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Abstract

The recent increase of connected devices has triggered countless Internet-of-Things applications to emerge. By using the Time-

Slotted Channel Hopping (TSCH) mode of the IEEE 802.15.4e MAC layer, wireless multi-hop networks enable highly reliable

and low-power communication, supporting mission-critical and industrial applications. TSCH uses channel hopping to avoid both

external interference and multi-path fading, and a synchronization-based schedule which allows precise bandwidth allocation.

Efficient schedule management is crucial when minimizing the delay of a packet to reach its destination. In networks with recurrent

sensor data transmissions that repeat after a certain period, current scheduling functions are prone to high latencies by ignoring

this recurrent behavior. In this article, we propose a TSCH scheduling function that tackles this minimal-latency recurrent traffic

problem. Concretely, this work presents two novel contributions. First, the recurrent traffic problem is defined formally as an Integer

Linear Program. Second, we propose the Recurrent Low-Latency Scheduling Function (ReSF) that reserves minimal-latency paths

from source to sink and only activates these paths when recurrent traffic is expected. Extensive experimental results show that using

ReSF leads to a latency improvement up to 80 % compared to state-of-the-art low-latency scheduling functions, with a negligible

impact on power consumption of at most 6 %.

Keywords: IEEE 802.15.4e, Time-Slotted Channel Hopping, MAC scheduling, 6TiSCH

1. Introduction

In recent years, the increasing number of devices connected

to the Internet has converged into a new paradigm called

the Internet-of-Things (IoT). Countless IoT applications have

emerged that enrich our daily lives by connecting more intelli-

gent devices to the Internet. An important concern of IoT net-

works is the power-constrained nature of the connected devices.

This is due to the low expected cost per device, as well as the

mobility of the nodes and their deployment in difficult-to-reach

locations. Despite this power restriction, many applications

have strict demands in terms of reliability and delay. To bridge

that gap, a new IETF Working Group (WG) called IPv6 over the

TSCH mode of IEEE 802.15.4e (6TiSCH) was created in 2013,

as a response to the inevitable convergence between determin-

istic industrial networks and traditional IP networks [1, 2]. The

goal of 6TiSCH is to create a link-layer standard that combines

industrial performance in terms of reliability and power con-

sumption with an IPv6-enabled upper stack, focusing on multi-

hop Low-power Lossy Networks (LLNs).

In order to achieve this goal, the 6TiSCH architecture

uses the Time-Slotted Channel Hopping (TSCH) mode of the

IEEE 802.15.4e MAC layer. TSCH uses channel hopping to
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increase the link reliability and minimize the effects of ex-

ternal interference and/or multi-path fading, by calculating a

pseudo-random frequency channel for every transmission. A

time-synchronized schedule tells the nodes exactly when to

send/receive and thereby avoids energy-harmful contention pe-

riods and - when the schedule is managed efficiently - idle lis-

tening. Intelligent scheduling is crucial to also perform well in

terms of other network metrics such as delay and throughput.

Both the 6TiSCH WG and other researchers have defined

several scheduling functions to manage the schedule (i.e., cen-

tralized versus distributed) and thereby optimize different met-

rics (e.g., latency, power consumption) for different types of ap-

plications. In this work, we focus on power-constrained sensor

networks where each node periodically sends measurement up-

dates to a sink (i.e., recurrent traffic) and demands low-latency

dissemination of these data. Current state-of-the-art schedul-

ing functions, such as the Low Latency Scheduling Function

(LLSF), also focus on low-latency forwarding of packets but do

not anticipate the recurrent behavior. This results in higher la-

tencies, because starting the time-expensive resource allocation

process when the recurrent traffic already arrived is too late to

maintain a low packet delay. We propose the distributed Re-

current Low-Latency Scheduling Function (ReSF). It explic-

itly supports recurrent traffic and as far as we know, is the

first TSCH scheduling function that takes this recurrent traf-

fic behavior into account when scheduling resources. ReSF

reserves a minimal-latency path from source to sink and only

activates this reserved path when traffic is expected. This al-
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lows resources to be reused more intelligently, thus improving

throughput and latency. As such, it has only minimal impact on

battery while significantly decreasing the packet delay.

This article presents two specific contributions. First, we

define the problem of minimal-latency scheduling of recur-

rent data transmissions in sensor networks formally, using an

Integer Linear Program (ILP). Second, we present ReSF as

well as its collision prevention algorithm and integration with

6TiSCH. ReSF is a distributed scheduling function that solves

the presented recurrent data transmission scheduling problem

in real-time. Additionally, we provide extensive simulation

results based on the official 6TiSCH simulator, which we ex-

tended with a fully functional 6top Protocol (6P) implemen-

tation. A comparison is provided with an extended version of

LLSF [3], the state-of-the-art minimal-latency scheduling func-

tion for 6TiSCH. Our proposed TSCH scheduling solution is

the first to explicitly exploit the recurrent nature of many trans-

missions in Wireless Sensor Networks (WSNs).

The remainder of this article is structured as follows. First,

we introduce 6TiSCH and related work on scheduling func-

tions in Section 2. Subsequently, Section 3 introduces the re-

current minimal-latency scheduling problem and Section 4 pro-

poses our ReSF algorithm to solve the problem in a distributed

manner in real-time. The proposed algorithm is evaluated and

compared to the theoretical optimum as well as state-of-the-art

scheduling functions in Section 5. Finally, Section 6 presents

the conclusions of our work.

2. Background and Related Work

In this section we briefly introduce 6TiSCH, a link-layer

IETF draft that bridges the gap between industrial and tradi-

tional IP networks. We provide the necessary background on

TSCH, an important underlying mechanism of 6TiSCH. Fur-

ther on, we give more information on the 6P protocol that man-

ages the resources in 6TiSCH and give an overview of related

work regarding TSCH scheduling functions.

2.1. 6TiSCH Architecture

The 6TiSCH WG focuses on enabling IPv6 over the TSCH

mode of the IEEE 802.15.4e standard for reliable multi-hop

LLNs. While TSCH only focuses on the MAC layer, the 6top

sublayer, the 6LoWPAN adaptation and compression layer, the

Routing Protocol for Low-Power and Lossy Network (RPL)

routing protocol, and the COAP application protocol are com-

bined on top of TSCH in the 6TiSCH protocol stack.

In contrast to traditional CSMA/CA MAC protocols, in

TSCH networks each node follows a schedule that tells the

node exactly when it has to transmit data to, or receive data

from, neighboring nodes. This tight time synchronization-

based schedule allows for low-power operations as the radio

is only turned on when indicated by the schedule. Moreover, it

increases reliability as contention can be avoided by assigning

each slot to non-interfering stations only. The schedule con-

sists of cells (or slots) that last long enough to allow a node to

send/receive 1 packet and receive/send the associated acknowl-

edgement, typically either 10 ms or 15 ms long. There are four

cell types: TX, RX, SHARED and OFF cells. TX and RX cells are

dedicated cells to send and receive data, SHARED cells allow

multiple nodes to contend for the medium using a back-off algo-

rithm and during OFF cells the radio is turned off. SHARED cells

can usually not be removed from the schedule (when set as so-

called hard cells) and are often used to bootstrap the network.

A slotframe defines the width of the schedule and is actually

a group of cells that repeats over time. The schedule height is

defined by the number of available channels (i.e., frequencies)

in which the nodes can transmit/receive data. The rows in the

schedule represent channel offsets to perform channel hopping.

Management of this schedule is done using a scheduling

function. How the scheduling should be done is not defined

by 6TiSCH and mostly depends on the type of application and

the metrics that need to be optimized. The tasks of a scheduling

function include (i) adding cells between two nodes when cur-

rent resources are not sufficient to handle the traffic load, and

(ii) removing cells when the schedule is over-provisioned and

valuable resources are at risk of being wasted. Both centralized

and distributed approaches are possible, or in the simplest case

a static schedule can be uses as defined in the minimal 6TiSCH

configuration [4].

While the schedule allows for low-power and reliable oper-

ations in 6TiSCH networks, channel hopping further increases

the link-reliability by leveraging the problem of packet loss due

to multi-path fading and external interference [5]. Channel hop-

ping uses frequency diversity, calculating the frequency chan-

nel at which both sender and receiver transmit and receive data

using a pseudo-random calculation.

In Figure 1, an example is given of a TSCH schedule for

a tree topology consisting of 4 nodes with root node R. Both

leaf nodes Y and Z generate one packet each slotframe. Each

slotframe starts with a SHARED slot that allow the nodes to make

dedicated cell reservations. While node Y and Z only have 1

transmit cell towards node X, node X has 2 cells towards the

root because it needs one cell for each packet coming from node

Y and Z. As seen in the second slotframe, the channel offset of

the cell for the link between Y and X is the same as in the first

slotframe, but because of the channel hopping the frequency

channel will differ from the previous one.

2.2. 6top Protocol (6P)

6P allows neighboring nodes in a 6TiSCH network to add and

delete cells and is part of the 6TiSCH Operation Sublayer (6top)

IEEE 802.15.4e sublayer which provides the mechanisms to do

distributed scheduling in 6TiSCH [6]. It is the scheduling func-

tion that decides when to add or delete cells, and it uses 6P to

effectively execute the resource allocation.

When new cells need to be added or deleted the 6P protocol

starts a so-called 6P transaction that is actually the complete

cell negotiation between two nodes. There is both a 2-step and

3-step negotiation process: we implemented the 2-step negoti-

ation. A 2-step transaction between node A and node B means

that node A sends a 6P ADD request to node B, specifying the

number of cells it wants and the list out of which node B can

pick, with a cell being (timeO f f set, channelO f f set). When

sending the request, a timer is set to abort the transaction when
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Figure 1: Example of a TSCH schedule, where nodes Y and Z each generate one packet per slotframe and node X forwards these packets to root R. There are 101

cells per slotframe and 16 frequencies.

the receiver did not respond when the timer expires. Node B

answers with a 6P RESPONSE containing the cells that suit node

B best. The 6P transaction for deleting cells is similar, but the

6P ADD request is replaced by a 6P DELETE request containing

the cell list that node A wants to be removed from its schedule.

We extended the 6TiSCH simulator with the 6P protocol and

downwards management traffic to simulate more realistic cell

reservations and removals to both parents and children.

2.3. Existing Scheduling Approaches

The increasing popularity of 6TiSCH networks in the re-

cent years has driven the development of numerous new algo-

rithms and the further improvement of already existing schedul-

ing functions. On top of that, the 6TiSCH community has also

standardized several scheduling functions such as Scheduling

Function Zero (SF0) and Scheduling Function One (SF1) [7, 8].

In this section, we discuss recent work on TSCH scheduling and

relate it to our proposed solution ReSF.

2.3.1. Centralized Scheduling

A centralized scheduling approach requires a central entity

that builds the schedule for all nodes, based on reported or mon-

itored network information.

Palattella et al. [9] propose the Traffic Aware Scheduling Al-

gorithm (TASA) which uses matching and coloring procedures

to build a TSCH schedule and which assumes full topology and

traffic awareness. However, having such knowledge requires a

lot of signaling which greatly affects the network performance

in terms of latency and power consumption. Recently, Farı́as

et al. [10] also introduced a centralized queue-based 6TiSCH

scheduler for industrial applications. Huynh et al. [11] de-

veloped a centralized scheduler that focuses on reliability and

energy efficiency by applying opportunistic forwarding at the

MAC and routing layer.

A central approach typically has the advantage of being

able to build near-optimal, collision-free schedules that can ap-

proach the theoretical optimum. However, scalability limita-

tions and extra signaling overhead make centralized schedulers

not feasible for dynamic environments.

2.3.2. Distributed Scheduling

In networks with a distributed scheduling approach, nodes

maintain their own schedule. These solutions typically scale

better because there is less signaling overhead. However, less

signaling also means that the nodes are less informed about the

network which makes it harder to build efficient schedules.

A commonly used distributed scheduling function is SF0

which was originally introduced as On-the-Fly Scheduling

Function (OTF) by the 6TiSCH community and is currently

being further developed as a work in progress in an Internet

Engineering Task Force (IETF) Internet-Draft [7]. SF0 is a dis-

tributed scheduling algorithm: each node dynamically adapts

the amount of resources between itself and its neighbors, based

on its current resource allocation and its resource requirements.

Two major drawbacks of SF0 are (i) that is does not take into

account the recurrent behavior of traffic, meaning that each re-

served cell repeats itself every slotframe and thus wastes re-

sources if packet generation is not equally frequent and (ii) cells

are randomly allocated in a slotframe, risking that packets can

not be forwarded immediately and have to wait an additional

slotframe. These major issues are addressed by ReSF. SF0 is

used as a baseline in the experimental evaluation. Based on

SF0, Chang et al. developed an improved version called LLSF

that daisy-chains cells over the different links up to the root,

rather than picking them randomly [3]. While LLSF does not

introduce extra overhead, it also does not anticipate recurrent

behavior and thus still leaves room for improvement. An en-

hanced version of LLSF, which is discussed in Section 4.6, is

also used for comparison in the experimental evaluation.

Another scheduling function Internet-Draft being investi-

gated by the 6TiSCH community is SF1 [8]. SF1 is and end-to-

end distributed resource scheduler with hop-by-hop reservation,

using a distributed Resource Reservation Protocol (RSVP). It

allocates a dedicated path from source to destination which is

called a track. In contrast to ReSF, so-called TrackIDs are used

to filter data packets for certain tracks. In ReSF recurrent cells

can be used by any data packet in the queue. The draft is still

in an early stage and specific features taking into account re-

current behavior or algorithms to efficiently allocate cells are

not present as of yet. As such, we consider our work com-
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plementary to SF1, and it could serve to inspire standardiza-

tion. Morell et al. [12] worked out a solution that combines

Resource Reservation Protocol - Traffic Engineering (RSVP-

TE) and Generalised Multiprotocol Label Switching (GMPLS)

to manage the schedule and connect the network nodes using

labelled switched paths. However, the authors do not focus on

the recurrent traffic and their numerical evaluation does not take

into account the 6P signaling process. Theoleyre et al. [13] also

focus on traffic isolation by introducing different tracks for dif-

ferent applications and consider contiguous reserved cells as

well as random reserved cells. Their distributed algorithm cal-

culates the required number of cells based on the amount of

forwarded traffic, but it also does not consider the recurrent be-

havior of sensor data generation, where the reserved cell may

only be needed every so many slotframes. It thus risks wasting

resources because of a repeated reservation process.

Other distributed approaches have been proposed such as De-

centralized Traffic Aware Scheduling (DeTAS) [14]. DeTAS

aims at minimizing buffer overflow and queue utilization. It

applies an hierarchical approach that builds micro-schedules

(with alternating transmission and reception cells) for the dif-

ferent network sinks which are aggregated into a global macro-

schedule. To build the micro-schedules, DeTAS uses a con-

siderable amount of 1-hop signaling. A similar approach of

neighborhood signaling is used by Municio et al. [15]. The De-

Bras scheduler targets dense network deployments. It broad-

casts scheduling information to avoid internal interference and

thus reduces the number of collisions. However, DeBras is not

focused on latency optimization and therefore it does not con-

sider contiguous cells nor does it take traffic characteristics into

account. Another distributed approach is Wave [16] that con-

structs the schedule out of different so-called waves which are

basically cell matrices that accommodate packet transmissions.

However, Wave is also limited by its neighbor signaling that

informs nodes about conflicting transmissions.

A radically different way of resource allocation in TSCH is

Orchestra [17], which does not use a distributed nor a central-

ized scheduler. It manages its schedule locally and does not

negotiate with its neighbors. It assigns different types of slot-

frames to multiple traffic planes (i.e., TSCH beacons, RPL sig-

naling or application traffic) and thereby targets high reliability.

In contrast to the related works, ReSF specifically focuses

on IoT applications with recurrent traffic patterns. The state-

of-the-art approaches either reserve isolated tracks towards the

root and/or reserve resources that are continuously activated.

Meanwhile, ReSF tries to guarantee fairness, low-latency and

energy-efficiency by not isolating the low-latency paths and

only activates resources when traffic is expected, maximizing

cell reuse and performance.

3. Recurrent Low-Latency Scheduling

In this section, we introduce the recurrent low-latency

scheduling problem, which minimizes end-to-end data dissem-

ination latency for devices with recurrent data transmissions

(e.g., transmission of sensor measurement values after fixed pe-

riods). First, we discuss our motivation to tackle the recurrent

low-latency problem. Second, we formally formulate the prob-

lem and the associated optimal solution as an Integer Linear

Program (ILP).

3.1. Motivation

Periodical traffic patterns are typical for Wireless Sensor Net-

works (WSNs) as sensors usually perform measurements at

fixed intervals and/or measured data is accumulated over fixed

periods and only then sent to the root. ReSF was developed

to exploit this recurrent behavior by allocating resources only

when traffic is expected. Existing scheduling functions such as

SF0 and LLSF allocate new resources based on historical data:

during the so-called periodic housekeeping periods the schedul-

ing function monitors how many packets arrive and are gener-

ated by the node itself. Afterwards, it calculates the number

of cells it needs to reserve during the next housekeeping pe-

riod. When reserving these cells, the exact arrival times of the

incoming/generated packets are not taken into account, which

leads to inefficient resource allocation in terms of latency and

power consumption. Moreover, if the data generation period

of the sensor is higher than the housekeeping period, an esti-

mate based on the previous housekeeping intervals may not be

representative for the current one.

A simplified example of such inefficient resource allocation

is given in Figure 2. The given schedule (for the simplicity of

this example with only one channel) is the one of the forward-

ing node B. Node A sends traffic every 8 slotframes to node B,

which should forward it as quickly as possible to the root. Dur-

ing housekeeping at node B, the node decides to reserve a cell

to its parent so the incoming packet can be forwarded. To do so,

first a 6P ADD transaction between node B and its parent needs

to take place. Meanwhile the latency of the packet is increasing

as it is only in the third slotframe (after 9 timeslots) that a TX

cell is available to forward the packet to the root. Node A only

generates traffic periodically every 8 slotframes, so the next 2

TX cells to the root are not used (and thus radio resources at the

receiver are wasted) and even after the housekeeping a third cell

is still reserved because the deletion of the cell is not yet com-

plete. One should also take into account the power consump-

tion for sending/receiving these 6P DELETE and 6P RESPONSE

messages. When the next periodical packet of A arrives, the

process at node B repeats itself. Taking into account the recur-

rent behavior of the traffic of node A, the increased latency and

power consumption introduced by the reservation process can

be avoided. This results in a more efficient scheduling function

process, which is exactly the goal of ReSF.

3.2. Problem formulation

In this section we formally approach low-latency end-to-end

packet scheduling in a Wireless Sensor Network (WSN) with

recurrent transmissions, as a resource allocation problem. We

formulate the underlying optimization problem as an ILP, con-

sisting of input variables, decision variables, constraints and an

objective function. Algorithms such as branch and bound can

be used to find the optimal solution, by determining the values

4
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Figure 2: Illustration of inefficient resource allocation when not taking into account the recurrent behavior of sensor traffic. The schedule shown belongs to node B.

of the decision variables that maximize (or minimize) the ob-

jective function, while satisfying the constraints, given the in-

puts. As such, the formulation should be considered a resource

allocation optimization problem. While the ILP formulation

assumes any generated packet to be directed towards the root

node, extension to support communication between any two in-

terconnected nodes is trivial. The ILP solution is only used for

theoretical comparison purposes in Section 5. Solving an ILP

on real hardware nodes would be infeasible due to its compu-

tationally complexity and the need to be solved centrally. The

remainder of this section describes the different aspects of the

ILP formulation.

3.2.1. Input variables

The WSN comprises a set of nodes N. Packets originate from

a set of sources V ⊂ N, with the root node nR ∈ N as destination.

These sources are recurrent, i.e. they generate a packet at fixed

time intervals S v + k × Tv, k ∈ N0. For each source v ∈ V :

Tv and S v are its period and offset respectively. Note that the

period Tv may change over time.

The system is analyzed when it has reached steady state con-

ditions, i.e., the number of packets generated per period is con-

stant. The nodes each have only 1 radio, which can either send

or receive packets. The combined period of the sources, re-

ferred to as the system period, is then given by

Tsys = LCM(T0,T1, . . . ,T|V|−1), (1)

where LCM is a function that calculates the Least Common

Multiple (LCM) of its integer arguments. When the scheduling

is also periodic with period Tsys, than it suffices to analyze the

system during one system period, beginning when all sources

have generated at least one packet. Hence we analyze the sys-

tem only for time slots

i ∈ I, I = {S max + 1, . . . , S max + Tsys − 1}, (2)

Table 1: Input variables.

Symbol Description

N set of nodes

nR root node

V set of source nodes

S v offset of source node v

Tv period of source v

Pv edges on the path from v to nR

Pv,p pth edge on the path from v to nR

Table 2: Auxiliary symbols.

Symbol Description

Tsys system period, i.e. LCM(T0,T1, . . . ,TV−1)

I time slots in one system period, i.e., S max +

1, . . . , S max + Tsys − 1

Jv set of packets generated by source v during one

system period

where the largest system period S max = max (S 0, . . . , S |V−1|).

The set of packets generated by source v in the Tsys time slots

in I is given by

Jv = {0, 1, . . . ,
Tsys

Tv

− 1}. (3)

A complete list and description of the input and auxiliary

variables introduced above can be found in Tables 1 and 2 re-

spectively. Moreover, Figure 3 illustrates the notations graph-

ically. In this example, both nodes A and B generate traffic:

with TA = 6 and TB = 2, therefore they generate a packet every

6 slots and 2 slots respectively. This results in Tsys = 6 as this

is the least common multiple of 6 and 2.
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Figure 3: Illustration of the notations used in the ILP-formulation. Both nodes A and B generate traffic at time slots denoted by G.

3.2.2. Decision variables

The decision variables represent the solution of the ILP

model. xv,p, j(i) is a binary variable, and equals 1 if the packet

(v, j) is transmitted over edge Pv,p during time slot 1, else it is 0.

Tn(i) and Rn(i) are 1 when node n is respectively transmitting or

receiving during time slot i. Dv,p, j is an integer variable holding

the delay contribution of each packet (v, j). Ov,p, j is a binary

variable and a value of 1 indicates that the delay contribution

of the pth path element for packet (v, j) crosses the edge of the

analyzed interval I (Equation 2). In this case the packet arrives

only in the next system period, hence Tsys is added to the arrival

time.

3.2.3. Constraints

This section outlines the constraints, which determine the al-

lowed values of the decision variables, as a function of the in-

puts.

Multi Commodity Flow (MCF). The net packet flow leaving

node n1, corresponding to each packet for source v, depends

on whether this node is the source, destination (root node) or

neither to this specific packet. For each node n1, and for each

packet (v, j), the difference between the total number of pack-

ets flowing out and into n1 corresponding to (v, j), during one

system period, equals either 1, −1, or 0, based on the relation

of n1 to this packet (source, root, or neither).

∀n1 ∈ N, v ∈ V, j ∈ Jv :
∑

i∈I

















∑

(n1,n2)∈Pv

xv,(n1,n2), j(i) −
∑

(n3,n1)∈Pv

xv,(n3,n1), j(i)

















=



























1, if n1 = v

−1, else if n1 = nR

0, else

(4)

Transmission and reception. A packet is transmitted/received

during slot i if a packet corresponding to any of the sources is

transmitted or received during this time slot:

∀n1 ∈ N, i ∈ I : Tn1
(i) =

∑

v∈V

∑

j∈Jv

∑

(n1,n2)∈Pv

xv,(n1,n2), j(i), (5)

and

∀n2 ∈ N, i ∈ I : Rn2
(i) =

∑

v∈V

∑

j∈Jv

∑

n1∈N

xv,(n1,n2), j(i) (6)

Single radio. A node has only one radio and therefore cannot

receive and transmit at the same time.

∀n ∈ N, i ∈ I : Tn(i) + Rn(i) ≤ 1 (7)

Delay. The delay for each packet is the sum of the individual

delay contributions of the edges along the path from the source

of the packet towards the root. We distinguish two types of de-

lay contribution. The delay contribution of the first edge on the

path is the difference between the time slot at which the packet

is first transmitted, and the time slot at which it was generated:

∀v ∈ V, j ∈ Jv, p = Pv,0 : Dv,p, j =

(
∑

i∈I

i × xv,p, j(i) + Tmax × Ov,p, j) − (S v + j × Tv) (8)

The delay contribution for the other path elements is the dif-

ference between the time slot at which the packet reaches the

target of the element, minus the time slot at which it had reached

its source:

∀v ∈ V, j ∈ Jv, p ∈ Pv \ {Pv,0} : Dv,p, j =

(
∑

i∈I

i × xv,p, j(i) + Tmax × Ov,p, j) −
∑

i∈I

i × xv,p−1, j(i), (9)

where the final term accounts for packets that do not arrive at

the source and destination of Pv,p during the same system pe-

riod.

A packet cannot be transmitted by a node during the time slot

of its generation, and it cannot traverse multiple edges during

one single time slot. Hence, the delay contribution of each path

element is limited to

1 ≤ Dv,p, j ≤ Tsys − 1. (10)
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3.2.4. Objective function

The objective is to minimize the average delay of the
Tmax×|V|/

∑

v∈V Tv packets generated in a system period:

min
∑

v∈V

∑

j∈Jv

∑

p∈Pv

Tv

Tmax × |V|
Dv,p, j (11)

4. Recurrent Low-Latency Scheduling Function (ReSF)

In the previous section, the underlying resource problem of

recurrent scheduling was stated formally and an optimal math-

ematical solution was provided. However, such an optimal so-

lution is computationally complex and needs to be solved cen-

trally as it assumes perfect network knowledge. Therefore, in

this section we propose the new ReSF scheduling function that

solves the recurrent low-latency scheduling problem in real-

time and a distributed manner. First, the goal and features

of ReSF are discussed in a general overview of the schedul-

ing function, which is clarified with an example. Afterwards,

detailed information on the scheduling algorithm, packet loss,

the schedule collision prevention and queue housekeeping us-

ing Enhanced Low Latency Scheduling Function (eLLSF) are

presented. Finally, the integration of ReSF with the 6P protocol

is discussed in detail.

4.1. General Overview

ReSF was designed to minimize the latency of periodic data

transmissions while keeping the reservation overhead, i.e., the

number of control messages and the number of reserved slots, to

a minimum. It targets IoT systems where traffic is periodically

sent, following fixed or slowly changing patterns. The 4 main

steps are outlined below:

Scheduling an ReSF reservation. ReSF assumes a source node

knows its periodic traffic pattern. Using this information,

ReSF constructs a so-called recurrent path that consists of re-

current cells which are cells that are only activated in slot-

frames when traffic is expected and are deactivated after-

wards. An ReSF reservation is based on the following tuple:

(start, stop, period). S tart is the Absolute Sequence Number

(ASN) at which the first data packet is generated on the source

node, stop is the ASN at which point no data will be generated

anymore and period represents the periodicity of the data trans-

mission. The tuple is sent from the source node to the next hop

and forwarded to the ReSF destination: at each hop the start

ASN is incremented to an ASN as closely as possible following

the received start ASN, resulting in a daisy-chained ReSF path

from source to destination. A path is however not explicitly re-

served for one particular packet stream: if a node makes a ReSF

reservation that is forwarded all the way up to the destination

node, the allocated recurrent cells at an intermediate node along

that path can be used by any packet (originating from any node)

that is first in the transmission queue of that intermediate node,

guaranteeing fairness and lowest average latency.

Anticipating packet loss. ReSF anticipates packet loss (cf. Sec-

tion 4.4) by reserving back-up tuples. The number of extra

reservations depends on the measured link quality and allows

a node to retransmit multiple times consecutively.

Preventing schedule collisions. A schedule collision is caused

when multiple ReSF reservations, located in the same node,

want to occupy exactly the same cell at a particular ASN. While

theoretically it is possible to search for reservation tuples be-

tween sender and receiver that do not share overlapping cells,

such a reservation process will take too long and is therefore

practically infeasible. Instead, a node that wants to schedule

an ReSF reservation message searches, in a pool of reservation

tuples, for candidate tuples with the lowest schedule collision

rate. The receiver picks the required number of reservations out

of the sent candidate tuples by again relying on the lowest col-

lision rate. To efficiently calculate this schedule collision rate,

we propose an algorithm explained in Section 4.5.

Queue housekeeping using eLLSF. ReSF prevents failing

packets from congesting the queue by doing additional peri-

odical housekeeping. This is done using eLLSF, an enhanced

version of the LLSF scheduling function. During this periodi-

cal eLLSF housekeeping, a node reserves (or deletes) extra cells

that repeat until the next housekeeping moment in order to keep

the queue as empty as possible.

4.2. Example

As an example, consider Figure 4. There are 4 nodes and 1

root R. It is assumed that nodes A and C are far enough away

from nodes B and D, so there is no internal interference be-

tween these two links. Both node A and node B have a sensor

application that periodically generates packets. The traffic des-

tination is root node R. The shown schedule is an aggregated

schedule of all individual nodes. The housekeeping moments

and decisions of node B are also shown.

The traffic generation pattern of node B looks like (start =

31, stop = 600, period = 12), meaning that the first packet

starts at ASN 31 and gets repeated every 12 cells. The ReSF

reservations from node B to node D and from node D to node

R are already installed. Because the Expected Transmission

Count (ETX) of the link between node B and node D is 2, there

are two recurrent cells from node B to node D.

The traffic pattern tuple of node A is described by (start =

80, stop = 790, period = 36). To reserve the ReSF recurrent

cells, node A sends its first ReSF 6P ADDmessage in the SHARED

cell at ASN 60. Node C responds at its first opportunity in the

next SHARED cell at ASN 66. To construct a minimal-latency

path to the root, node C forwards the reservation to node R,

to which the root responds at ASN 78. The ReSF 6P ADD

reservation from node A to node C contains 6 possible reser-

vation tuples, which is the maximum number of tuples a 6P

ADD can contain, and that are picked based on the lowest cal-

culated collision rate. Out of these 6 tuples, node C picks the

one with the lowest collision rate and the closest to the orig-

inal start ASN, i.e., (start = 81, stop = 790, period = 36).

From node C to node R the ideal reservation tuple would be
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(start = 82, stop = 790, period = 36) as we assume that the

processing of a packet takes less than one cell duration. How-

ever, because of the schedule collision that would happen at

ASN 82 (with the transmission from node D to R), reservation

tuple (start = 83, stop = 790, period = 36) has a better colli-

sion rate and is agreed upon.

Now assume that due to external interference, both transmis-

sions from node B to D at ASN 80 and 81 fail. Because of those

failures, the generated data packet of node B ends up in the

queue two slotframes in a row. The next housekeeping of node

B notices that two out of three times there was an extra packet

in the queue at the end of the slotframe. As such, it sends out a

reservation at ASN 90 for a housekeeping cell which gets con-

firmed at ASN 96. Because of this extra cell the queued packet

gets forwarded to node D and after that, during the third house-

keeping round, the node decides that the housekeeping cell can

be deleted.

4.3. Scheduling Function Description

The ReSF scheduling function allows nodes to add new re-

current reservations for new data-generating sensor applica-

tions, remove deprecated reservations when applications stop

generating data and update reservations when an application for

example changes the period after which it generates data. To do

so, ReSF assumes a source node knows its periodic traffic pat-

tern, e.g., reported by a sensing application, and gets cross-layer

updates when this pattern changes. In this section, the different

functionalities are described in detail.

4.3.1. Scheduling Reservations

We assume that each node periodically generates data for

transmission, defined by a (start, stop, period) tuple. ReSF

uses the procedures in Algorithm 1 to, respectively, send a new

reservation and/or respond to a received reservation request.

The ScheduleRequest procedure schedules a new reser-

vation based on the traffic tuple received from the applica-

tion layer or the tuple derived from an incoming ReSF reser-

vation. It looks for max tuples tuples that equals 6, which

is the maximum number of reservations that fit in a 6P ADD

message, as explained in Section 4.7. To determine the num-

ber of tuples that should be reserved to anticipate packet loss,

GetReqTuples takes into account the link quality as explained

in Section 4.4. Using the GetTuplePool procedure, all tu-

ples in the interval [(start + 1, stop, period), (start + 1 +

reservation bu f f er, stop, period) are returned. By starting

from start + 1, ReSF makes sure that a new reservation is re-

served after the packet is generated or received from the pre-

vious hop: this way cells are daisy-chained over multiple hops

towards the destination. The PopBestTuple procedure returns

the reservation tuple with the lowest calculated schedule colli-

sion rate (cf. Section 4.5), after checking for collisions with all

already activated reservations on that node. The collision rate

is the total number of (unique) collisions divided by the total

number of planned transmissions for that reservation. Thus, the

reservation buffer value represents the trade-off between look-

ing for a minimal collision rate and the risk of introducing more

delay by picking a reservation tuple with a large gap between

the time slot at which the packet is generated and the actual time

slot at which the recurrent packet will be sent. In Section V-B1,

we experimentally determine the best reservation buffer value.

Finally, the ReSF request with the chosen candidate tuples is

sent to the next hop.

The ReceiveRequest procedure is straightforward:

when it receives an ReSF reservation request, it chooses

num tuples tuples from the received tuple list, by using

the PopBestTuple procedure. The receiver acknowledges the

sender with this list of num tuples tuples. If the node is not

the final destination of the ReSF reservation, it prepares to

forward a new reservation, using ScheduleRequest.

4.3.2. Unscheduling and updating reservations

When a sensor application stops generating data, all the

reserved ReSF slots towards the reservation destination node

should also be removed to avoid energy waste. The procedure

for removing cells is fairly simple: a node transmits a delete

message to the next hop (towards the destination node), com-

plemented with the ReSF reservation ID. When the next hop re-

ceives this reservation removal message it will forward a delete

message with the same ID to its next hop which is repeated un-

til the delete message reaches the destination node and all ReSF

reservations with that ID are removed.

Every reservation has a stop value at which the node stops

generating data. When this stop ASN is reached, the reserva-

tion gets removed and should be renewed when a node wants to

send additional data. Reservations also get removed when they

are unused for a fixed amount of time.

It may happen that an ReSF reservation needs to be up-

dated, for example when the sensor data generation periodicity

changes. In that case, the node sends a new reservation mes-

sage to its next hop with the same ID (of the old reservation

that needs to be updated) but it will propose a new reservation

tuple. This avoids the delay and energy waste of first removing

the slots via delete messages and only afterwards reserving new

cells. When sending the updated reservation message the same

reservation process applies as described earlier in this section.

However, there is one additional step: when a node and its next

hop agree on a new set of reservation tuples for that particular

ID, the old reservation is deleted automatically.

4.4. Anticipating Packet Loss

To deal with possible packet loss (due to interference) in ad-

vance, instead of reserving one recurrent cell per packet, ReSF

by default allocates a number of recurrent cells equal to the

ceiled ETX value of the link to its next hop, num tuples =
⌈

ET X(linknextHop)
⌉

, which is calculated in the GetReqTuples

in Algorithm 1. ETX is the expected number of transmissions

a packet needs to reach its destination. When forwarding the

reservation message, its next hop will apply the same formula

for allocating a number of cells to its next hop and so on. Doing

this over-provisioning, ReSF copes with possible packet loss

due to bad link quality.
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Figure 4: ReSF scheduling example with two nodes A and B generating traffic. The schedule represents an aggregation of all individual schedules. The queue size

and how this affects the housekeeping of node B is also shown.

4.5. Preventing Schedule Collisions

When multiple transmitting and/or receiving ReSF reserva-

tion tuples, located in the same node, each expect the exact

same cell to be activated at a specific ASN, this is called a

ReSF schedule collision. Allowing multiple tuples to use the

same cell will result in packet transmission/reception failures

whereby those packets are queued to be retransmitted and the

delay inevitably increases. In order to minimize this delay, such

schedule collisions should be kept to a minimum. However, de-

tecting collisions between recurrent reservations that only reoc-

cur every so many slotframes and at different time slots in those

slotframes, is much harder than detecting collisions between

traditional reservations. The latter ones persist every slotframe

at the same time slot, which makes identifying collisions trivial.

In this section, we present an efficient algorithm to search for

reservation tuples with the least amount of schedule collisions.

To efficiently calculate the number of collisions and the col-

lision ASNs of two reservations (start1, stop1, period1) and

(start2, stop2, period2), we search for the solution to:

∀x, y ∈ N : start1 + period1 · x = start2 + period2 · y (12)

in the interval [startmax, stopmin] with startmax =

max(start1, start2) and stopmin = min(stop1, stop2). Equation

12 can be rewritten into the standard form of a linear Diophan-

tine equation ax + by = c:

period1 · x − period2 · y = start2 − start1 (13)

A linear Diophantine equation has solutions if and only if the

gcd(a, b)|c. If not, this means there are no collisions between

the two reservations and the reservation is accepted as valid.

If gcd(a, b)|c, the equation has infinitely many solutions. The

solution (x0, y0) can be calculated using the extended Euclidean

algorithm. Using (x0, y0) and the Diophantine solution standard

form, one can calculate all solutions:

∀n ∈ N : x = x0 + n ·
period2

gcd(period1, period2)
(14)

∀n ∈ N : y = y0 + n ·
period1

gcd(period1, period2)
(15)

We are interested in the values of n where the two reservation

sequences can collide:

startmax ≤

start1 + period1 · (x0 + n ·
period2

gcd(period1, period2)
)

≤ stopmin (16)

Based on Equation 16, we calculate the lower- and upper-

bound of the n values that we should consider:

nstart = (
startmax − start1

period1

− x0) ·
gcd(period1, period2)

period2

(17)

nstop = (
stopmin − start1

period1

− x0) ·
gcd(period1, period2)

period2

(18)

The number of schedule collisions numCollisions be-

tween the two reservations (start1, stop1, period1) and

(start2, stop2, period2) equals the numbers of integers in the
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Algorithm 1 Scheduling and receiving ReSF reservation requests.

1: procedure ScheduleRequest(start, stop, period, id, dest)

2: max tuples← 6 ⊲ Based on 6P ADD length

3: num tuples← getReqTuples(getNextHop(dest)) ⊲ Required nr. of tuples, based on link quality

4: tuple pool← getTuplePool(start + 1, stop, period, resv bu f f er) ⊲ Tuples to select from

5: tuple list ← list

6: while size(tuple list) , max tuples do ⊲ Find max tuples tuples to send

7: append(popBestTuple(tuple pool), tuple list) ⊲ Select tuple with lowest collision rate

8: end while

9: SendRequest(tuple list, num tuples, id, dest) ⊲ Forward the suggested tuple list to the next hop

10: end procedure

11: procedure ReceiveRequest(tuple list, num tuples, id, dest)

12: ack tuple list ← list

13: while size(ack tuple list) , num tuples do ⊲ Find num tuples

14: append(popBestTuple(tuple list), ack tuple list) ⊲ Select tuple with lowest collision rate

15: end while

16: Respond(ack tuple list, id) ⊲ Respond with the acknowledged tuple list

17: if ShouldForward(dest) then

18: new start ← getLatestTuple(ack tuple list) ⊲ Get start value of latest tuple

19: ScheduleRequest(new start, stop, period, id, dest) ⊲ Forward the reservation

20: end if

21: end procedure

interval [nstart, nstop] which is nstop − nstart + 1. A node can

immediately and exactly calculate all collision ASNs, by filling

in the integers in the interval [nstart, nstop] using:

start1 + period1 · (x0 + n ·
period2

gcd(period1, period2)
) (19)

4.6. Queue Housekeeping using eLLSF

While extra recurrent cells are reserved to anticipate inferior

link quality and action is taken to limit the number of sched-

ule collisions, packets can still end up in the queue at the end

of a slotframe when the number of reserved recurrent slots, in-

cluding the over-provisioned slots, does not suffice due to more

unanticipated packet loss or non-recurrent traffic.

To empty the queue and preventing the queued packets from

taking up cells that were meant for other ReSF reservations, we

use the distributed scheduling function eLLSF. It uses a period-

ical housekeeping moment at which it reserves a required num-

ber of cells for the slotframes to come, i.e., cells that repeat ev-

ery slotframe. To keep the delay of those queued packets as low

as possible, ReSF calculates the required number of cells for

the next eLLSF houskeeping period by averaging the number

of queued packets of every slotframe since the last housekeep-

ing, as to have extra resources to clear the queue and further

minimize latency. The housekeeping period is a configurable

parameter.

eLLSF is actually an extended version of LLSF [3]. The

idea behind LLSF is to daisy-chain receiving and transmitting

cells used in a multi-hop path in order to decrease the latency.

The authors however only described how LLSF behaves in a

multi-hop path where each node has one child and one par-

ent. Based on their description, we extended LLSF and im-

plemented eLLSF so it can deal with multiple children and use

it for both up- and downstream reservations.

The process of adding and removing cells in eLLSF is simi-

lar to LLSF. However, in contrast to LLSF, eLLSF makes a dif-

ference between up- and downstream packets when performing

slot reservations and removals. This differentiation is crucial as

eLLSF considers the (possible) multiple children of a node.

Scheduling eLLSF cells. If a node wants to reserve n transmit

cells to its parent, it uses the following four-step process:

1. For each reception cell from a child, count the number of

cells between that reception cell and the previous reception

cell of that child.

2. For each child, pick the cell with the largest gap to its left:

this is the largest amount of cells between two reception

cells of that child.

3. Distribute the cells that are to be reserved evenly and ran-

domly among all children. For example, if a node wants to

reserve five cells to its parent and has three children, first

assign one transmit cell to each of the children of the node.

After that, assign the remaining two cells to two random

children.

4. For each child that is assigned one or more transmission

cells, place the transmit cell(s) as closely as possible to the

right of the reception cell with the largest gap of that child.

When making a transmit cell reservation in the other direc-

tion i.e., to one of its children, the 3-step LLSF reservation pro-

cess is used: only the reception cells of the child – to which

the reservation is made – are considered when looking for the
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largest gap. This way, minimum-delay communication between

that child and its parent is encouraged.

Figure 5 shows an example of a eLLSF housekeeping mo-

ment. The schedule of node D before and after the housekeep-

ing moment is shown (for simplicity reasons only one channel

is used). Node D wants to reserve 4 cells to its parent. There-

fore, it first determines the largest gap RX cells of each child.

Afterwards, it places a transmission cell as closely as possible

to the largest gap reception cell of each child, with one trans-

mission cell to spare (because there are only 3 children). This

last transmission cell is randomly assigned to a node: in this

case it is assigned to node B and placed in the beginning of the

slotframe because there are no empty cells left at the end of the

slotframe.

Unscheduling eLLSF cells. When a node has too many cells to

a neighbor (i.e., parent or child), it will remove 1 or more cells

to that neighbor. Again, eLLSF makes a distinction between

removing a cell to a parent or to a child. When removing a

transmission slot to a parent, the algorithm looks for the largest

gap between a transmission cell to that parent and the reception

cells of all children. Then it removes the transmission cell with

the largest gap to its left. In the case a transmission cell to

a child is being removed, we use the unscheduling process of

LLSF. It first looks for the largest gap between a transmission

cell to that child and the previous reception cell of that same

child. Then it removes the transmission cell to that child with

the largest gap to its left.

Preventing collisions between eLLSF and ReSF. In order to

prevent the eLLSF housekeeping from reserving recurrent cells

that were meant for ReSF reservations, a 2-step process is used:

(1) during an interval [current time, current time + bu f f er],

calculate all the cells occupied by active ReSF reservations

(with bu f f er being a preset parameter currently fixed at the

length of 10 slotframes), (2) schedule the housekeeping cells

using eLLSF while not considering the slots calculated in step

1 as available slots.

4.7. 6P Integration

This section clarifies how to integrate ReSF in the 6P proto-

col. When looking at the format of a normal 6P ADD transaction,

a ReSF 6P transaction is very similar: ADD and DELETE requests

contain an additional ReSF ID that identifies the reservation, the

Destination of the reservation and a list of ReSF reservations

that have to be added/deleted. The receiver answers with the

number of requested ReSF reservation tuples that fit the node

best. If the receiver does not agree with any of the proposed

tuples, it answers with an empty 6P RESPONSE which indicates

that the sender should propose other ReSF reservation tuples.

In Figure 6, both a 6P ADD message and ReSF reservation

format are shown. The maximum length of a 6TiSCH packet

is 127 bytes. The IEEE 802.15.4 header has a length of 23

bytes (including the FCS field) while the 6top header only has a

length of 8 bytes when leaving out the list of cells. This leaves

96 bytes to specify the ReSF reservation. The ReSF ID can be

represented by a 2-byte integer, the Destination by 8 bytes. A

Table 3: The default experiment parameters.

Parameter Value

Grid size 4.5 km x 4.5 km

Inter-node default distance 0.230 km

Nr. of runs per experiment 20

Simulated time 30 min

Frequency 2.4 GHz

Nr. of channels 16

Stable RSSI −93.6 dBm (PDR ∼ 0.5)

Nr. of stable neighbors 1

Avg. nr. of hops (25/100 nodes) 3.4 (σ = 0.4) / 5.8 (σ = 0.4)

Avg. nr. of children (25/100 nodes) 2.2 (σ = 0.4) / 1.7 (σ = 0.1)

Slotframe size 101

Nr. of SHARED cells 3

6top housekeeping False

SF0 threshold 0

RPL parent set size 1

RPL DIO Period 5 s

ReSF reservation buffer 64

Housekeeping period 10 s

Timeslot duration 10 ms

ReSF reservation has a length of 14 bytes containing two 5-byte

ASN values for the start and stop value, a 2-byte channel offset

and a 2-byte period value. This mean that a 6P ADD reservation

can include 6 reservations. There are 2 bytes left for future use.

5. Evaluation

This section evaluates the performance of ReSF and com-

pares it to the state-of-the-art TSCH scheduling functions SF0

and eLLSF. A variety of experiments was conducted while

observing several metrics including packet latency and power

consumption. First, we present the different experiment pa-

rameters. Afterwards, we determine the optimal value of the

reservation bu f f er. Finally, we show the performance of

ReSF with both static and dynamic traffic patterns.

5.1. Simulation Setup

In order to evaluate the performance of ReSF, we used

the 6TiSCH simulator developed by the 6TiSCH WG mem-

bers [18]. This is an open-source, event-driven Python sim-

ulator, allowing easy parameter configuration. By default, the

simulator supports IEEE 802.15.4e TSCH mode, RPL, 6top and

SF0. We extended the simulator with a real message-passing 6P

protocol as the implemented 6top sublayer did not support real-

istic 6P transactions. The presented ILP formulation is solved

using Gurobi, which uses a hybrid solution procedure that com-

bines three different approaches to find an exact solution: (1)

cutting planes, (2) branch and bound, (3) relaxation and de-

composition [19].

During all experiments, the nodes are placed on a grid, with

the root node positioned in the center. The (x, y) grid position

of each node (except for the root node) is determined at random

– with a different seed for each experiment iteration – follow-

ing the normal distributions N(x0, (d/8)2) and N(y0, (d/8)2)

respectively, with (x0, y0) being the initial grid position of each
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Figure 5: eLLSF housekeeping on node D that wants to reserve 4 transmission cells to its parent.

V Code SFIDT R

Metadata CellOpt

NumCells ReSF ID

ReSF Reservation List (84 bytes)

ReSF Reseserved

FCS

Start ASN

Stop ASN

Period

Channel Offset

0 7 8 15 16 23 24 31

0 7 8 15 16 23 24 31

IEEE 802.15.4 Header (21 bytes)

ReSF

Reservation

6top

Header

IEEE 802.15.4

Header

ReSF Destination

ReSF Reseserved

SeqNum

Figure 6: Example of a 6P ADD request format for ReSF reservations (maximum length of 127 bytes) and a ReSF reservation that includes the channel offset and the

reservation tuple (14 bytes).

node. The distance is d, set to 230 meters, to ensure the topolo-

gies did not end up being star topologies, while still maintaining

end-to-end multi-hop connectivity between the root and every

other node. Generating heterogeneous traffic is done sampling a

normal distributionN(t, (t/4)2) , with t the mean traffic rate, for

which 3 different values are used: 1 packet/min, 6 packets/min

and 12 packets/min per node. All network traffic is sent to the

same sink node: the network root. The default parameter values

are summarized in Table 3. The optimal housekeeping period

parameter is experimentally determined and is set to 10 s for all

three scheduling functions (i.e., SF0, eLLSF and ReSF) as they

all employ periodical housekeeping. 6top housekeeping (i.e.,

relocation of cells) is not enabled as this was not added to the

message passing 6P implementation. The 3 SHARED cells, that

are used to bootstrap the network, are located at the first 3 cells

of every slotframe.

All results in this section exclude the initial warm-up pe-

riod in which the network topology converges, meaning that

each node has already selected a preferred parent and has ne-

gotiated one dedicated cell to that preferred parent. In case of

ReSF, it also means that each ReSF reservation of a node has

already reached the root. It is assumed that a link-layer ACK

message does not fail and that the intermediary processing of

a data packet takes less than one cell length (and thus can be

forwarded in a cell immediately following the cell in which it

was received).

The latency metric encompasses the total time it takes a data

packet to reach the root, from the moment it is generated. It is

important to mention that a packet is only dropped after it has

been retransmitted at least 5 times and the queue of the node is

full. The battery power consumption metric is the aggregated

radio power consumption of all the nodes, taking into account

idle listening, transmission and reception of each data and ac-

knowledgement packet. The consumption values used in the

simulator that correspond to these different actions are based

on the work by Vilajosana et al. who provided a realistic TSCH

energy consumption model [20]. All experiment results show

the mean of 20 (random) iterations and the associated standard

error.
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5.2. Reservation Buffer

The reservation buffer parameter represents the number of

tuples a node will compare to all already activated reservations,

when looking for the tuple with the smallest collision rate, as

explained in Section 4.3.1. As can be observed in Figure 7, a

higher reservation buffer has a significant impact on the net-

work latency when there is a network load of 12 packets/min:

taking the optimal value of 64 improves 56 % in delay over not

considering any extra tuples (i.e., a value of 0). When looking at

lower traffic loads, increasing the buffer leads to higher delays.

At lower traffic loads the schedule is less congested and low

collision rate tuples are commonly available. Looking at tuples

with later start ASNs to find an even better collision rate results

in an increased latency because of the extra difference in time

between the packet arrival and the moment it can be sent to the

next hop. The reservation buffer parameter is set to a value of

64 for all experiments. For the simplicity of parameter configu-

ration, we show the results for one reservation buffer value for

the different traffic loads. This, of course, has an impact on the

lower traffic loads: for 1 packet/min the latency result is 16 %

worse than the optimum (i.e., a reservation buffer value of 0)

and for 6 packets/min are 6 % worse than the optimal results at

a value of 4.

To show the computational impact of choosing a reserva-

tion buffer value, we measured the computation time when

identifying collisions between two reservation tuples during a

certain interval length, i.e., the period in which the two tuples

can collide. Figure 8 shows that the computation time linearly

increases for increasing interval lengths. To identify an ac-

ceptable length, Figure 9 shows the normalized packet collision

probability when calculating the collisions between two reser-

vation tuples during different interval lengths. The probability

is normalized relative to the collision probability when consid-

ering an interval length of 7200 s. Calculating the collisions be-

tween two reservation tuples over an interval length of 3000 s is

sufficient for all traffic rate means, i.e., for both 6 packets/min

and 12 packets/min, the difference in accuracy is negligible

(i.e., less than 1 %) when using a length of 3000 s compared to

using a length of 7200 s. For a traffic rate of 1 packet/min, the

difference is 13.5 % which is considered acceptable. As shown

in Figure 8, the computation time for a period of 3000 s is 1 µs.

This means that for a single ReSF 6P ADD request that can con-

tain 6 tuples and a reservation buffer value of 64, the collision

computation time is 0.384 ms for every existing reservation on

the node the new request is compared to. However, as can be

seen in Figure 9, for higher traffic rate means, comparing over a

length of 1000 s already suffices, which would divide the com-

putation time by two.

5.3. Static Traffic

Figure 10 shows the average latency and power consump-

tion for both 25 and 100 nodes in topologies with static traffic

patterns, meaning that a node will not change the period with

which it generates traffic throughout the experiment.

The results show that taking into account recurrent traffic be-

havior combined with daisy-chaining the cells up to the root,
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Figure 7: Reservation buffer parameter experiment with 100 nodes.
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Figure 8: The computation time (in microseconds) of finding the collisions

between two reservation tuples for different interval lengths.

results in superior performance in terms of latency. Looking at

results of 100 nodes with the traffic load means of 1 packet/min,

6 packets/min and 12 packets/min per node, the relative latency

improvements of ReSF over eLLSF are respectively 76 % (from

5.74 s to 1.40 s), 80 % (from 5.77 s to 1.16 s) and 78 % (from

5.53 s to 1.23 s). Looking at the ReSF results for 100 nodes

when traffic increases, the latency is almost constant. This

means that because of the traffic behavior-aware reservations

ReSF is well equipped to deal with different traffic rates. Look-

ing at the results in Figure 10a, the latency of ReSF is even

slightly decreasing at higher mean traffic rates. This is because

ReSF defines the number of cells needed for a packet trans-

mission as the ceiled ETX value per link which is dynamically

determined based on the number of retransmissions. For ex-
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Figure 9: The normalized probability, i.e., relative to the probability based on a

interval length of 7200 seconds, for different interval lengths.
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(c) Power consumption for 25 nodes.
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Figure 10: Results for static traffic with 25 and 100 nodes, comparing ReSF to SF0 and eLLSF, as well as the optimal solution obtained from solving the ILP

formulation (the latter for 25 nodes only), as a function of the average traffic generation period.

Table 4: Comparison of eLLSF and ReSF latency and packet loss values for a

traffic rate mean of 12 packets/min for different network sizes.

Size
eLLSF ReSF

Latency (s) Loss (%) Latency (s) Loss (%)

25 2.89 0.14 0.45 0.0

100 5.53 1.7 1.23 0.8

150 6.93 4.08 1.94 4.24

200 8.44 9.02 2.83 9.78

ample, if a link has an ETX value of 1.1, ReSF will reserve

2 cells per link per packet sent, i.e., an over-provisioning of 1

cell. However, with an ETX value of 1.1 the probability that the

packet will actually need two cells is rather small. This means

that the over-provisioned cell(s) can be used by other packets.

This effect is magnified when dealing with higher traffic rates

as there will be more over-provisioned cells. Combined with

additional packet losses at higher traffic rates, this explains the

slightly improved latency results when increasing the traffic rate

mean.

As expected, due to the daisy-chained paths scheduled by

eLLSF, it also improves over the random reserved cells of SF0

with respectively 15 %, 15 %, and 12 %. Packet loss is minimal

for all 3 scheduling functions: when considering the high traf-

fic load scenario of 12 packets/min with 100 nodes, ReSF has

the least amount of packet loss with 0.8 % of the packets lost,

followed by eLLSF with 1.7 % and SF0 with 1.8 % packet loss.

Considering the other traffic loads, the packet loss of ReSF is

negligible at a maximum of only 0.04 %. For eLLSF and SF0,
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Figure 11: Number of sent 6P messages, before (i.e., hatched bars) and after

the network convergence.

the maximal packet loss values are 0.6 % and 0.7 %.

Table 4 shows that the same trend holds for larger network

sizes up to 200 nodes and a traffic rate mean of 12 packets/min.

For 150 and 200 nodes, ReSF has an average latency of 1.94 s

and 2.83 s respectively, while eLLSF has an average latency of

6.93 s and 8.44 s respectively. However, the packet losses intro-

duced by ReSF increase to 4.24 % for 150 nodes and to 9.87 %

for 200 nodes, while for eLLSF the packet loss increases to

4.08 % and 9.02 % respectively. These results show that while

ReSF has slightly more packet losses compared to eLLSF when

the network scale increases, ReSF scales significantly better

than eLLSF in terms of latency.

Figure 10a also shows the optimal solution. It is calculated

by solving the ILP formulation of the recurrent traffic prob-
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Figure 12: Results for dynamic traffic with 25 and 100 nodes, comparing ReSF to eLLSF, as a function of the probability that the traffic generation period of each

node changes every second.

lem, as defined in Section 3.2. Optimal results for 100 nodes

are omitted, due to the exponential execution time increase in

terms of network size. As the ILP formulation assumes perfect

link conditions without interference (i.e., ET X = 1), the graph

also shows ReSF results under perfect network conditions (i.e.,

RESF PF) for a more fair comparison. The ILP results average

around 25 ms which is significantly better than the normal ReSF

results or the ReSF experiment with perfect links of which the

latency for all traffic rates averages around 250 ms. The reason

that the ILP solution has a latency about 10 times lower than

ReSF PF is because its result is the theoretical optimal solution

that avoids schedule collisions using perfect global information,

and it does not take into account interference or signaling over-

head.

The power consumption results show that there is only a min-

imal impact of ReSF on battery life: a maximum increase of

6.3 % increase over eLLSF (and 6.54 % over SF0) for a traf-

fic load of 12 packets/min per node and a minimum of 1.96 %

(and 1.74 % over SF0) for a traffic load of 1 packet/min. The

fact that there is a slight increase in battery consumption is due

to the extra cells that ReSF reserves in the slot frames when

traffic is expected. For each scheduling function, all nodes in

the network have – by default – a dedicated transmission cell

to their parents to allow fast management communication (i.e.,

6P transactions) and also data transmissions. Next to those de-

fault reserved dedicated cells, ReSF also reserves recurrent cells

that are only activated when traffic is expected and housekeep-

ing cells to empty the queue of any remaining traffic. SF0 and

eLLSF also have to reserve extra cells when dealing with unan-

ticipated high traffic loads and because they do not anticipate

the recurrent traffic with recurrent cells they have to send sig-

nificantly more 6P overhead as shown in Figure 11. The figure

shows the number of sent 6P packets before and after network

convergence. For the lowest traffic load, ReSF has higher total

overhead, but this is only because of the sent ReSF reservations

during network convergence. When the network has converged,

the overhead of SF0 and eLLSF is significantly higher.

5.4. Dynamic Traffic

In these experiments, ReSF and eLLSF are tested on how

they deal with dynamic traffic. Every second every node has a

probability that its traffic generation period changes. When the

traffic generation period changes, the new period is drawn from

the sample normal distribution out of which the original traffic

period was drawn.

The results in Figure 12 show that eLLSF is not affected by

the traffic period changes. Because the changes in traffic pe-

riod are not that significant, the housekeeping of eLLSF does

not continuously need to send 6P DELETE and ADD to adjust

the number of resources. The number of 6P messages thereby

equals the overhead as if there were no traffic period changes,

leading to similar latency results. This is in contrast to ReSF,

where for each traffic period change at a node, a new recurrent

reservation needs to be forwarded to the root. This additional

ReSF 6P overhead will hold up more data packets in the queue,

which results in additional 6P ReSF housekeeping overhead.

All this extra overhead decreases the performance of ReSF.

However, the graphs show that for 25 nodes, 12 packets/min

and a probability up to 20 % (meaning that, on average, every

second 5 nodes change their traffic period), ReSF can deal with

these dynamic traffic periods and it improves on latency while

maintaining a throughput equal to eLLSF. The graph shows

that ReSF actually deals better with the changing traffic peri-

ods when the traffic rate mean is higher. This is because when

the traffic rate is higher, recurrent cells are more frequently

available to forward the updated 6P ReSF reservations and thus

less data packets are obstructed from being forwarded. When

observing 100 nodes at 12 packets/min, ReSF performs better

than eLLSF up to somewhere between 1.5 % and 2 %. While

the latency graph shows a significant improvement by ReSF,

the throughput results showed that at 1.5 % the throughput of

ReSF is better than eLLSF while at 2 % it was slightly less (i.e.,

ReSF had 0.28 % less throughput).

It is important to note that such frequent traffic rate changes

are unlikely for most real-world sensing applications, such as

temperate or heart rate measurements. For example, in a topol-

ogy with 100 nodes a 2 % change probability means that it is

expected that 2 out of 100 nodes change their traffic period ev-

ery second and every node would change it every 50 s on av-

erage. Considering a generation mean of 1 packet/min such

a change probability becomes even more unrealistic as a node
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would change its generation period faster than it generates an

actual packet. So, a probability of 2 % is very high which means

that ReSF is well-equipped to handle dynamic traffic rates.

6. Conclusion

In this work, we explicitly focused on minimizing the latency

of recurrent traffic in WSNs. We presented two novel contribu-

tions. First, we stated the problem of minimal-latency schedul-

ing of recurrent transmissions formally, using an ILP. Second,

we presented ReSF, a distributed TSCH scheduling function,

specifically designed for IoT applications with recurrent traf-

fic, such as sensor measurement applications. ReSF builds a

minimal-latency path from source to root and activates the re-

current cells on this path only when traffic is expected, and

deactivates them immediately afterwards. We have conducted

numerous experiments using the 6TiSCH simulator, compar-

ing ReSF both to SF0 and eLLSF. The results show significant

performance improvements. When considering 100 nodes and

each node having a static traffic pattern, ReSF improves up to

80% in terms of latency compared to eLLSF while only hav-

ing a minimal power consumption impact of at most 6.3%. We

have also experimentally shown that ReSF can handle a per-

second traffic rate change probability up to 20 % when consid-

ering 25 nodes and between 1.5 % and 2 % in a topology of 100

nodes. Traffic rate changes in most real-world sensor applica-

tions are typically much less dynamic. We conclude that ReSF

is well-equipped to maintain a minimal delay in both static and

dynamic recurrent traffic rate scenarios.

For future work, ReSF will be integrated into a TSCH

firmware implementation in order to deploy and test it in a real-

world TSCH network.
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