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bDelft University of Technology, Applied Mathematical Analysis, PO Box: 5031, NL-2600 GA, Delft, The Netherlands
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Abstract

The residence time measures the time spent by a water parcel or a pollutant in a given water body and is therefore a widely used
concept in environmental studies. While many previous studies rely on severe hypotheses (assuming stationarity of the flow and/or
neglecting diffusion) to evaluate the residence time, the paper introduces a general method for computing the residence time and/or
the mean residence time without such simplifying hypotheses. The method is based on the resolution of an adjoint advection–

diffusion problem and is therefore primarily meant to be used with numerical models.
The method and its implications are first introduced using a simplified one-dimensional analytical model. The approach is then

applied to the diagnostic of the three-dimensional circulation on the Northwest European Continental Shelf.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The residence time is one of the most widely used
concepts to quantify the renewal of water in semi-
enclosed water bodies. This is usually defined as ‘the
time it takes for a water parcel to leave the domain of
interest’ (e.g., Bolin and Rhode, 1973; Takeoka, 1984;
Zimmerman, 1988). Together with the close concepts of
flushing time, transit time and age, the residence time is
often regarded as a very useful measure of the influence
of the hydrodynamic processes on the aquatic sys-
tems. As such, it is included in many environmental
studies (e.g., Nixon et al., 1996; Jay et al., 2000). The
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comparison of the residence time with the biochemical
activity rates helps to understand the dynamics of a
system (Braunschweig et al., 2003). In estuaries, in
particular, the residence time is seen as a measure of the
time of exposure of the living biomass, nutrients and
contaminants to the prevailing particular biochemical
conditions. It is therefore used to characterize and
classify the estuaries into different groups (e.g., Dyer,
1998). A similar approach is used to understand
eutrophication problems in lakes (e.g., Vollenweider,
1976).

From the definition, measuring the residence time in
a given domain only requires to mark the water with
some dye and follow it until it leaves the domain. While
a priori simple, this definition of the residence time has,
however, a number of rather complex implications. A
first complication comes from the fact that the residence
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time is a function of space and time; tracers released at
different locations and times inside the domain of
interest will leave this domain at different times. Then,
one must take into account the fact that every water
parcel has its own residence time (in a well-defined
domain). If some tracer is discharged at a given time and
location, the different tracer parcels will follow different
paths, have different histories . and leave the domain
of interest at different times. Therefore, the situation
should ideally be described by a distribution of residence
times.

As a result of these complications, the effect of the
hydrodynamics cannot be easily summarized into one
single figure, as often sought by those who have recourse
to the concept of residence time. Simplification hypoth-
eses are therefore often introduced which ignore spatial
and temporal variations and reduce the residence
distribution to a single value. The residence time in
a bounded system is therefore often approximated by
the flushing time:

TfZ
V

Q
ð1Þ

where V is the volume of the water body and Q is
the flow rate through the system (e.g., Soetaert and
Herman, 1996; Steen et al., 2002). Alternatively, the
residence time is approximated by fitting a decreasing
exponential curve:

mðtÞZmð0Þe�t=Tf ð2Þ

to the time series of the measured mass m(t) of a tracer
that is progressively flushed out of the system (e.g.,
Monsen et al., 2003). The corresponding e-folding time,
which is sometimes called ‘turnover time’ (e.g., Arne-
borg, 2004), represents the time taken for the initial
mass of the tracer to be decreased by a factor 1/e. The
flushing time Tf defined in this way represents the mean
residence time of a tracer whose mass varies according
to Eq. (2).

The previous approaches ignore the temporal vari-
ability of the flow, assume a perfect and immediate
mixing in the studied domain and/or disregard spatial
variations of the residence time (Monsen et al., 2003). In
this paper, we present a generic method for evaluating
the residence time and/or the mean residence time
without simplifying hypotheses. The method relies on
the concepts of adjoint state and adjoint problem, i.e. on
the analysis of the time-reversed flow. It is therefore
primarily meant to be used with numerical models, but
some aspects can also be useful to understand experi-
mental results.

The use of the adjoint state to compute transit times
and tracer ages is not new. In their diagnostic study of
atmospheric flows, Holzer and Hall (2000) introduce
a boundary propagator to model the influence of
open boundary conditions backwards in time. The
interpretation of the boundary propagator as a flux in
the time-reversed flow allows the computation of transit
time distributions. Hill et al. (in press) use the adjoint ap-
proach to carry out sensitivity studies and estimate the
efficiency of carbon sequestration in the ocean.

The adjoint approach is used here to derive evolution
equations which describe the distribution of residence
times and/or the mean residence time in arbitrary semi-
enclosed water bodies.

2. Evaluation of the residence time in a

one-dimensional problem

To introduce a clear definition of the residence time
and understand its implications and way of calculations,
let us consider a one-dimensional flow with constant and
uniform velocity u(O0) and diffusion coefficient k(O0).
Let x be the spatial coordinate. This highly simplified
problem could be seen as a model of a river or a marine
channel. We are concerned with the residence time of
water or dissolved constituents in a segment x˛ [�L,L]
of this one-dimensional system. In the sequel, this region
of interest [�L,L] will be referred to as the control
region.

2.1. Forward procedure

If some dye or tracer is injected at a particular point
x0˛ [�L,L] at the initial time t0, this will be pro-
gressively removed from the control region by the
combined actions of advection and diffusion. Fig. 1
(solid curves) shows the progressive movement and
spreading of the initial patch as time goes by. The
inventory of the tracer present in the segment x˛ [�L,L]
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Fig. 1. Spatial distribution of the concentration of a passive tracer for

different times t# Z u2t/(4k) after a point release (solid curves: infinite

domain; dashed curves: with concentration clamped to zero at the

boundary of the control region).
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allows to plot the mass m(t) of the tracer remaining in
the control region as a function of time (Fig. 2).

The residence time is defined as the time taken by the
tracer to leave the control region. Obviously, the
different parcels of tracer released initially take different
times to leave the domain. The mass m(t) plotted
in Fig. 2 can be seen as the cumulative distribution
function of the residence times; for any fixed time
tZ t0C t R t0, m(t0C t)/m(t0) measures the fraction
of the initial release with a residence time larger than t.
It is, however, common to focus on the mean residence
time �q of the tracer parcels. Following Bolin and Rhode
(1973) and Takeoka (1984), we write:

qZ� 1

mðt0Þ

Z 0

mðt0Þ
t dmZ� 1

mðt0Þ

Z N

t0

t
dm

dt
ðtÞ dt ð3Þ

Observing that the mass m(t) decreases exponentially to
zero for large times t, �q can be further expressed as:

qZ
1

mðt0Þ

Z N

t0

mðtÞdtZ
Z N

t0

~mðtÞdt ð4Þ

where

~mðtÞZmðtÞ
mðt0Þ

ð5Þ

can be interpreted as the mass of tracer remaining at
time t after a unit point release or, alternatively, as the
normalized cumulative distribution of residence times.

With the constant hydrodynamics of our simplified
system, the residence time does not depend on the time
of release t0. It does, however, vary with the location of
the initial release. Fig. 3 shows the kind of distribution
of the mean residence times that would result from such
a procedure (in the particular case of LZ 4k/u).

The average of the mean residence time over the
control region can be evaluated using a single – in situ or
numerical – experiment. To show this, let us first clarify
the notations and denote by ~mðt; t0; x0Þ the mass of
a tracer remaining inside the domain at time t after

u2t
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Fig. 2. Evolution of the mass of the tracer in the control region (solid

curves: infinite domain; dashed curves: with concentration set to zero

at the boundary of the control region).

a unit release at time t0 and location x0. Using Eq. (4),
the average residence time can be expressed as:

CqDZ
1

2L

Z L

�L

� Z N

t0

~mðt; t0;x0Þ dt
�
dx0

Z

Z N

t0

�
1

2L

Z L

�L

~mðt; t0;x0Þdx0

�
dt

Z

Z N

t0

~Mðt; t0Þ dt ð6Þ

where

~Mðt; t0ÞZ
1

2L

Z L

�L

~mðt; t0;x0Þdx0 ð7Þ

denotes the mass of the tracer remaining inside the
control domain at time t after a unit discharge uniformly
distributed in the control region at time t0. The average
mean residence time C

�qD can therefore be obtained from
the inventory following a uniform discharge.

2.2. Backward procedure by means of the
adjoint model

The procedure described above for the evaluation of
the mean residence time can be based on experimental
data or model simulations. In both cases, the de-
termination of the mean residence time at different
points of the control region requires repeated and
separate experiments with different releases at these
points. The method is therefore not appropriate to get
the complete spatial distribution of �q over the control
region. A different and much cheaper approach is
applicable to numerical studies.

The numerical experiment aiming at the evaluation of
the residence time at location x0 according to the
forward procedure described above requires the solution
of the linear advection–dispersion problem:

(
vC

vt
Cu

vC

vx
Zk

v2C

vx2

Cðt0;xÞZdðx� x0Þ
ð8Þ
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Fig. 3. Spatial distribution of the mean residence time �q (solid curve)

and the mean strict residence time �Q (dashed curve).
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(where d is the Dirac generalized function) with ap-
propriate boundary conditions for the concentration
field C(t,x). The solution to this differential problem in
the infinite domain x˛ ]�N,N[ is given by:

Cðt;xÞZGuðt;x; t0;x0Þ ð9Þ

where

Guðt;x; t0;x0ÞZ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pkðt� t0Þ
p exp

"
�ðx� x0 � uðt� t0ÞÞ2

4kðt� t0Þ

#

ð10Þ

is the so-called Green’s function of the problem.
The resolution of Eq. (8) amounts to advance the

initial concentration field in time using the forward
operator At;t0 such that:

Cðt;xÞZAt;t0Cðt0;xÞ ð11Þ

For the simplified one-dimensional model considered
here, the forward operator can be written as:

At;t0 fðxÞZ
Z N

�N

Gu

�
t;x; t0;x

0� f�x0�dx0 for tOt0 ð12Þ

With the definition (Eq. (11)) of the forward operator
and the notation:

C f;gDZ

Z N

�N

fðxÞgðxÞdx 8f;g˛L2 ð13Þ

of the scalar product on the space of square-Lebesgue-
integrable real functions L2,

~m can be expressed as:

~mðt; t0;x0ÞZ
Z N

�N

Cðx; tÞdðxÞdxZCCðt;xÞ;dðxÞD

ZCAt;t0dðx� x0Þ;dðxÞD ð14Þ

where

d½�L;L�ðxÞZ
�
1 8x˛ ½�L;L�
0 elsewhere

ð15Þ

is the characteristic function of the control region
[�L,L].

Using the above results, one gets:

~mðt; t0;x0ÞZ
1

2

 
Erf

"
x0CLCuðt� t0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4kðt� t0Þ
p

#

�Erf

"
x0 �LCuðt� t0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4kðt� t0Þ
p

#!
ð16Þ

and
qðt0;x0ÞZ
Z N

t0

~mðt; t0;x0Þdt

Z
L� x0

u
C

k

u2

�
1� exp

�
�uðLCx0Þ

k

��
ð17Þ

These expressions were used to plot Figs. 2 and 3.
Notice that the solution (Eq. (16)) differs from the

decreasing exponential law (Eq. (2)) used in simple
assessment procedures. The main difference is the delay
that appears in Fig. 2 before the mass starts to decrease
significantly. The assumptions of perfect and immediate
mixing used to justify an exponential decrease are indeed
not met here and Eq. (2) is not a valid approximation of
m(t; t0,x0).

Now, to derive the backward procedure for the com-
putation of the residence time, we introduce the adjoint
operator A�

t;t0
of At;t0 such that:

CAt;t0 f;gDZC f;A�
t;t0
gD 8 f;g˛L2 ð18Þ

With this definition, Eq. (14) takes the final form:

~mðt; t0;x0ÞZCdðx� x0Þ;A�
t;t0
d½�L;L�ðxÞD

Z

Z N

�N

dðx� x0ÞA�
t;t0
d½�L;L�ðxÞdx

Z
	
A�

t;t0
d½�L;L�ðxÞ



xZx0

ð19Þ

Using Eq. (19), the values taken by ~mðt; t0; x0Þ for
different release points x0˛ [�L,L] can all be obtained
by a single application of the adjoint operator A�

t;t0
to

the characteristic function d(x) of the control region.
For the simplified problem at stake, the adjoint of

Eq. (12) can be written explicitly as:

A�
t;t0

fðxÞZ
Z N

�N

G�u

�
t;x; t0;x

0�f�x0�dx0 ð20Þ

Using Eq. (19), one has therefore:

~mðt; t0;x0ÞZA�
t;t0
d½�L;L�ðxÞ

Z

Z N

�N

G�uðt;x; t0;x0Þd½�L;L�ðx0Þdx0

Z

Z L

�L

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pkðt� t0Þ

p
� exp

"
�ðx� x0Cuðt� t0ÞÞ2

4kðt� t0Þ

#
dx0 for tOt0

ð21Þ

which is identical to Eq. (16). This shows the equiva-
lence of the forward and backward approaches.

Now, in the same way as the propagation of the
initial conditions of Eq. (12) by the forward operator
(Eq. (11)) was considered equivalent to the resolution of
problem (12), the propagation in time (Eq. (19)) of d(x)
by the adjoint operator A�

t;t0
corresponds to the

resolution of the adjoint problem:
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8<
:

vC�
t

vt0
Cu

vC�
t

vx
Ck

v2C�
t

vx2
Z0

C�
t ðt;xÞZd½�L;L�ðxÞ

ð22Þ

where the solution C�t(t0,x) defines the adjoint state
(see Appendix A or Morse and Feshbach, 1953). This
adjoint problem is the so-called ‘reverse flow’ problem.
It must be integrated backwards in time from ‘initial
conditions’ given at t until time t0.

The spatial distribution of the residence time can then
be computed from Eq. (4) where ~mðtÞ is given by:

~mðtÞZ ~mðt; t0;x0ÞZC�
t ðt0;x0Þ

i.e. from the solution of the single adjoint differential
problem (22).

2.3. Boundary conditions

The resolution of the forward and adjoint problems
presented above requires appropriate boundary con-
ditions. Different boundary conditions can lead to
different interpretation of the residence time.

In Fig. 1, we considered that the boundary of the
control region had no influence on the dynamics of
the tracer. In particular, the tracer continues to be
advected and diffused after leaving the control domain
[�L,L]. Although the velocity is continuously directed
to the right, some tracer parcels that have been flushed
out can re-enter the domain because of diffusion. The
mass ~mðtÞ shown in Fig. 1 (solid curve) is the total mass
of the tracer parcels present in the control region,
irrespective of the particular paths followed by these
parcels; some of the tracer parcels contributing to ~mðtÞ
have left and re-entered the control domain (once or
more) between t0 and t. Therefore, the time scale
computed from this inventory and whose spatial
distribution is plotted in Fig. 3 (solid curve) does not
correspond with the usual definition of the residence
time as the time to exit the domain for the first time but
with the time to definitively exit the domain.

From here, we will call strict residence time Q the time
taken by a parcel to exit the domain for the first time.
This definition requires to completely ignore tracer
parcels as soon as they leave the domain. This cannot
usually be done experimentally but the mathematical
and numerical approaches described above can be
adapted to cope with this requirement. To do so, the
forward problem (Eq. (8)) must be solved in [�L,L] only
with the additional boundary conditions:

Cðt;�LÞZCðt;LÞZ0; 8tOt0 ð23Þ

that ensures that the water parcels touching the
boundary are immediately removed from the computa-
tion. As shown in the appendix, the corresponding
boundary conditions for the adjoint problem are
C�
t ðt0;�LÞZC�

t ðt0;LÞZ0; 8t0!t ð24Þ

By comparison, the only boundary conditions used to
derive Eqs. (16) and (17) are to request that the solutions
do not grow exponentially at infinity. Except for these
modifications, the computation procedure and the ad-
vantage of the backward approach are unchanged.

The solutions with this new approach are plotted
with dashed lines in Figs. 1–3 where they are compared
with the results of the first approach.

As expected from the definitions, the cumulative dis-
tribution function of the strict residence time is always
smaller than the corresponding distribution function
of the residence time (Fig. 2). Also, the mean strict
residence time is everywhere smaller than the residence
time (Fig. 3). The difference is particularly significant
close to the upstream boundary where the mean resi-
dence time is maximum while the mean strict residence
time is close to zero. The mean true residence time
vanishes at the boundaries of the control region because
the parcels located close to the boundaries are rapidly
flushed out by advection or by diffusion. The mean strict
residence time shows a maximum in the upstream half of
the domain.

The decision about which of the two approaches
is the most appropriate has no simple answer. Both
concepts are useful in different contexts.

If the parcels undergo a dramatic change of their
properties when leaving the domain, the strict residence
time is certainly appropriate to characterize the dynam-
ics. This could be the case, for instance, if one follows
some organic material in an anaerobic region; leaving
the control region would mean entering an aerobic
regime which would permit rapid bacterial activity. The
particles re-entering the anaerobic domain would be so
different that it would not be appropriate to count them
any longer. Also, if the problem is to evaluate the time
taken before the parcels touch the surface where rapid
gas exchanges take place, the strict residence time
approach is appropriate.

If the boundaries of the control region are somehow
artificial in that they do not correspond with strong
dynamical changes, the residence time approach can be
preferable. If the aim is to quantify the time during
which a region will be exposed to a pollutant discharged
into the control region, it is desirable to take into
account the fraction of the pollutant that returns to the
control domain and use the residence time concept. The
strict residence time approach would indeed underesti-
mate the duration of the pollution event. Also, the strict
residence time is inappropriate when the flow meanders
around the boundary of the control region. The resi-
dence time appears on the contrary as a way to remove
part of the arbitrariness in the definition of the
boundaries of the control region. The importance of
the return flow is also well-known in tidal systems in
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which the tracers are advected back and forth though
the boundary; when the tidal prism method (e.g., Dyer,
1998) is used to evaluate the flushing time of tidal
estuaries, for instance, a return flow factor is introduced
to estimate the fraction of effluent water returning to the
domain each flood tide.

In spite of the significant differences between the two
residence times, the modeler has sometimes no other
choice but to use the strict residence time in his
numerical studies. In particular, this happens when the
control region coincides with the domain of integration.
In this case, appropriate information is often lacking to
describe the return path of tracer parcels that have left
the control domain. The parcels are therefore ignored as
soon as they exit the domain for the first time and the
strict residence time is computed.

Note also that, strictly speaking, the concept of mean
residence time as the mean time taken by water parcels
to leave definitely the control region is only valid in
an infinite domain. The mean residence time can be
computed using Eq. (4) only if ~mðtÞ goes to zero when t
tends to infinity. This is only possible in a case of pure
advection (no diffusion) or if the initial released is mixed
into an infinite volume of water (or if some external non-
linear process removes the material from the system). In
other situations, the mass ~mðtÞ will tend toward a very
small value (1 over the volume of the system) which is
not zero. In theory, the distribution of the residence time
will still make sense but the mean will be unbounded.
The strict residence time does not suffer from such
problems and its mean value can always be computed
using Eq. (4), at least if water parcels are allowed to
leave the control region, i.e. if this is not disconnected
from the world ocean. In practice, the concentration
of the dye/tracer will fall below the detection limit or
the computation accuracy or will leave the computa-
tion domain so that the problem associated with
the definition of the residence time used here will be
avoided.

3. Generalization

The forward and backward procedures described in
the previous section for the computation of the residence
time are easily extended to general three-dimensional
time-dependent flows.

In this section, the discussion will be kept at a
practical level. Detailed mathematical developments are
deferred to Appendix A.

3.1. Extension to three-dimensional problems

The generalization to three-dimensional flows is
straightforward. Let u denote the control region. The
forward problem amounts to solve the advection–
dispersion problem:

(vC

vt
Cv �VCZV � ½K �VC�

Cðt0;xÞZdðx� x0Þ
ð25Þ

in the spatial domain U with appropriate conditions
on the boundary dU. If the strict residence time is to
be computed, Eq. (26) needs only to be solved in the
control region u (a subset of U) with CZ 0 at the inflow
and outflow boundaries of U.

The problem for the adjoint variable C�T(t,x) is then:8<
:

vC�
T

vt
Cv �VC�

TCV � ½K �VC�
T�Z0

C�
TðT;xÞZduðxÞ

ð26Þ

where du(x) is the characteristic function of the control
region u and where the model has to be integrated
backward in time from the ‘initial conditions’ prescribed
at some time T. Here again, the problem must be
restricted to the control region u if the strict residence
time is to be computed. The boundary conditions for the
adjoint problem are derived from those of the forward
model according to Table 1.

The solution of the adjoint problem can still be
interpreted according to:

C�
TðT� t;x0ÞZ ~mðT; T� t;x0Þ 8tO0 ð27Þ

and can be used to compute the mean residence time at
any point x0 in the control region.

3.2. Variable hydrodynamics

In Section 2.2, we claimed that ~mðtÞ could be
obtained from one single simulation carried out with
the adjoint model (Eq. (22)). A careful reader would
have noticed that running the adjoint model backward
from ‘initial conditions’ at time T delivers the total mass
~mðT; t0;x0ÞZC�

Tðt0; x0Þ in one run for the different
release points x0 but for a single time T. The evaluation
of ~mðt; t0; x0Þ for different times t requires successive
simulations with the adjoint model by varying the ‘initial
time’ TZ t. The problem of having to apply the forward
method to different release points is now moved into the
similar problem of having to deal with different ‘initial
times’ for the adjoint problem.

Table 1

Correspondence between the boundary conditions for the forward and

adjoint problems

Forward problem Adjoint problem

CZ 0 C*Z 0

VC�nZ 0 [vC*CK�VC*]�nZ 0

[vC�K�VC]�nZ 0 K�VC*�nZ 0
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In the case of constant hydrodynamic fields, the
problem can be avoided because the solution does not
depend explicitly on t0 and t, but only on the difference
t� t0 (see Eqs. (10), (16) and (21)). In this case, running
the adjoint model only once from an arbitrary ‘initial
time’ T provides:

C�
TðT� t;x0ÞZ ~mðT; T� t;x0ÞZ ~mðt0Ct; t0;x0Þ 8tO0

ð28Þ

where the last equality is valid because the translation of
the observation time t and the release time t0 by
a common delay does not modify the solution. In other
words, the solution C�T (T� t,x0) of the adjoint problem
at successive times T� t but from a fixed (arbitrary)
origin T provides the fraction of the mass that is present
in the control domain after a delay t following a unit
release at x0. The mean residence time can then be
computed using Eq. (4).

With variable hydrodynamic conditions, the problem
given above cannot be avoided and a set of adjoint
problems (Eq. (26)) must be solved by varying the
‘initial time’ T: the determination of the full distribution
of residence times requires the solution of a one-
parameter family problem. As suggested by the de-
pendency of ~m on the observation time t, the release
time t0 and the three spatial coordinates of the release
point x0Z (x,y,z), the problem can be restated as
a differential problem in a five-dimensional space which
is similar to the space introduced by Delhez et al.
(1999a) and Deleersnijder et al. (2001) in their theory of
age.

To render this five-dimensional space more explicit,
we define the cumulative distribution function D(t0,t,x0)
as the fraction of the mass of the tracer released at time
t0 and location x0 whose residence time is larger or equal
to t, i.e. the mass of tracer in the control region at time
t0C t. From this definition, it comes:

Dðt0;t;x0ÞZ ~mðt0Ct; t0;x0ÞZC�
t0Ctðt0;x0Þ ð29Þ

Introducing this definition into Eq. (26), the differential
equation for D(t,t,x0) can be expressed as:(vD

vt
� vD

vt
Cv �VDCV � ½K �VD�Z0

Dðt;0;xÞZduðxÞ
ð30Þ

Eq. (30) with boundary conditions taken from Table
1 must be solved in a five-dimensional space. It plays the
same role as the equation for the age distribution
function discussed by Delhez et al. (1999a) and Delhez
and Deleersnijder (2002) in the theory of age.

To simplify the problem, one can content oneself with
the determination of the mean residence time. In terms
of the cumulative distribution function, this can be
expressed as:
qðt;x0ÞZ
Z N

0

Dðt;t;x0Þdt ð31Þ

Assuming that D(t,t,x0) decreases to zero when t tends
to infinity, i.e. the whole material is eventually flushed
out of the control region, Eq. (30) can be integrated with
respect to t to simplify the problem into the more
classical differential problem:

vq

vt
CduCv �VqCV �

	
K �Vq



Z0 ð32Þ

for the mean (strict) residence time �qðt; xÞ.
Eq. (32) forms the main result of this paper and

defines the procedure to compute the mean residence
time. The computation of the mean residence time at any
time and location only requires the integration of Eq.
(32) with appropriate boundary conditions as discussed
above. This equation is nothing but an advection–
diffusion equation with a unit (negative) source term in
the control region u. Usual numerical techniques, which
are already available in the hydrodynamic model, can
therefore be applied to solve it. The only subtlety is the
fact that the equation must be integrated backward in
time and with the reversed flow, i.e. with v changed to�v.
This requires minor additional implementation efforts.
In a first step, the hydrodynamic model used to generate
the velocity and turbulence fields is integrated forward,
as usual, and the intermediate results are stored. Then, in
a second step, Eq. (32) is integrated backward in time
using the hydrodynamic fields computed in the first step.

Some words of caution are required here. Eq. (32)
must be integrated backward from some ‘initial time’ T.
The real conditions at time T will never be known
precisely because they require the knowledge of what
happens between T and CN. Theoretically, Eq. (32)
should be integrated backward from TZCN. In
practice, however, T has to be finite and will be chosen
as large as possible. As a result, the solution of Eq. (32)
will never produce the exact mean residence time. If the
simulation is carried out for a sufficient long time,
however, the influence of the initial conditions will
disappear, the solution of Eq. (32) will be representative
of a larger and larger proportion of the tracer and it will
approach the strict mean residence time.

4. Application to the English Channel and southern

North Sea

In this section, the backward approach described
above is applied to the evaluation of the mean residence
time in the eastern English Channel and the southern
North Sea.

The results are obtained by means of the three-
dimensional, hydrodynamic model of the North West-
ern European Continental Shelf developed at the GHER
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(GeoHydrodynamics and Environment Research labo-
ratory, University of Liège). This model is baroclinic
and includes a robust and versatile turbulence closure
scheme (Delhez et al., 1999b). It covers the whole shelf
to the east of the 200 m isobath, from 48 �N to 61 �N,
including the Skagerrak and Kattegat, with an horizon-
tal resolution of 10# in longitude and latitude, i.e. about
10 km! 16 km, and 10 vertical s-levels (Delhez and
Martin, 1992). The numerical implementation is based
on a finite volume approach and uses a TVD scheme
with superbee limiter for the advection of scalar
quantities (James, 1996). The model is forced at its
open ocean boundaries, which are located far away from
the regions of interest, by nine tidal constituents and the
inverse barometer effect. The meteorological forcing
data (6-h air temperature, surface pressure, relative
humidity, wind speed, cloud cover; horizontal resolution
1.5 � ! 1.5 �) are extracted from the NCEP/NCAR
reanalysis of surface data from NOAA/CDC (http://
www.cdc.noaa.gov/cdc/reanalysis/).

The simulations span the period of about two years
between January 1983 and September 1984. The
hydrodynamic model is first integrated forward in time
from adjusted hydrodynamic fields. Then Eq. (32) for
the mean residence time is integrated backward in time.

Two different control regions are considered: the
Eastern part of the English Channel and the southern
North Sea. The precise boundaries of these control
regions are plotted in Fig. 4 together with a schematic
view of the residual circulation. In addition to the
general circulation shown in this figure, the region is also
characterized by strong tidal currents – with a tidal
excursion of more than 10 km – and a variable wind
forcing dominated at a time scale of three to five days by
the passage of Atlantic depressions over the shelf (e.g.,
Lee, 1980; Pingree, 1980).
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Fig. 4. Boundaries of the control regions and schematic description of

the residual circulation (after Lee, 1980; Pingree, 1980; Salomon et al.,

1988).
The average values of the residence times in the two
control regions are shown in Fig. 5 as a function of time.
The backward simulations started on 1 September 1984.
During a first phase, the mean residence time increased
from the prescribed zero initial value. It takes about 6
months to remove the effects of this initialisation.
During the rest of the simulation period, the average
mean residence time lies in both control regions between
40 and 85 days, with extreme values of 30 days in
November/December 1983 and 105 days in March 1984.

Clearly, the results obtained between May and Sep-
tember 1984 are not significant. This is not unexpected:
it is indeed impossible to get the mean residence time
during this period from a simulation that ignores what
happens after September 1984. Considering the physical
meaning of the residence time it appears reasonable to
trust the results obtained after an initialisation period
equal to twice the computed mean residence time.

As expected from their respective definitions, the
mean strict residence time is always smaller than the
mean residence time.

The temporal variations of the average residence
times in the two control regions are roughly in phase
with each other and reflect the temporal variability of
the flow. The enhanced winter circulation induces
minimum residence times while the slowing down of
the flow in spring and summer is responsible for the
larger residence times of particles released during this
period of the year. Because the residence time reflects the
intensity of the horizontal exchange during some period
of time following the observation time, relative minima
(resp. maxima) occurs at the beginning of each period of
strong (resp. weak) circulation.

The snapshots of the mean residence time taken in
mid August 1983 and shown in Figs. 6 and 7 reflect the
general circulation in this part of the shelf.

The main part of the general circulation in the Eastern
English Channel is one-dimensional from the Western
English Channel to the Southern Bight of the North Sea.
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The residence time decreases therefore gradually from
the Western boundary of the control region to the Strait
of Dover. The mean residence time in the mid-channel
waters is about 30 days.

Much larger residence times are found along the
French coast (Fig. 6). These are related to the very slow
net motion in this part of the Channel. The flow in this
region is indeed dominated by persistent residual gyres
induces by tidal non-linear interactions (e.g., Salomon
et al., 1988; Delhez, 1996). As shown by Guéguéniat
et al. (1995), pollutants can remain trapped in these
residual gyres for a long time, hence the large mean
residence time computed here.

The more distant iso-lines in the vicinity of the Strait
of Dover reflect the acceleration of the residual flow in
this part of the Channel.

The residence time (Fig. 6a) and the strict residence
time (Fig. 6b) computed in the English Channel differ
significantly in the vicinity of the western boundary of
the control region, especially in the central and northern
part of this section. As expected, the strict residence time
is close to zero there because tracer parcels are rapidly
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Fig. 6. Snapshot of the mean residence time (in days) (a – upper panel)

and mean strict residence time (in days) (b – lower panel) at the surface

in the Eastern English Channel on the 15/08/1983.
flushed out towards the Western part of the Channel by
diffusion and strong mesoscale currents. The same tracer
parcels re-enter the control domain by the combined
action of the mesoscale and residual currents. The return
flow might therefore not be neglected and the residence
time must be preferred to the strict residence time.

Similar results are obtained for the residence time
in the southern North Sea (Fig. 7). Here, the main
differences between the residence time and the strict
residence time are concentrated in the Strait of Dover
and at the western side of the northern boundary. These
differences show that boundaries of the control region
cannot be seen as natural boundaries of the flow.
The residence time approach helps to circumvent this
apparent level of arbitrariness.

At this time of the year, the main residence time
reaches 70 days at the Strait of Dover. It decreases
gradually along the main stream flowing across the
Southern Bight of the North Sea. The mean residence
time is about 40 days in the center of the control region.
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Larger values are found along the Belgium and Dutch
coasts, on one side, and along the English coast, on the
other side. Maximum values are found in the shallow
estuaries (Thames, Wash) but also at the mouth of the
Rhine estuary. Note, however, that the spatial resolu-
tion of the hydrodynamic model is not appropriate to
describe the complex baroclinic dynamics of the Rhine
ROFI (e.g., Ruddick et al., 1995). Such processes are
likely to accelerate the flow along the Dutch coast and
reduce therefore the residence time in this region.

5. Conclusion

The residence time is a very useful concept in many
environmental studies. While previous approaches were
often based on simplified hypotheses, a rigorous generic
method is now available to study the residence time in
a semi-enclosed domain by means of a numerical model.
This method can be used to compute the distribution of
residence times or only the mean value of this
distribution. The procedure requires the solution of
the adjoint problem to the advection–diffusion equation.
It can be extended to compute the residence time of
tracers with a radioactive decay or other tracers with
a linear dynamics.

While the basin average residence time can be
computed by other means, the backward procedure
described here provides the spatial distribution of the
residence time. This is a very valuable information as it
allows to identify the regions where, for instance,
pollution problems are likely to develop.

As for other similar concepts, a clear understanding
of the implications of the definition is required for an
appropriate interpretation of the results. The definitions
of the residence time as the time before the parcel leaves
the domain for the first time or for the last time can be
used in different contexts. Both approaches are feasible
with the procedure set up in this paper; only the
boundary conditions must be adapted.
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Appendix A. Derivation of the adjoint problem

In this section, we present an alternative method to
introduce the adjoint problem used to evaluate the
residence time in a control domain u. The method,
relying on elementary calculus, provides directly the
expression of the adjoint problem.

The forward problem consists in the general
three-dimensional time-dependent advection–diffusion
problem:

(vC

vt
Cv �VCZV � ½K �VC� in ½t0; tN�!U

Cðt0;xÞZdðx� x0Þ
ð33Þ

where t is time, x is the current point, [t0,tN] denotes
some appropriate integration time window (where tN is
chosen large enough for most of the initial released to be
flushed out of the control domain), U is the spatial
domain of integration, C is the concentration field
produced by a unit point release at time t0 and location
x0, v is the velocity field and K is the diffusion tensor
which is assumed symmetric. Because the aim of the
forward problem is to follow the fate of the material
released into the control domain without additional
inputs of material, the boundary G of the integration
domain can be split into three parts G1, G2, G3

(G1W G2WG3ZG) where homogeneous boundary
conditions are prescribed according to the first column
of Table 2.

For an arbitrary time horizon TO t0, the mass of the
tracer present in the control domain is given by:

mðT; t0;x0ÞZ
ZZZ

u

CðT;xÞdx ð34Þ

Introducing the so far arbitrary adjoint variable C*(t,x)
(Lagrangian multipliers), one has also:

mðT; t0;x0ÞZ
ZZZ

u

CðT;xÞdx�
Z T

t0

dt

!

ZZZ
U

C�
�
vC

vt
Cv �VC�V � ½K �VC�

�
dx

ð35Þ

By integration by parts, this expression is easily trans-
formed into:

Table 2

Boundary conditions for the forward and adjoint problems on the

different parts G1, G2 and G3 of the boundary G of the integration

domain

Forward problem Adjoint problem

G1 CZ 0 C*Z 0

G2 VC�nZ 0 [vC*CK�VC*]�nZ 0

G3 [vC�K�VC]�nZ 0 K�VC*�nZ 0
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mðT; t0;x0ÞZ
ZZZ

u

CðT;xÞdx�
Z T

t0

dt

ZZZ
U

!C

�
�vC�

vt
� v �VC� �V �

	
K �VC�
�dx

�
ZZZ

U

	
CC�
T

t0
dx�

Z T

t0

dt

!

ZZ
S

C�½vC�K �VC� � n dS

�
Z T

t0

dt

ZZ
S

C
�
K �VC�� � n dS ð36Þ

Now, assume that the adjoint variable C* solves the
problem:(vC�

vt
Cv �VC�CV �

	
K �VC�
Z0 in ½t0;T�!U

C�ðT;xÞZduðxÞ
ð37Þ

where

duðxÞZ
�
1 8 x˛u

0 elsewhere
ð38Þ

is the characteristic function of the integration domain.
Eq. (36) simplifies into:

mðT; t0;x0ÞZ
ZZZ

U

Cðt0;xÞC�ðt0;xÞdx

�
Z T

t0

dt

ZZ
S

C�½vC�K �VC� � n dS

�
Z T

t0

dt

ZZ
S

C
�
K �VC�� � n dS ð39Þ

Taking into account the initial condition of the forward
problem (Eq. (33)) and using the boundary conditions
listed in Table 2 for the adjoint variable C*, Eq. (39)
takes the final form:

mðT; t0;x0ÞZC�ðt0;x0Þ ð40Þ

which is the basic equation on which relies the backward
method for the evaluation of the residence time.
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