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Abstract

We study the problem of recovering a vector x ∈ R
n from its magnitude measure-

ments yi = |〈ai,x〉|, i = 1, ...,m. Our work is along the line of the Wirtinger flow
(WF) approach Candès et al. [2015], which solves the problem by minimizing a
nonconvex loss function via a gradient algorithm and can be shown to converge
to a global optimal point under good initialization. In contrast to the smooth loss
function used in WF, we adopt a nonsmooth but lower-order loss function, and
design a gradient-like algorithm (referred to as reshaped-WF). We show that for
random Gaussian measurements, reshaped-WF enjoys geometric convergence to
a global optimal point as long as the number m of measurements is at the order
of O(n), where n is the dimension of the unknown x. This improves the sample
complexity of WF, and achieves the same sample complexity as truncated-WF
Chen and Candes [2015] but without truncation at gradient step. Furthermore,
reshaped-WF costs less computationally than WF, and runs faster numerically than
both WF and truncated-WF. Bypassing higher-order variables in the loss function
and truncations in the gradient loop, analysis of reshaped-WF is simplified.

1 Introduction

Recovering a signal via a quadratic system of equations has gained intensive attention recently.
More specifically, suppose a signal of interest x ∈ R

n/Cn is measured via random design vectors
ai ∈ R

n/Cn with the measurements yi given by

yi = |〈ai,x〉| , for i = 1, · · · ,m, (1)

which can also be written equivalently in a quadratic form as y′i = |〈ai,x〉|2. The goal is to recover
the signal x based on the measurements y = {yi}mi=1 and the design vectors {ai}mi=1. Such a
problem arises naturally in the phase retrieval applications, in which the sign/phase of the signal is
to be recovered from only measurements of magnitudes. Various algorithms have been proposed to
solve this problem since 1970s. The error-reduction methods proposed in Gerchberg [1972], Fienup
[1982] work well empirically but lack theoretical guarantees. More recently, convex relaxation of
the problem has been formulated, for example, via phase lifting Chai et al. [2011], Candès et al.
[2013], Gross et al. [2015] and via phase cut Waldspurger et al. [2015], and the correspondingly
developed algorithms typically come with performance guarantee. The reader can refer to the review
paper Shechtman et al. [2015] to learn more about applications and algorithms of the phase retrieval
problem.

While with good theoretical guarantee, these convex methods often suffer from computational com-
plexity particularly when the signal dimension is large. On the other hand, more efficient nonconvex
approaches have been proposed and shown to recover the true signal as long as initialization is good
enough. Netrapalli et al. [2013] proposed AltMinPhase algorithm, which alternatively updates the
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phase and the signal with each signal update solving a least-squares problem, and showed that Alt-

MinPhase converges linearly and recovers the true signal with O(n log3 n) Gaussian measurements.
More recently, Candès et al. [2015] introduces Wirtinger flow (WF) algorithm, which guarantees
signal recovery via a simple gradient algorithm with only O(n log n) Gaussian measurements and

attains ǫ−accuracy within O(mn2 log 1/ǫ) flops. More specifically, WF obtains good initialization
by the spectral method, and then minimizes the following nonconvex loss function

ℓWF (z) :=
1

4m

m
∑

i=1

(|aT
i z|2 − y2i )

2, (2)

via the gradient descent scheme.

WF was further improved by truncated Wirtinger flow (truncated-WF) algorithm proposed in Chen

and Candes [2015], which adopts a Poisson loss function of |aT
i z|2, and keeps only well-behaved

measurements based on carefully designed truncation thresholds for calculating the initial seed and
every step of gradient . Such truncation assists to yield linear convergence with certain fixed step size
and reduces both the sample complexity to (O(n)) and the convergence time to (O(mn log 1/ǫ)).

It can be observed that WF uses the quadratic loss of |aT
i z|2 so that the optimization objective is a

smooth function of aT
i z and the gradient step becomes simple. But this comes with a cost of a quartic

loss function. In this paper, we adopt the quadratic loss of |aT
i z|. Although the loss function is not

smooth everywhere, it reduces the order of aT
i z to be two, and the general curvature can be more

amenable to convergence of the gradient algorithm. The goal of this paper is to explore potential
advantages of such a nonsmooth lower-order loss function.

1.1 Our Contribution

This paper adopts the following loss function1

ℓ(z) :=
1

2m

m
∑

i=1

(

|aT
i z| − yi

)2
. (3)

Compared to the loss function (2) in WF that adopts |aT
i z|2, the above loss function adopts the

absolute value/magnitude |aT
i z| and hence has lower-order variables. For such a nonconvex and

nonsmooth loss function, we develop a gradient descent-like algorithm, which sets zero for the
“gradient" component corresponding to nonsmooth samples. We refer to such an algorithm together
with truncated initialization using spectral method as reshaped Wirtinger flow (reshaped-WF). We
show that the lower-order loss function has great advantage in both statistical and computational
efficiency, although scarifying smoothness. In fact, the curvature of such a loss function behaves
similarly to that of a least-squares loss function in the neighborhood of global optimums (see Section
2.2), and hence reshaped-WF converges fast. The nonsmoothness does not significantly affect the
convergence of the algorithm because only with negligible probability the algorithm encounters
nonsmooth points for some samples, which furthermore are set not to contribute to the gradient
direction by the algorithm. We summarize our main results as follows.

• Statistically, we show that reshaped-WF recovers the true signal with O(n) samples, when
the design vectors consist of independently and identically distributed (i.i.d.) Gaussian
entries, which is optimal in the order sense. Thus, even without truncation in gradient
steps (truncation only in initialization stage), reshaped WF improves the sample complexity
O(n log n) of WF, and achieves the same sample complexity as truncated-WF. It is thus
more robust to random measurements.

• Computationally, reshaped-WF converges geometrically, requiring O(mn log 1/ǫ) flops
to reach ǫ−accuracy. Again, without truncation in gradient steps, reshaped-WF improves
computational cost O(mn2 log(1/ǫ) of WF and achieves the same computational cost as
truncated-WF. Numerically, reshaped-WF is generally two times faster than truncated-WF
and four to six times faster than WF in terms of the number of iterations and time cost.

Compared to WF and truncated-WF, our technical proof of performance guarantee is much simpler,
because the lower-order loss function allows to bypass higher-order moments of variables and

1The loss function (3) was also used in Fienup [1982] to derive a gradient-like update for the phase retrieval
problem with Fourier magnitude measurements. However, our paper is to characterize global convergence
guarantee for such an algorithm with appropriate initialization, which was not studied in Fienup [1982].
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truncation in gradient steps. We also anticipate that such analysis is more easily extendable. On the
other hand, the new form of the gradient step due to nonsmoothness of absolute function requires
new developments of bounding techniques.

1.2 Connection to Related Work

Along the line of developing nonconvex algorithms with global performance guarantee for the phase
retrieval problem, Netrapalli et al. [2013] developed alternating minimization algorithm, Candès et al.
[2015], Chen and Candes [2015], Zhang et al. [2016], Cai et al. [2015] developed/studied first-order
gradient-like algorithms, and a recent study Sun et al. [2016] characterized geometric structure of the
nonconvex objective and designed a second-order trust-region algorithm. Also notably is Wei [2015],
which empirically demonstrated fast convergence of a so-called Kaczmarz stochastic algorithm. This
paper is most closely related to Candès et al. [2015], Chen and Candes [2015], Zhang et al. [2016],
but develops a new gradient-like algorithm based on a lower-order nonsmooth (as well as nonconvex)
loss function that yields advantageous statistical/computational efficiency.

Various algorithms have been proposed for minimizing a general nonconvex nonsmooth objective,
such as gradient sampling algorithm Burke et al. [2005], Kiwiel [2007] and majorization-minimization
method Ochs et al. [2015]. These algorithms were often shown to convergence to critical points
which may be local minimizers or saddle points, without explicit characterization of convergence
rate. In contrast, our algorithm is specifically designed for the phase retrieval problem, and can be
shown to converge linearly to global optimum under appropriate initialization.

The advantage of nonsmooth loss function exhibiting in our study is analogous in spirit to that of
the rectifier activation function (of the form max{0, ·}) in neural networks. It has been shown that
rectified linear unit (ReLU) enjoys superb advantage in reducing the training time Krizhevsky et al.
[2012] and promoting sparsity Glorot et al. [2011] over its counterparts of sigmoid and hyperbolic
tangent functions, in spite of non-linearity and non-differentiability at zero. Our result in fact also
demonstrates that a nonsmooth but simpler loss function yields improved performance.

1.3 Paper Organization and Notations

The rest of this paper is organized as follows. Section 2 describes reshaped-WF algorithm in detail
and establishes its performance guarantee. In particular, Section 2.2 provides intuition about why
reshaped-WF is fast. Section 3 compares reshaped-WF with other competitive algorithms numerically.
Finally, Section 4 concludes the paper with comments on future directions.

Throughout the paper, boldface lowercase letters such as ai,x, z denote vectors, and boldface capital
letters such as A,Y denote matrices. For two matrices, A � B means that B−A is positive definite.
The indicator function 1A = 1 if the event A is true, and 1A = 0 otherwise. The Euclidean distance
between two vectors up to a global sign difference is defined as dist(z,x) := min{‖z−x‖, ‖z+x‖}.

2 Algorithm and Performance Guarantee

In this paper, we wish to recover a signal x ∈ R
n based on m measurements yi given by

yi = |〈ai,x〉| , for i = 1, · · · ,m, (4)

where ai ∈ R
n for i = 1, · · · ,m are known measurement vectors generated by Gaussian distribution

N (0, In×n). We focus on the real-valued case in analysis, but the algorithm designed below is
applicable to the complex-valued case and the case with coded diffraction pattern (CDP) as we
demonstrate via numerical results in Section 3.

We design reshaped-WF (see Algorithm 1) for solving the above problem, which contains two stages:
spectral initialization and gradient loop. Suggested values for parameters are αl = 1, αu = 5 and
µ = 0.8. The scaling parameter in λ0 and the conjugate transpose a∗

i allow the algorithm readily
applicable to complex and CDP cases. We next describe the two stages of the algorithm in detail in
Sections 2.1 and 2.2, respectively, and establish the convergence of the algorithm in Section 2.3.

2.1 Initialization via Spectral Method

We first note that initialization can adopt the spectral initialization method for WF in Candès et al.
[2015] or that for truncated-WF in Chen and Candes [2015], both of which are based on |a∗

ix|2.
Here, we propose an alternative initialization in Algorithm 1 that uses magnitude |a∗

ix| instead, and
truncates samples with both lower and upper thresholds as in (5). We show that such initialization
achieves smaller sample complexity than WF and the same order-level sample complexity as truncated-
WF, and furthermore, performs better than both WF and truncated-WF numerically.
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Algorithm 1 Reshaped Wirtinger Flow

Input: y = {yi}mi=1, {ai}mi=1;
Parameters: Lower and upper thresholds αl, αu for truncation in initialization, stepsize µ;

Initialization: Let z(0) = λ0z̃, where λ0 = mn∑
m

i=1 ‖ai‖1
·
(

1
m

∑m

i=1 yi
)

and z̃ is the leading eigen-

vector of

Y :=
1

m

m
∑

i=1

yiaia
∗
i 1{αlλ0<yi<αuλ0}. (5)

Gradient loop: for t = 0 : T − 1 do

z(t+1) = z(t) − µ

m

m
∑

i=1

(

a∗
i z

(t) − yi ·
a∗
i z

(t)

|a∗
i z

(t)|

)

ai. (6)

Output z(T ).

Our initialization consists of estimation of both the norm and direction of x. The norm estimation
of x is given by λ0 in Algorithm 1 with mathematical justification in Suppl. A. Intuitively, with

real Gaussian measurements, the scaling coefficient mn∑
m

i=1 ‖ai‖1
≈

√

π
2 . Moreover, yi = |aT

i x|
are independent sub-Gaussian random variables for i = 1, . . . ,m with mean

√

2
π
‖x‖, and thus

1
m

∑m

i=1 yi ≈
√

2
π
‖x‖. Combining these two facts yields the desired argument.
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Figure 1: Comparison of three initialization
methods with m = 6n and 50 iterations
using power method.

The direction of x is approximated by the leading eigen-
vector of Y , because Y approaches E[Y ] by concen-
tration of measure and the leading eigenvector of E[Y ]
takes the form cx for some scalar c ∈ R. We note that
(5) involves truncation of samples from both sides, in
contrast to truncation only by an upper threshold in

Chen and Candes [2015]. This is because yi = |aT
i x|2

in Chen and Candes [2015] so that small |aT
i x| is fur-

ther reduced by the square power to contribute less

in Y , but small values of yi = |aT
i x| can still intro-

duce considerable contributions and hence should be
truncated by the lower threshold.

We next provide the formal statement of the perfor-
mance guarantee for the initialization step that we pro-
pose. The proof adapts that in Chen and Candes [2015]
and is provided in Suppl. A.

Proposition 1. Fix δ > 0. The initialization step in

Algorithm 1 yields z(0) satisfying ‖z(0) − x‖ ≤ δ‖x‖ with probability at least 1 − exp(−c′mǫ2),
if m > C(δ, ǫ)n, where C is a positive number only affected by δ and ǫ, and c′ is some positive
constant.

Finally, Figure 1 demonstrates that reshaped-WF achieves better initialization accuracy in terms of

the relative error
‖z(0)−x‖

‖x‖ than WF and truncated-WF with Gaussian measurements.

2.2 Gradient Loop and Why Reshaped-WF is Fast

The gradient loop of Algorithm 1 is based on the loss function (3), which is rewritten below

ℓ(z) :=
1

2m

m
∑

i=1

(

|aT
i z| − yi

)2
. (7)

We define the update direction as

∇ℓ(z) :=
1

m

m
∑

i=1

(

aT
i z − yi · sgn(aT

i z)
)

ai =
1

m

m
∑

i=1

(

aT
i z − yi ·

aT
i z

|aT
i z|

)

ai, (8)
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where sgn(·) is the sign function for nonzero arguments. We further set sgn(0) = 0 and 0
|0| = 0.

In fact, ∇ℓ(z) equals the gradient of the loss function (7) if aT
i z 6= 0 for all i = 1, ...,m. For

samples with nonsmooth point, i.e., aT
i z = 0, we adopt Fréchet superdifferential Kruger [2003] for

nonconvex function to set the corresponding gradient component to be zero (as zero is an element in
Fréchet superdifferential). With abuse of terminology, we still refer to ∇ℓ(z) in (8) as “gradient” for
simplicity, which rather represents the update direction in the gradient loop of Algorithm 1.

We next provide the intuition about why reshaped WF is fast. Suppose that the spectral method sets
an initial point in the neighborhood of ground truth x. We compare reshaped-WF with the following
problem of solving x from linear equations yi = 〈ai,x〉 with yi and ai for i = 1, . . . ,m given. In
particular, we note that this problem has both magnitude and sign observation of the measurements.
Further suppose that the least-squares loss is used and gradient descent is applied to solve this
problem. Then the gradient is given by

Least square gradient: ∇ℓLS(z) =
1

m

m
∑

i=1

(

aT
i z − aT

i x
)

ai. (9)

We now argue informally that the gradient (8) of reshaped-WF behaves similarly to the least-squares

gradient (9). For each i, the two gradient components are close if |aT
i x| · sgn(aT

i z) is viewed as

an estimate of aT
i x. The following lemma (see Suppl. B.2 for the proof) shows that if dist(z,x) is

small (guaranteed by initialization), then aT
i z has the same sign with aT

i x for large |aT
i x|.

Lemma 1. Let ai ∼ N (0, In×n). For any given x and z satisfying ‖x− z‖ <
√
2−1√
2

‖x‖, we have

P{(aT
i x)(a

T
i z) < 0

∣

∣(aT
i x)

2 = t‖x‖2} ≤ erfc

(
√
t‖x‖
2‖h‖

)

, (10)

where h = z − x and erfc(u) := 2√
π

∫∞
u

exp(−τ2)dτ .

It is easy to observe in (10) that large aT
i x is likely to have the same sign as aT

i z so that the

corresponding gradient components in (8) and (9) are likely equal, whereas small aT
i x may have

different sign as aT
i z but contributes less to the gradient. Hence, overall the two gradients (8) and (9)

should be close to each other with a large probability.

This fact can be further verified numerically. Figure 2(a) illustrates that reshaped-WF takes almost
the same number of iterations for recovering a signal (with only magnitude information) as the least-
squares gradient descent method for recovering a signal (with both magnitude and sign information).
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Figure 2: Intuition of why reshaped-WF fast. (a) Comparison of convergence behavior between
reshaped-WF and least-squares gradient descent. Initialization and parameters are the same for two
methods: n = 1000, m = 6n, step size µ = 0.8. (b) Expected loss function of reshaped-WF for

x = [1− 1]T . (c) Expected loss function of WF for x = [1− 1]T .

Figure 2(b) further illustrates that the expected loss surface of reshaped-WF (see Suppl. B for
expression) behaves similarly to a quadratic surface around the global optimums as compared to the
expected loss surface for WF (see Suppl. B for expression) in Figure 2(c).
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2.3 Geometric Convergence of Reshaped-WF

We characterize the convergence of reshaped-WF in the following theorem.

Theorem 1. Consider the problem of solving any given x ∈ R
n from a system of equations (4) with

Gaussian measurement vectors. There exist some universal constants µ0 > 0 (µ0 can be set as 0.8 in
practice), 0 < ρ, ν < 1 and c0, c1, c2 > 0 such that if m ≥ c0n and µ < µ0, then with probability at
least 1− c1 exp(−c2m), Algorithm 1 yields

dist(z(t),x) ≤ ν(1− ρ)t‖x‖, ∀t ∈ N. (11)

Outline of the Proof. We outline the proof here with details relegated to Suppl. C. Compared to WF
and truncated-WF, our proof is much simpler due to the lower-order loss function that reshaped-WF
relies on.

The central idea is to show that within the neighborhood of global optimums, reshaped-WF satisfies
the Regularity Condition RC(µ, λ, c) Chen and Candes [2015], i.e.,

〈∇ℓ(z),h〉 ≥ µ

2
‖∇ℓ(z)‖2 + λ

2
‖h‖2 (12)

for all z and h = z−x obeying ‖h‖ ≤ c‖x‖, where 0 < c < 1 is some constant. Then, as shown in
Chen and Candes [2015], once the initialization lands into this neighborhood, geometric convergence
can be guaranteed, i.e.,

dist2 (z + µ∇ℓ(z),x) ≤ (1− µλ)dist2(z,x), (13)

for any z with ‖z − x‖ ≤ ǫ‖x‖.

Lemmas 2 and 3 in Suppl.C yield that

〈∇ℓ(z),h〉 ≥ (1− 0.26− 2ǫ)‖h‖2 = (0.74− 2ǫ)‖h‖2.
And Lemma 4 in Suppl.C further yields that

‖∇ℓ(z)‖ ≤ (1 + δ) · 2‖h‖. (14)

Therefore, the above two bounds imply that Regularity Condition (12) holds for µ and λ satisfying

0.74− 2ǫ ≥ µ

2
· 4(1 + δ)2 +

λ

2
. (15)

We note that (15) implies an upper bound µ ≤ 0.74
2 = 0.37, by taking ǫ and δ to be sufficiently small.

This suggests a range to set the step size in Algorithm 1. However, in practice, µ can be set much
larger than such a bound, say 0.8, while still keeping the algorithm convergent. This is because the
coefficients in the proof are set for convenience of proof rather than being tightly chosen.

Theorem 1 indicates that reshaped-WF recovers the true signal with O(n) samples, which is order-
level optimal. Such an algorithm improves the sample complexity O(n log n) of WF. Furthermore,
reshaped-WF does not require truncation of weak samples in the gradient step to achieve the same
sample complexity as truncated-WF. This is mainly because reshaped-WF benefits from the lower-
order loss function given in (7), the curvature of which behaves similarly to the least-squares loss
function locally as we explain in Section 2.2.

Theorem 1 also suggests that reshaped-WF converges geometrically at a constant step size. To
reach ǫ−accuracy, it requires computational cost of O(mn log 1/ǫ) flops, which is better than WF

(O(mn2 log(1/ǫ)). Furthermore, it does not require truncation in gradient steps to reach the same
computational cost as truncated-WF. Numerically, as we demonstrate in Section 3, reshaped-WF is
two times faster than truncated-WF and four to six times faster than WF in terms of both iteration
count and time cost in various examples.

Although our focus in this paper is on the noise-free model, reshaped-WF can be applied to noisy
models as well. Suppose the measurements are corrupted by bounded noises {ηi}mi=1 satisfying

‖η‖/√m ≤ c‖x‖. Then by adapting the proof of Theorem 1, it can be shown that the gradient loop
of reshaped-WF is robust such that

dist(z(t),x) .
‖η‖√
m

+ (1− ρ)t‖x‖, ∀t ∈ N, (16)

for some ρ ∈ (0, 1). The numerical result under the Poisson noise model in Section 3 further
corroborates the stability of reshaped-WF.
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Table 1: Comparison of iteration count and time cost among algorithms (n = 1000,m = 8n)

Algorithms reshaped-WF truncated-WF WF AltMinPhase

real case iterations 72 182 319.2 5.8
time cost(s) 0.477 1.232 2.104 0.908

complex case iterations 272.7 486.7 915.4 156
time cost(s) 6.956 12.815 23.306 93.22

3 Numerical Comparison with Other Algorithms

In this section, we demonstrate the numerical efficiency of reshaped-WF by comparing its perfor-
mance with other competitive algorithms. Our experiments are run not only for real-valued case but
also for complex-valued and CDP cases. All the experiments are implemented in Matlab 2015b and
carried out on a computer equipped with Intel Core i7 3.4GHz CPU and 12GB RAM.

We first compare the sample complexity of reshaped-WF with those of truncated-WF and WF
via the empirical successful recovery rate versus the number of measurements. For reshaped-WF,
we follow Algorithm 1 with suggested parameters. For truncated-WF and WF, we use the codes
provided in the original papers with the suggested parameters. We conduct the experiment for real,
complex and CDP cases respectively. For real and complex cases, we set the signal dimension n
to be 1000, and the ratio m/n take values from 2 to 6 by a step size 0.1. For each m, we run 100
trials and count the number of successful trials. For each trial, we run a fixed number of iterations
T = 1000 for all algorithms. A trial is declared to be successful if z(T ), the output of the algorithm,

satisfies dist(z(T ),x)/‖x‖ ≤ 10−5. For the real case, we generate signal x ∼ N (0, In×n), and the
measurement vectors ai ∼ N (0, In×n) i.i.d. for i = 1, . . . ,m. For the complex case, we generate

signal x ∼ N (0, In×n) + jN (0, In×n) and measurements ai ∼ 1
2N (0, In×n) + j 1

2N (0, In×n)
i.i.d. for i = 1, . . . ,m. For the CDP case, we generate signal x ∼ N (0, In×n) + jN (0, In×n) that
yields measurements

y(l) = |FD(l)x|, 1 ≤ l ≤ L, (17)

where F represents the discrete Fourier transform (DFT) matrix, and D(l) is a diagonal matrix
(mask). We set n = 1024 for convenience of FFT and m/n = L = 1, 2, . . . , 8. All other settings are
the same as those for the real case.
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Figure 3: Comparison of sample complexity among reshaped-WF, truncated-WF and WF.

Figure 3 plots the fraction of successful trials out of 100 trials for all algorithms, with respect to m. It
can be seen that for although reshaped-WF outperforms only WF (not truncated-WF) for the real
case, it outperforms both WF and truncated-WF for complex and CDP cases. An intuitive explanation

for the real case is that a substantial number of samples with small |aT
i z| can deviate gradient so

that truncation indeed helps to stabilize the algorithm if the number of measurements is not large.
Furthermore, reshaped-WF exhibits shaper transition than truncated-WF and WF.

We next compare the convergence rate of reshaped-WF with those of truncated-WF, WF and AltMin-
Phase. We run all of the algorithms with suggested parameter settings in the original codes. We gener-
ate signal and measurements in the same way as those in the first experiment with n = 1000,m = 8n.
All algorithms are seeded with reshaped-WF initialization. In Table 1, we list the number of iterations
and time cost for those algorithms to achieve the relative error of 10−14 averaged over 10 trials.
Clearly, reshaped-WF takes many fewer iterations as well as runing much faster than truncated-WF
and WF. Although reshaped-WF takes more iterations than AltMinPhase, it runs much faster than
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AltMinPhase due to the fact that each iteration of AltMinPhase needs to solve a least-squares problem
that takes much longer time than a simple gradient update in reshaped-WF.

We also compare the performance of the above algorithms on the recovery of a real image from the
Fourier intensity measurements (2D CDP with the number of masks L = 16). The image (provided in
Suppl.D) is the Milky Way Galaxy with resolution 1920×1080. Table 2 lists the number of iterations
and time cost of the above four algorithms to achieve the relative error of 10−15. It can be seen that
reshaped-WF outperforms all other three algorithms in computational time cost. In particular, it is
two times faster than truncated-WF and six times faster than WF in terms of both the number of
iterations and computational time cost.

Table 2: Comparison of iterations and time cost among algorithms on Galaxy image (L = 16)

Algorithms reshaped-WF truncated-WF WF AltMinPhase

iterations 65 160 420 110
time cost(s) 141 567 998 213

We next demonstrate the robustness of reshaped-WF to noise corruption and compare it with truncated-
WF. We consider the phase retrieval problem in imaging applications, where random Poisson noises
are often used to model the sensor and electronic noise Fogel et al. [2013]. Specifically, the noisy

measurements of intensity can be expressed as yi =
√

α · Poisson
(

|aT
i x|2/α

)

, for i = 1, 2, ...m

where α denotes the level of input noise, and Poisson(λ) denotes a random sample generated by the
Poisson distribution with mean λ. It can be observed from Figure 4 that reshaped-WF performs better
than truncated-WF in terms of recovery accuracy under different noise levels.
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Figure 4: Comparison of relative error under Poisson noise between reshaped-WF and truncated WF.

4 Conclusion

In this paper, we proposed reshaped-WF to recover a signal from a quadratic system of equations,
based on a nonconvex and nonsmooth quadratic loss function of absolute values of measurements.
This loss function sacrifices the smoothness but enjoys advantages in statistical and computational
efficiency. It also has potential to be extended in various scenarios. One interesting direction is to
extend such an algorithm to exploit signal structures (e.g., nonnegativity, sparsity, etc) to assist the
recovery. The lower-order loss function may offer great simplicity to prove performance guarantee in
such cases. Another interesting topic is to study stochastic version of reshaped-WF. We have observed
in preliminary experiments that the stochastic version of reshaped-WF converges fast numerically.
It will be of great interest to fully understand the theoretic performance of such an algorithm and
explore the reason behind its fast convergence.
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