficiently large n, the length of the N'P-
witness y for z € LN {0,1}" is upper-bounded by n"*. Let v, be the following
constant: for all sufficiently large n, the length of the NIZK proof II for an
NP-statement x’ € L’ of length poly(n) is upper-bounded by n”2. We then set
v = max{y1,72} and € > v/a. We use a VRF with a larger security parameter
k = n. This ensures that one can enumerate all potential N'P-witnesses y, or all
potential NIZK proofs for 2/, in time 2", which still lesser than the time it would
take to break the residual pseudorandomness of the VRF (because 2" < 27).

4.2 The VRF Used

Let z be the common input of length n, and U be an a-priori bounded polynomial
indicating the upper-bound of the corresponding counter kept by an honest
verifier for z. That is z is allowed to be used at most U(n) times by a malicious
prover with the same honest verifier. We need a verifiable pseudorandom function
with input length n and output length 2U(n) - n?. We denote by
VRFEval(VRFSK,r) = RIR} - -R%U(n)R%Rg e RSU(n) - RTRY - -- RSU(n) the
output of VRF on input x of length n, where for each i (1 <4 < n) and each j
(1 <j<2U(n)), the length of R} is n.

4.3 Key Generation of V

Under a system security parameter n, each verifier with identity id, V;4, gener-
ates a key pair (VRFSK,VRFPK);q for a VRF with security parameter k. Vg
then uniformly selects p(n) random strings (Rv;, Ryv,,- -+, Ry, )ia to be used
as the first message of Dwork and Naor’s 2-round rWI, where p is a positive
polynomial. VRFSK,;q is Vi4’s secret key and VRFPK;,; along with the p(n)
random strings, (Rv;, Rv,, -, Rv,,, )id, is its public key. We remark that in
comparison with the key generation stage of Micali and Reyzin’s protocol [25],
the key generation stage of our protocol is greatly simplified.
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4.4 The Full Protocol

Common input. An element z € LN{0,1}". Denote by Ry, the corresponding
NP-relation for L.

System Security parameter n. (Note that the security parameter of the
VRF is k that is much larger than n).

Public file. A collection F of records (id, PK;4), where PK;q = (VRFPK,;q4,
(va s Ryy, vy RVp(n))id)'

P private input. An N'P-witness y for x € L; V’s id and the file F; and a
random string w that determines a PRF f,,.

V private input. A secret key SK;q = VRFSK,q.

P-step-one
1. Using the PRF f,, P generates Rp and (s},si,- - ,s%U(n),s%,sg, cee
s%U(n), cee L ST, sR, e ,ng(n)) from the inputs z, y, and PK;q. Rp will

be served as the first part of the second message of Dwork and Naor’s

2-round rWTI and the other 2U (n)-n pseudorandom strings will be served

as the randomnesses used in the one-round perfect binding commitment

scheme defined in Definition [II

2. Selects 2U(n) - n arbitrary strings of length 2U(n) - n? each:

(tht%? T ’t%U(nﬁt%?t%? U 7t§U(n)7 T 7t?7t§7 T ’th(n)) Let Com =
{clb9) = Cyi(th),1 <i <mnand 1< j<2U(n)}, where C is the one-
round perfeét binding commitment scheme defined in Definition [

3. P sends (Rp,Com) to V.

V-step one
1. Computes VR, = VRFEval(SK;q,z) = RIR} - R%U R2R3 - R2U(n)
- RYRY - Ry, and pfy = VRFProve(SKiq, ). Note that SK;q =

VREFSK. We call each R}, 1<i<mnand1l<j<2U(n), a block with
respect to the pair (z,id).

2. Randomly selects (j1,j2, - ,jn), where j;, 1 < i < n, is uniformly
distributed over {1,2,--- 2U( )}. For each 4, 1 < i < n, computes
VRRL = VRFEval(SKiq, It},) and prz = VRFProve(SKld,Rl ).

3.V Sends (VRxapfw7 (]17]2) o a]n) (VRRl VRRJQ.2 5" VRR?ﬂ))

(pfr: PSRz -+ PfRy,)) to the prover P.
P-step-two

1. Verifies that VR, is correct by invoking VRFVer(VRFPK,x,V R, pfz).
If not, aborts.

2. For each i, 1 < i < n, verifies that VRR; is correct by invoking
VRFVer(VRFPK, R;-i,VRR;_ 7PfR;_ ). If not, aborts.

3. Constructs another NP-statement: z/=“there exists an NP-witness Y
such that (z,y) € Rp OR for each i, 1 < i < n, there exists a j €
{1,2,---,2U(n)} and a string s} such that i =Cy (VRRZ ).

4. As does in the second round of Dwork and Naor’s 2- round rWI on the

statement x’ while using y as the witness P generates and sends to V
p(n) NIZK proofs {NIZK (z', Rp®Ry,),1 <i < p(n)}. The randomness
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used by P is got by applying his PRF f,, on the transcript so far. In the
rest of this paper, we denote by {NIZK(z', Rp ® Ry,),1 <i<p(n)} a
p(n)-NIZK-proof sequence.
Verifier’s Decision. If the p(n) NIZK proofs above are all acceptable then
accepts, otherwise, rejects.

Theorem 1. Assuming the security of RSA with large exponents against
subexponential-time adversaries, the above protocol is a 3-round black-box reset-
table zero-knowledge argument with concurrent soundness for NP in the WPK
model.

Proof. (sketch)

The completeness and the optimal round-complexity of our protocol can
be easily checked. In the rest we focus on proofs of black-box resettable zero-
knowledge and concurrent soundness.

(1). Black-Box Resettable Zero-Knowledge

The rZK property can be shown in a way similar to (and simpler than) the
way shown in [8].

Specifically, for any (s, t)-resetting malicious verifier V*, suppose the outputs
of the first stage of V* are: s(n) distinct strings x1, 2, -+, Z4pn) € L of length n
each, the public file F and a list of s(n) identities idy,idy, - - -, idy(y). Intuitively,
if for each block, R% (1 <4 < mn and 1 < j < 2U(n)), with respect to (zy,idy),
1 < k,t < s(n), the simulator can learn the output of VRFEval on R;- before
his commitments in P-step-one then it is easy for the simulator to generate a
transcript that is computationally indistinguishable from the real interactions
between P and V*. That is, the simulator simulates the P-step-one by just
setting t; = VRFEval(VRFSK, R;), 1<i<nand1l<j<2U(n). Since for
an (s,t)-resetting verifier V*, there are at most s(n)? - 2U(n) - n blocks in total,
the simulator works as follows to generate a simulated transcript while oracle
accessing to V'*.

The simulator works in s(n)? - 2U(n) - n + 1 phases. Each phase corresponds
to an attempt to simulate the real interactions between P and V* and so each
phase may consist of multiple sessions. In each phase the simulator uses an
independent random-tape to try to simulate the real interactions between P
and V* except that at the current session V* invokes P on the same x and PK;4
that has been used in a previous session. In this case, the simulator simulates
the P-step-one of current session by just copy the P-step-one messages sent in
the previous session. In each phase, suppose V* invokes P on x and PK;; at
the current session then the simulator simulates the P-step-one of the current
session by committing to the outputs of VRFFEwval on the blocks with respect
to (z,id) he has learnt previously, together with committing to some garbage
values if he has not yet leant the outputs of VRFFEwval on all the blocks with
respect to the pair (z,id). We remark that at any point in the simulation if the
simulator detects cheating (e. g. the V-step-one messages do not pass through
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the VRF Ver test correctly) then the simulator aborts the simulation and outputs
the transcript so far. It is easy to see that in each phase if V* does not select a
new block in this phase then the simulator succeeds in generating a simulated
transcript that is indistinguishable from the real interactions between P and V*
due to the pseudorandomness of the PRF used and the computational hiding
of the commitment scheme and the witness indistinguishability property of the
underlying Dwork and Naor’s 2-round rWI. Otherwise, the simulator will learn
the outputs of VRFEval on at least one new block and in this case the simulator
goes to the next phase. Here we have ignored the probability that a malicious
verifier may give different outputs of VRFEval on the same block. But according
to the unique probability of the VRF this probability is indeed exponentially
small.

We stress that in each phase of above simulation the simulator does not
rewind V* and so he can proceed in strict polynomial-time in each phase. Also
note that the total number of phases is also a polynomial. It means that the
black-box simulator works in strict polynomial time rather than expected polyno-
mial time. We remark that this result does not hold for black-box zero-knowledge
in the standard model. Indeed, expected polynomial time is necessary for black-
box zero-knowledge simulation in the standard model [6] and the first non-black-
box zero-knowledge argument for NP with strict polynomial time simulation was
presented in [I].

(2). Concurrent Soundness

We first note that a computational power unbounded prover can easily con-
vince the verifier of a false statement since he can get the V RF'SK if his compu-
tational power is unbounded. Hence the above protocol constitutes an argument
system rather than a proof system.

To deal with the soundness of the above protocol in the WPK model we stress
that we should be very careful since our argument system works in a somewhat
“parallel repetition” manner to reduce the error probability. The reason is that
Bellare et al. have proven that for a 3-round argument system if the verifier has
secret information regarding historical transcripts then parallel repetition does
not guarantee to reduce the error probability [5]. Note, however, that in our
argument protocol the verifier indeed has secret information, the SK.

The following proof uses a standard reduction technique. That is, if the above
protocol does not satisfy concurrent soundness in the WPK model then we will
construct a machine T' = (Tg,Ty) to break the residual pseudorandomness of
the VRF.

Suppose the above protocol does not satisfy concurrent soundness in the
WPK model then in a concurrent attack issued by an (s, ¢)-concurrent malicious
prover P* against an honest verifier with identity id, V;q, with non-negligible
probability there exists an ¢, 1 < i < s(n), such that V4 outputs “accept x;”
while z; ¢ L and z; has not been used by P* in more than U(n) sessions. Now,
Ty first guesses this “/” and then simulates the concurrent multiple interactions
between P* and V;4 while running P*. Note that in his simulation Tr does
not need to rewind P* since he has oracle access to both VRFEval(VRFSK, -)
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and VRFProve(VRFSK, -) and the j;, 1 < i < n, in V-step-one is uniformly
distributed over {1,2,---,2U(n)}. So, Tg can simulate the multiple concurrent
interactions between P* and V;4. When it is the time to simulate the i-th session
Tg first determines whether x; € L or not by just enumerating all the NP-
witnesses of x;. Note that with non-negligible probability this is the case that
x; ¢ L since Ty can correctly guess the ¢ with non-negligible probability. If
x; ¢ L then Ty runs P* to get the P-step-one messages from P*. Then Tg
uniformly selects (1, j2,-+ ,jn) from {1,2,--- 2U(n)} and computes n blocks
(le»l , R?Z, -+, R} ) with respect to (z;,id) just as Vjq does in V-step-one. Since
x; has been used at most U(n) times and for each i, 1 <14 < n, j; is uniformly
distributed over {1,2,--- ,2U(n)}, then with probability at least 1 —2"" T will
select a new block from all the 2U(n) - n blocks with respect to the pair (x;,id),
on which the output of VRFEval is unknown to P* up to now. Denote by Rfk,
1 < k < n, the new block selected. T then outputs (R?k,state), where state is
the historical view of Tg.

Now, T; receives v and Tj’s job is to find whether v is a truly
random value or VRFEval(VRFSK, R;“k) For this purpose T first con-
structs the new N'P-statement z’ (defined in P-step-two) with respect to
(VRR}I,VRR§2,~- JVRpr-1,

k-1
v,VRprsr ;- VRpn ). The key observation is that if v is a truly random

Jk+1

value then most likely there are no p(n)-NIZK-proof sequences in which the
p(n) NIZK proofs are all acceptable on the statement a’ since x; ¢ L and the
commitment scheme used by P* is perfect binding and v is completely unpre-
dictable for P*. However, if v = VRFEval(VRFSK, R;?k), then (according to our
assumption) with non-negligible probability there exists a p(n)-NIZK-proof se-
quence in which the p(n) NIZK proofs are all acceptable on the statement z’.
Note that Ty can enumerate all the NIZK proofs for ’ in time p(n) - 2" . Then
Ty checks that if there exists a p(n)-NIZK-proof sequence in which the p(n)
NIZK proofs are all acceptable. If find such a sequence then T'; decides that
v = VRFEval(VRFSK, R;?k), otherwise, T; decides that v is a truly random

value. Note that p(n)-2"" < 2"" which violates the residual pseudorandomness
of the VRF. 0
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