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Abstract

Distantly-supervised Relation Extraction (RE)

methods train an extractor by automatically

aligning relation instances in a Knowledge

Base (KB) with unstructured text. In addi-

tion to relation instances, KBs often contain

other relevant side information, such as aliases

of relations (e.g., founded and co-founded are

aliases for the relation founderOfCompany).

RE models usually ignore such readily avail-

able side information. In this paper, we pro-

pose RESIDE, a distantly-supervised neural

relation extraction method which utilizes ad-

ditional side information from KBs for im-

proved relation extraction. It uses entity type

and relation alias information for imposing

soft constraints while predicting relations. RE-

SIDE employs Graph Convolution Networks

(GCN) to encode syntactic information from

text and improves performance even when

limited side information is available. Through

extensive experiments on benchmark datasets,

we demonstrate RESIDE’s effectiveness. We

have made RESIDE’s source code available to

encourage reproducible research.

1 Introduction

The construction of large-scale Knowledge Bases

(KBs) like Freebase (Bollacker et al., 2008) and

Wikidata (Vrandečić and Krötzsch, 2014) has

proven to be useful in many natural language pro-

cessing (NLP) tasks like question-answering, web

search, etc. However, these KBs are not exhaus-

tive. Relation Extraction (RE) attempts to fill this

gap by extracting semantic relationships between

entity pairs from plain text. This task can be mod-

eled as a simple classification problem after the

entity pairs are specified. Formally, given an en-

tity pair (e1,e2) from the KB and an entity anno-

tated sentence (or instance), we aim to predict the

∗Research internship at Indian Institute of Science.

relation r, from a predefined relation set, that ex-

ists between e1 and e2. If no relation exists, we

simply label it NA.

Most supervised relation extraction methods re-

quire large labeled training data which is expen-

sive to construct. Distant Supervision (DS) (Mintz

et al., 2009) helps with the construction of this

dataset automatically, under the assumption that

if two entities have a relationship in a KB, then

all sentences mentioning those entities express the

same relation. While this approach works well in

generating large amounts of training instances, the

DS assumption does not hold in all cases. Riedel

et al. (2010); Hoffmann et al. (2011); Surdeanu

et al. (2012) propose multi-instance based learn-

ing to relax this assumption. However, they use

NLP tools to extract features, which can be noisy.

Recently, neural models have demonstrated

promising performance on RE. Zeng et al. (2014,

2015) employ Convolutional Neural Networks

(CNN) to learn representations of instances. For

alleviating noise in distant supervised datasets, at-

tention has been utilized by (Lin et al., 2016; Jat

et al., 2018). Syntactic information from depen-

dency parses has been used by (Mintz et al., 2009;

He et al., 2018) for capturing long-range depen-

dencies between tokens. Recently proposed Graph

Convolution Networks (GCN) (Defferrard et al.,

2016) have been effectively employed for en-

coding this information (Marcheggiani and Titov,

2017; Bastings et al., 2017). However, all the

above models rely only on the noisy instances

from distant supervision for RE.

Relevant side information can be effective for

improving RE. For instance, in the sentence, Mi-

crosoft was started by Bill Gates., the type infor-

mation of Bill Gates (person) and Microsoft (or-

ganization) can be helpful in predicting the cor-

rect relation founderOfCompany. This is because

every relation constrains the type of its target en-
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Figure 1: Overview of RESIDE. RESIDE first encodes each sentence in the bag by concatenating em-

beddings (denoted by ⊕) from Bi-GRU and Syntactic GCN for each token, followed by word attention.

Then, sentence embedding is concatenated with relation alias information, which comes from the Side

Information Acquisition Section (Figure 2), before computing attention over sentences. Finally, bag

representation with entity type information is fed to a softmax classifier. Please see Section 5 for more

details.

tities. Similarly, relation phrase “was started

by” extracted using Open Information Extrac-

tion (Open IE) methods can be useful, given that

the aliases of relation founderOfCompany, e.g.,

founded, co-founded, etc., are available. KBs used

for DS readily provide such information which has

not been completely exploited by current models.

In this paper, we propose RESIDE, a novel dis-

tant supervised relation extraction method which

utilizes additional supervision from KB through

its neural network based architecture. RESIDE

makes principled use of entity type and relation

alias information from KBs, to impose soft con-

straints while predicting the relation. It uses en-

coded syntactic information obtained from Graph

Convolution Networks (GCN), along with embed-

ded side information, to improve neural relation

extraction. Our contributions can be summarized

as follows:

• We propose RESIDE, a novel neural method

which utilizes additional supervision from KB

in a principled manner for improving distant su-

pervised RE.

• RESIDE uses Graph Convolution Networks

(GCN) for modeling syntactic information and

has been shown to perform competitively even

with limited side information.

• Through extensive experiments on benchmark

datasets, we demonstrate RESIDE’s effective-

ness over state-of-the-art baselines.

RESIDE’s source code and datasets used in the

paper are available at http://github.com/

malllabiisc/RESIDE.

2 Related Work

Distant supervision: Relation extraction is the

task of identifying the relationship between two

entity mentions in a sentence. In supervised

paradigm, the task is considered as a multi-class

classification problem but suffers from lack of

large labeled training data. To address this limita-

tion, (Mintz et al., 2009) propose distant supervi-

sion (DS) assumption for creating large datasets,

by heuristically aligning text to a given Knowl-

edge Base (KB). As this assumption does not

always hold true, some of the sentences might

be wrongly labeled. To alleviate this shortcom-

ing, Riedel et al. (2010) relax distant supervi-

sion for multi-instance single-label learning. Sub-

sequently, for handling overlapping relations be-

tween entities (Hoffmann et al., 2011; Surdeanu

et al., 2012) propose multi-instance multi-label

learning paradigm.

Neural Relation Extraction: The performance

of the above methods strongly rely on the quality

of hand engineered features. Zeng et al. (2014)

http://github.com/malllabiisc/RESIDE
http://github.com/malllabiisc/RESIDE
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propose an end-to-end CNN based method which

could automatically capture relevant lexical and

sentence level features. This method is further im-

proved through piecewise max-pooling by (Zeng

et al., 2015). Lin et al. (2016); Nagarajan et al.

(2017) use attention (Bahdanau et al., 2014) for

learning from multiple valid sentences. We also

make use of attention for learning sentence and

bag representations.

Dependency tree based features have been

found to be relevant for relation extraction (Mintz

et al., 2009). He et al. (2018) use them for getting

promising results through a recursive tree-GRU

based model. In RESIDE, we make use of recently

proposed Graph Convolution Networks (Deffer-

rard et al., 2016; Kipf and Welling, 2017), which

have been found to be quite effective for modelling

syntactic information (Marcheggiani and Titov,

2017; Nguyen and Grishman, 2018; Vashishth

et al., 2018a).

Side Information in RE: Entity description

from KB has been utilized for RE (Ji et al., 2017),

but such information is not available for all enti-

ties. Type information of entities has been used by

Ling and Weld (2012); Liu et al. (2014) as features

in their model. Yaghoobzadeh et al. (2017) also

attempt to mitigate noise in DS through their joint

entity typing and relation extraction model. How-

ever, KBs like Freebase readily provide reliable

type information which could be directly utilized.

In our work, we make principled use of entity type

and relation alias information obtained from KB.

We also use unsupervised Open Information Ex-

traction (Open IE) methods (Mausam et al., 2012;

Angeli et al., 2015), which automatically discover

possible relations without the need of any prede-

fined ontology, which is used as a side information

as defined in Section 5.2.

3 Background: Graph Convolution

Networks (GCN)

In this section, we provide a brief overview of

Graph Convolution Networks (GCN) for graphs

with directed and labeled edges, as used in

(Marcheggiani and Titov, 2017).

3.1 GCN on Labeled Directed Graph

For a directed graph, G = (V, E), where V and

E represent the set of vertices and edges respec-

tively, an edge from node u to node v with label

luv is represented as (u, v, luv). Since, informa-

tion in directed edge does not necessarily propa-

gate along its direction, following (Marcheggiani

and Titov, 2017) we define an updated edge set E ′

which includes inverse edges (v, u, l−1
uv ) and self-

loops (u, u,⊤) along with the original edge set E ,

where ⊤ is a special symbol to denote self-loops.

For each node v in G, we have an initial represen-

tation xv ∈ R
d, ∀v ∈ V . On employing GCN, we

get an updated d-dimensional hidden representa-

tion hv ∈ R
d, ∀v ∈ V , by considering only its im-

mediate neighbors (Kipf and Welling, 2017). This

can be formulated as:

hv = f





∑

u∈N (v)

(Wluvxu + bluv)



 .

Here, Wluv ∈ R
d×d and bluv ∈ R

d are label de-

pendent model parameters which are trained based

on the downstream task. N (v) refers to the set of

neighbors of v based on E ′ and f is any non-linear

activation function. In order to capture multi-

hop neighborhood, multiple GCN layers can be

stacked. Hidden representation of node v in this

case after kth GCN layer is given as:

hk+1
v = f





∑

u∈N (v)

(

W k
luv

hku + bkluv

)



 .

3.2 Integrating Edge Importance

In automatically constructed graphs, some edges

might be erroneous and hence need to be dis-

carded. Edgewise gating in GCN by (Bastings

et al., 2017; Marcheggiani and Titov, 2017) allows

us to alleviate this problem by subduing the noisy

edges. This is achieved by assigning a relevance

score to each edge in the graph. At kth layer, the

importance of an edge (u, v, luv) is computed as:

gkuv = σ
(

hku · ŵ
k
luv

+ b̂kluv

)

, (1)

Here, ŵk
luv
∈ R

m and b̂kluv ∈ R are parameters

which are trained and σ(·) is the sigmoid function.

With edgewise gating, the final GCN embedding

for a node v after kth layer is given as:

hk+1
v = f





∑

u∈N (v)

gkuv ×
(

W k
luv

hku + bkluv

)



 .

(2)
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4 RESIDE Overview

In multi-instance learning paradigm, we are given

a bag of sentences (or instances) {s1, s2, ...sn} for

a given entity pair, the task is to predict the relation

between them. RESIDE consists of three compo-

nents for learning a representation of a given bag,

which is fed to a softmax classifier. We briefly

present the components of RESIDE below. Each

component will be described in detail in the sub-

sequent sections. The overall architecture of RE-

SIDE is shown in Figure 1.

1. Syntactic Sentence Encoding: RESIDE uses

a Bi-GRU over the concatenated positional and

word embedding for encoding the local con-

text of each token. For capturing long-range

dependencies, GCN over dependency tree is

employed and its encoding is appended to the

representation of each token. Finally, attention

over tokens is used to subdue irrelevant tokens

and get an embedding for the entire sentence.

More details in Section 5.1.

2. Side Information Acquisition: In this mod-

ule, we use additional supervision from KBs

and utilize Open IE methods for getting rele-

vant side information. This information is later

utilized by the model as described in Section

5.2.

3. Instance Set Aggregation: In this part, sen-

tence representation from syntactic sentence

encoder is concatenated with the matched re-

lation embedding obtained from the previous

step. Then, using attention over sentences,

a representation for the entire bag is learned.

This is then concatenated with entity type em-

bedding before feeding into the softmax classi-

fier for relation prediction. Please refer to Sec-

tion 5.3 for more details.

5 RESIDE Details

In this section, we provide the detailed description

of the components of RESIDE.

5.1 Syntactic Sentence Encoding

For each sentence in the bag si with m tokens

{w1, w2, ...wm}, we first represent each token

by k-dimensional GloVe embedding (Pennington

et al., 2014). For incorporating relative position

of tokens with respect to target entities, we use

p-dimensional position embeddings, as used by

(Zeng et al., 2014). The combined token embed-

dings are stacked together to get the sentence rep-

resentationH ∈ R
m×(k+2p). Then, using Bi-GRU

(Cho et al., 2014) over H, we get the new sen-

tence representationHgru ∈ R
m×dgru , where dgru

is the hidden state dimension. Bi-GRUs have been

found to be quite effective in encoding the context

of tokens in several tasks (Sutskever et al., 2014;

Graves et al., 2013).

Although Bi-GRU is capable of capturing lo-

cal context, it fails to capture long-range depen-

dencies which can be captured through depen-

dency edges. Prior works (Mintz et al., 2009; He

et al., 2018) have exploited features from syntac-

tic dependency trees for improving relation ex-

traction. Motivated by their work, we employ

Syntactic Graph Convolution Networks for en-

coding this information. For a given sentence,

we generate its dependency tree using Stanford

CoreNLP (Manning et al., 2014). We then run

GCN over the dependency graph and use Equa-

tion 2 for updating the embeddings, taking Hgru

as the input. Since dependency graph has 55 dif-

ferent edge labels, incorporating all of them over-

parameterizes the model significantly. Therefore,

following (Marcheggiani and Titov, 2017; Nguyen

and Grishman, 2018; Vashishth et al., 2018a) we

use only three edge labels based on the direction

of the edge {forward (→), backward (←), self-

loop (⊤)}. We define the new edge label Luv for

an edge (u, v, luv) as follows:

Luv =











→ if edge exists in dependency parse

← if edge is an inverse edge

⊤ if edge is a self-loop

For each token wi, GCN embedding h
gcn
ik+1

∈

R
dgcn after kth layer is defined as:

h
gcn
ik+1

= f

(

∑

u∈N (i)

gkiu ×
(

W k
Liu

hgcnuk
+ bkLiu

)

)

.

Here, gkiu denotes edgewise gating as defined in

Equation 1 and Liu refers to the edge label defined

above. We use ReLU as activation function f ,

throughout our experiments. The syntactic graph

encoding from GCN is appended to Bi-GRU out-

put to get the final token representation, hconcati

as [hgrui ;hgcn
ik+1 ]. Since, not all tokens are equally

relevant for RE task, we calculate the degree of

relevance of each token using attention as used in
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Figure 2: Relation alias side information extraction for a given sentence. First, Syntactic Context Extrac-

tor identifies relevant relation phrases P between target entities. They are then matched in the embedding

space with the extended set of relation aliasesR from KB. Finally, the relation embedding corresponding

to the closest alias is taken as relation alias information. Please refer Section 5.2.

(Jat et al., 2018). For token wi in the sentence,

attention weight αi is calculated as:

αi =
exp(ui)

∑m
j=1 exp(uj)

where, ui = hconcati · r.

where r is a random query vector and ui is the

relevance score assigned to each token. Atten-

tion values {αi} are calculated by taking soft-

max over {ui}. The representation of a sentence

is given as a weighted sum of its tokens, s =
∑m

j=1 αih
concat
i .

5.2 Side Information Acquisition

Relevant side information has been found to im-

prove performance on several tasks (Ling and

Weld, 2012; Vashishth et al., 2018b). In distant

supervision based relation extraction, since the en-

tities are from a KB, knowledge about them can be

utilized to improve relation extraction. Moreover,

several unsupervised relation extraction methods

(Open IE) (Angeli et al., 2015; Mausam et al.,

2012) allow extracting relation phrases between

target entities without any predefined ontology and

thus can be used to obtain relevant side informa-

tion. In RESIDE, we employ Open IE methods

and additional supervision from KB for improving

neural relation extraction.

Relation Alias Side Information

RESIDE uses Stanford Open IE (Angeli et al.,

2015) for extracting relation phrases between tar-

get entities, which we denote by P . As shown in

Figure 2, for the sentence Matt Coffin, executive of

lowermybills, a company.., Open IE methods ex-

tract “executive of” between Matt Coffin and low-

ermybills. Further, we extend P by including to-

kens at one hop distance in dependency path from

target entities. Such features from dependency

parse have been exploited in the past by (Mintz

et al., 2009; He et al., 2018). The degree of match

between the extracted phrases in P and aliases of

a relation can give important clues about the rel-

evance of that relation for the sentence. Several

KBs like Wikidata provide such relation aliases,

which can be readily exploited. In RESIDE, we

further expand the relation alias set using Para-

phrase database (PPDB) (Pavlick et al., 2015). We

note that even for cases when aliases for relations

are not available, providing only the names of rela-

tions give competitive performance. We shall ex-

plore this point further in Section 7.3.

For matching P with the PPDB expanded rela-

tion alias setR, we project both in a d-dimensional

space using GloVe embeddings (Pennington et al.,

2014). Projecting phrases using word embeddings

helps to further expand these sets, as semanti-

cally similar words are closer in embedding space

(Mikolov et al., 2013; Pennington et al., 2014).

Then, for each phrase p ∈ P , we calculate its co-

sine distance from all relation aliases inR and take

the relation corresponding to the closest relation

alias as a matched relation for the sentence. We

use a threshold on cosine distance to remove noisy

aliases. In RESIDE, we define a kr-dimensional

embedding for each relation which we call as

matched relation embedding (hrel). For a given

sentence, hrel is concatenated with its representa-
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tion s, obtained from syntactic sentence encoder

(Section 5.1) as shown in Figure 1. For sentences

with |P| > 1, we might get multiple matched re-

lations. In such cases, we take the average of their

embeddings. We hypothesize that this helps in im-

proving the performance and find it to be true as

shown in Section 7.

Entity Type Side Information

Type information of target entities has been shown

to give promising results on relation extraction

(Ling and Weld, 2012; Yaghoobzadeh et al.,

2017). Every relation puts some constraint on the

type of entities which can be its subject and object.

For example, the relation person/place of birth

can only occur between a person and a location.

Sentences in distance supervision are based on en-

tities in KBs, where the type information is readily

available.

In RESIDE, we use types defined by FIGER

(Ling and Weld, 2012) for entities in Freebase. For

each type, we define a kt-dimensional embedding

which we call as entity type embedding (htype).

For cases when an entity has multiple types in dif-

ferent contexts, for instance, Paris may have types

government and location, we take the average over

the embeddings of each type. We concatenate the

entity type embedding of target entities to the final

bag representation before using it for relation clas-

sification. To avoid over-parameterization, instead

of using all fine-grained 112 entity types, we use

38 coarse types which form the first hierarchy of

FIGER types.

5.3 Instance Set Aggregation

For utilizing all valid sentences, following (Lin

et al., 2016; Jat et al., 2018), we use attention over

sentences to obtain a representation for the entire

bag. Instead of directly using the sentence repre-

sentation si from Section 5.1, we concatenate the

embedding of each sentence with matched relation

embedding hreli as obtained from Section 5.2. The

attention score αi for ith sentence is formulated

as:

αi =
exp(ŝi · q)

∑n
j=1 exp(ŝj · q)

where, ŝi = [si;h
rel
i ].

here q denotes a random query vector. The bag

representation B, which is the weighted sum of

its sentences, is then concatenated with the entity

type embeddings of the subject (h
type
sub ) and object

Datasets Split # Sentences # Entity-pairs

Riedel
(# Relations: 53)

Train 455,771 233,064
Valid 114,317 58,635
Test 172,448 96,678

GIDS
(# Relations: 5)

Train 11,297 6,498
Valid 1,864 1,082
Test 5,663 3,247

Table 1: Details of datasets used. Please see Sec-

tion 6.1 for more details.

(h
type
obj ) from Section 5.2 to obtain B̂.

B̂ = [B;htypesub ;h
type
obj ] where, B =

n
∑

i=1

αiŝi.

Finally, B̂ is fed to a softmax classifier to get the

probability distribution over the relations.

p(y) = Softmax(W · B̂ + b).

6 Experimental Setup

6.1 Datasets

In our experiments, we evaluate the models on

Riedel and Google Distant Supervision (GIDS)

dataset. Statistics of the datasets is summarized

in Table 1. Below we described each in detail1.

1. Riedel: The dataset is developed by (Riedel

et al., 2010) by aligning Freebase relations with

New York Times (NYT) corpus, where sen-

tences from the year 2005-2006 are used for

creating the training set and from the year 2007

for the test set. The entity mentions are anno-

tated using Stanford NER (Finkel et al., 2005)

and are linked to Freebase. The dataset has

been widely used for RE by (Hoffmann et al.,

2011; Surdeanu et al., 2012) and more recently

by (Lin et al., 2016; Feng et al.; He et al., 2018).

2. GIDS: Jat et al. (2018) created Google Dis-

tant Supervision (GIDS) dataset by extending

the Google relation extraction corpus2 with ad-

ditional instances for each entity pair. The

dataset assures that the at-least-one assumption

of multi-instance learning, holds. This makes

automatic evaluation more reliable and thus re-

moves the need for manual verification.

1Data splits and hyperparameters are in supplementary.
2https://research.googleblog.com/2013/04/50000-

lessons-on-how-to-read-relation.html

https://research.googleblog.com/2013/04/50000-lessons-on-how-to-read-relation.html
https://research.googleblog.com/2013/04/50000-lessons-on-how-to-read-relation.html
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Figure 3: Comparison of Precision-recall curve. RESIDE achieves higher precision over the entire range

of recall than all the baselines on both datasets. Please refer Section 7.1 for more details.

6.2 Baselines

For evaluating RESIDE, we compare against the

following baselines:

• Mintz: Multi-class logistic regression model

proposed by (Mintz et al., 2009) for distant su-

pervision paradigm.

• MultiR: Probabilistic graphical model for multi

instance learning by (Hoffmann et al., 2011)

• MIMLRE: A graphical model which jointly

models multiple instances and multiple labels.

More details in (Surdeanu et al., 2012).

• PCNN: A CNN based relation extraction model

by (Zeng et al., 2015) which uses piecewise

max-pooling for sentence representation.

• PCNN+ATT: A piecewise max-pooling over

CNN based model which is used by (Lin et al.,

2016) to get sentence representation followed

by attention over sentences.

• BGWA: Bi-GRU based relation extraction

model with word and sentence level attention

(Jat et al., 2018).

• RESIDE: The method proposed in this paper,

please refer Section 5 for more details.

6.3 Evaluation Criteria

Following the prior works (Lin et al., 2016; Feng

et al.), we evaluate the models using held-out eval-

uation scheme. This is done by comparing the re-

lations discovered from test articles with those in

Freebase. We evaluate the performance of models

with Precision-Recall curve and top-N precision

(P@N) metric in our experiments.

7 Results

In this section we attempt to answer the following

questions:

Q1. Is RESIDE more effective than existing ap-

proaches for distant supervised RE? (7.1)

Q2. What is the effect of ablating different com-

ponents on RESIDE’s performance? (7.2)

Q3. How is the performance affected in the ab-

sence of relation alias information? (7.3)

7.1 Performance Comparison

For evaluating the effectiveness of our proposed

method, RESIDE, we compare it against the base-

lines stated in Section 6.2. We use only the neural

baselines on GIDS dataset. The Precision-Recall

curves on Riedel and GIDS are presented in Figure

3. Overall, we find that RESIDE achieves higher

precision over the entire recall range on both the

datasets. All the non-neural baselines could not

perform well as the features used by them are

mostly derived from NLP tools which can be er-

roneous. RESIDE outperforms PCNN+ATT and

BGWA which indicates that incorporating side in-

formation helps in improving the performance of

the model. The higher performance of BGWA

and PCNN+ATT over PCNN shows that attention

helps in distant supervised RE. Following (Lin

et al., 2016; Liu et al., 2017), we also evaluate our

method with different number of sentences. Re-

sults summarized in Table 2, show the improved

precision of RESIDE in all test settings, as com-

pared to the neural baselines, which demonstrates
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One Two All

P@100 P@200 P@300 P@100 P@200 P@300 P@100 P@200 P@300

PCNN 73.3 64.8 56.8 70.3 67.2 63.1 72.3 69.7 64.1
PCNN+ATT 73.3 69.2 60.8 77.2 71.6 66.1 76.2 73.1 67.4
BGWA 78.0 71.0 63.3 81.0 73.0 64.0 82.0 75.0 72.0
RESIDE 80.0 75.5 69.3 83.0 73.5 70.6 84.0 78.5 75.6

Table 2: P@N for relation extraction using variable number of sentences in bags (with more than one

sentence) in Riedel dataset. Here, One, Two and All represents the number of sentences randomly

selected from a bag. RESIDE attains improved precision in all settings. More details in Section 7.1

Figure 4: Performance comparison of different ab-

lated version of RESIDE on Riedel dataset. Over-

all, GCN and side information helps RESIDE im-

prove performance. Refer Section 7.2.

the efficacy of our model.

7.2 Ablation Results

In this section, we analyze the effect of various

components of RESIDE on its performance. For

this, we evaluate various versions of our model

with cumulatively removed components. The ex-

perimental results are presented in Figure 4. We

observe that on removing different components

from RESIDE, the performance of the model de-

grades drastically. The results validate that GCNs

are effective at encoding syntactic information.

Further, the improvement from side information

shows that it is complementary to the features ex-

tracted from text, thus validating the central thesis

of this paper, that inducing side information leads

to improved relation extraction.

7.3 Effect of Relation Alias Side Information

In this section, we test the performance of the

model in setting where relation alias information is

not readily available. For this, we evaluate the per-

formance of the model on four different settings:

• None: Relation aliases are not available.

Figure 5: Performance on settings defined in Sec-

tion 7.3 with respect to the presence of relation

alias side information on Riedel dataset. RESIDE

performs comparably in the absence of relations

from KB.

• One: The name of relation is used as its alias.

• One+PPDB: Relation name extended using

Paraphrase Database (PPDB).

• All: Relation aliases from Knowledge Base3

The overall results are summarized in Figure 5.

We find that the model performs best when aliases

are provided by the KB itself. Overall, we find

that RESIDE gives competitive performance even

when very limited amount of relation alias infor-

mation is available. We observe that performance

improves further with the availability of more alias

information.

8 Conclusion

In this paper, we propose RESIDE, a novel neural

network based model which makes principled use

of relevant side information, such as entity type

and relation alias, from Knowledge Base, for im-

proving distant supervised relation extraction. RE-

SIDE employs Graph Convolution Networks for

3Each relation in Riedel dataset is manually mapped to
corresponding Wikidata property for getting relation aliases.
Few examples are presented in supplementary material.
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encoding syntactic information of sentences and

is robust to limited side information. Through ex-

tensive experiments on benchmark datasets, we

demonstrate RESIDE’s effectiveness over state-

of-the-art baselines. We have made RESIDE’s

source code publicly available to promote repro-

ducible research.
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