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The crystal size distribution in various continuous
crystallizers is usually evaluated by the population
balance model6>7). The population balance model is
most advantageous for treating cases with crystal
breakage. When a crystallizer is imperfectly mixed,
a multistage model with a population balance for
each stage is usually employed1>7). It is well known,
however, that the residence time distribution of par-
ticles often cannot be fitted to a multistage model.
The concept of residence time distribution has been
used to find the average population density for an
imperfectly mixed crystallizer2} and the population
density in a well-mixed crystallizer4}. In the second
case, the probability, which is actually the internal
residence time function, of survival of crystal in a
crystallizer is correlated with crystal size and growth
rate. Miyauchi5) has employed the concentration

distribution of particles to evaluate the residence time
distribution of the particles. In the two previous
papers of this author9)10), both residence time distribu-
tion and population balance models are employed to
evaluate the activity distributions of catalysts in reac-
tors and regenerators with feed catalysts of either uni-
form or nonuniform activity.

In this study, the concept of residence time distri-

bution (RTD) is adopted to find the crystal size distri-
bution (CSD) in continuous crystallizers whether
they are well mixed or not. A simple relation between
crystal size distribution and residence time distribution
is derived first. Then, the application of this relation
to an MSMPRcrystallizer is demonstrated. In the
later part of this paper, the concept of residence time
of crystal is extended to crystallizers with seeding and
to multistage crystallizers.

1. Crystallizers without Seeding
In an isothermal continuous crystallizer without

seeding, which undergoes no crystal breakage and is
operated at steady state, the rate of nucleation equals
that of crystals removed. Thus, the nuclei generated
can be regarded as those flow in the crystallizer and will
remain in the crystallizer according to a residence time
distribution. The crystals with a size between L to
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L+dL are those having the residence time t to t+
dt, so that the crystal size distribution function, n(L),
and the residence time distribution function, E(t), are
correlated by

n(L)dL = NTE(t)dt ( 1 )
Upon rearrangement, it is obtained that

n(L) = NTE(t)/ G(L) (2)

where the growth rate is defined as
G(L) = dL/dt (3)

This simple relation can be used to find the CSD,
n(L), provided that E(t) and G(L) are known in
advance. Note that the time variable t in E(t) should
be eliminated by the relation between L and t, which
is obtained by integrating Eq. (3).
In the modeling of an imperfectly mixed crystal-

lizer, Abegg and Balakrishnan1} applied the concept
of the tanks-in-series model and used the population
balance model for each crystallization unit. They
used the numberof crystallization units to represent the
degree of imperfect mixing by matching the values of
coefficient of variation for the crystal size distribution.
Larson and Wolff3) (or see Randolph and Larson6})
also studied multistage crystallizers, but did not men-
tion the modelling of the crystallizer with imperfect
mixing by multistage systems. Referring to Miyauchi's
approach5\ Eq. (1) can also be used to evaluate the

residence time distribution from the crystal size distri-
bution

E(t) = G(L)n(L)/NT (4)

provided that L on the right-hand side is substituted
by its expression in terms of t obtained from Eq. (3).
This approach is a simple method of obtaining the
residence time distribution when the growth rate
kinetics, G(t), is in a simple form and direct experi-
ment to find the residence time distribution is in-
convenient or impossible.

Although Eq. (2) may be employed for any con-
tinuous crystallizer to find the crystal size distribution
whether the crystallizer is well mixed or not, here an
MSMPRcrystallizer is treated by the residence time
distribution model for the purpose of comparison

with the population balance approach.
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EXAMPLE :

Consider that an MSMPRcrystallizer with growth
rate obeying McCabe's AL law

dL/dt= G(L)= G0

from which one obtains
t=L/G0

(5)

(6)

Because the residence time distribution in an MSMPR
crystallizer with a mean residence time of r is

£(O=(l/r)e- ^ (7)

The use of Eq. (2) yields
^)=feexK-^)^°exp(-^) (8)

which is exactly the same as that derived from the
population balance equation. Similarly, for the
same crystallizer with growth rate in the form of G(L)
=G0(lJraLy, one can obtain

n(L) =
n\l+aL) exp {-(l+ l/«Gor)},3=1

nXl+aL)-* exp
(1+aL)1-^-!

a(l -P)GtT
} |8#1

(9)

When the residence time distribution approach is
used for modified systems, i. e., those with fines dis-
solver and/or product classifier, the same crystal
size distribution functions as those using the popula-
tion balance model are obtained. It is noted that the
residence time distribution model is as simple as the
population balance model. However, as has been
mentioned earlier, the residence time distribution
model can be applied for crystallizers with nonideal
mixing, whereas the population balance model can be
used only for well-mixed crystallizers.
2. Crystallizers with Seeding

The crystals in a continuous-flow crystallizer with
seeding can be divided into two groups: crystals
grown from seeds and those grown from the nuclei
generated by nucleation. Hence, the population
density can be represented by

n(L) =ns(L) + nn(L) (1 0)
The second term on the right-hand side can be evalu-
ated by Eq. (2) while the first term can be regarded as
the crystal size distribution function of a crystallizer
with seeding but without nucleation.

The crystal size distribution function for such a
crystallization system can be evaluated by considering
the relation between the seeds in the feed stream and
the crystals in the crystallizer.
The contribution of seeds with size between L to

L+dL to the size distribution of crystals with size L is
represented by
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Since crystals with size I in a crystallizer are from
those seeding crystals smaller than L, the crystal
size distribution function in such a crystallizer is

nn{L) ^~^nf{L')dV (1 1)
As far as the functions E(t), G(L) and nf{L) are

known, the crystal size distribution can be predicted.
It is also noted that this equation can be used for both
ideal and nonideal mixing states.
For an MSMPRcrystallizer, as an example, the

term ns(L) can be found by substituting the following
equations into Eq. (ll).

E(t)=(l/v)e- t/z

G(L) = dL/dt= G0

or
t= (L-Lf)/G0

Here a constant growth rate is assumed. The r esult
is

ns(L)=-^z-L/GA \L'/Gvnf(Lr)dL' (12)
(Jo? J o

For a feed of the following type :
nf(L) = [u(O) - u(Ls)]n}(-L/Gfrf) (1 3)

the crystal size distribution in an MSMPRcrystal-
lizer with seeding, by adding the term nn(L), is found
tobe:

n(L)=

exp Gqt If-x-l
1-exp(

M-MA{'-M Got

l)J+«o1 l<ls

(14)

3. Multistage Crystallizers
Multistage crystallizers with each stage being

perfectly mixed have been theoretically studied by
Larson and Wolff3} by using a population balance
approach. Here, instead, the residence time distri-
bution model is employed for such a system, although
this approach can be used whether each stage is per-
fectly mixed or not.
The crystallization system considered here is a three-

stage crystallizer in which the growth of crystals
obeys McCabe's AL law. No seed is added to the
first stage, so the crystals are generated from nuclea-
tion. The crystals in the second and third stages are
from the preceding unit and nucleation. Hence the
crystal size distribution in the first stage is found to be

/i1(L)=/i°1 exp (-L/G1r) (1 5)

by referring to Eq. (8). Since the effluent crystals from
the first stage are the feed to the second stage, the
crystal size distribution can be derived by the same
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approach as that in the last section (Eq. (14)) to be
s t\ /oi Wl\ I f*L\ im\ ( IV

«2(L)=( »S+-rLJ:- )exp( -~r~ )--f^-exp( -y^- )
\l-fi/ *\ Gxr) \-fi r\ GizJ

(16)

Similarly, for the third stage,

n3(L)=nl exp
-«n/-4£YI

X1-exp
Gxr} \

uvnl
(l-a)(l-v)

flV

(1-u)(u-v)

'-à"*(-£)] (17)

If only the first stage generates the nuclei, then
7i3(L)=-f-M 1 - exp( --- )

-7^[-(-i)]( O«
Conclusions

From the derivations of this study, it is seen that the
residence time distribution approach can be applied
to a crystallizer with or without seeding and to a
multistage crystallizer. This model gives the same
results as the population balance model.
However, the residence time distribution model can

be employed to evaluate crystal size distributions in
continuous crystallization systems with imperfect
mixing, while the current method of treating such
systems is to represent the crystallizer by a tanks-in-
series model and then to apply the population balance
for each tank.
Nomenclature

E(t)
G
Gi

Go
L

Lf

Ls
NT

residence time distribution function
growth rate of crystals
growth rate of crystals in the z-th stage
constant growth rate of crystals

crystal size
size of feed crystal
largest size of feed crystals
total number of crystals per unit volume
of suspension
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crystal size distribution (population density)
function

crystal size distribution of the feed crystals
crystal size distribution in the z-th stage
population density function contributed

by nucleation
population density function contributed

by seeding
71°
n°f

Q
t
v

X
ll
v
T

population density of nuclei
population density of nuclei in the feed stream
population density of nuclei in the /-th stage
volumetric feed and discharge rate

time
total volumeof suspension

GoTlGfTf
GJG2
GJG*

mean drawdowntime of crystallizer,
z= V/Q

<Subscripts>
/ = feed
T = total
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