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Abstract—In a residential area where many households have
installed rooftop photovoltaic (PV) units, there is a reverse
power flow from the households to the substation when the
power generation from PV units is larger than the aggregate
load of the households. This reverse power flow causes the
voltage rise problem. In this paper, we study the use of demand
side management (DSM) to mitigate the voltage rise problem.
We propose an autonomous energy consumption scheduling
algorithm which schedules the operation of deferrable loads
to jointly shave the peak load and reduce the reverse power
flow. The proposed algorithm shifts the operation of deferrable
loads from peak consumption hours to hours with high power
generation from the PV units. We use stochastic programming
to formulate an energy consumption scheduling problem, which
takes into account the uncertainty related to the amount of
power generation from PV units. The formulated cost function
comprises a monetary cost for energy consumption, the revenue
from energy export, and an external cost for the voltage rise.
Numerical results show that our proposed algorithm can mitigate
the voltage rise problem in areas with high penetration of PV
units and reduce the peak-to-average ratio (PAR) of the aggregate
load.

Index Terms—Demand side management, optimal scheduling,
photovoltaic units, voltage control.

I. INTRODUCTION

Price-based demand side management (DSM) programs
encourage users to shift their load from peak consumption
hours to off-peak hours in order to reduce the generation cost
and the cost of plant investment [1]. Dynamic pricing schemes
such as time of use (TOU) pricing are examples of price-based
DSM programs in which the utility company sets a high price
during peak consumption hours to encourage the users to shift
their load from peak hours to off-peak hours.

Residential DSM has attracted significant attention [2]–
[6]. An important challenge for residential DSM is that it
is difficult for household users to respond to the pricing
signals [2]. To tackle this problem, an autonomous energy
consumption scheduler (ECS) can be implemented to help
users make price-based control decisions. The autonomous
ECS retrieves the pricing signal from the utility company via
a communication infrastructure and schedules the operation
of deferrable loads such as electric water heaters and clothes
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dryers. The authors of [3]–[6] propose algorithms to schedule
the residential load and minimize the electricity bill.

In recent years, the use of rooftop photovoltaic (PV) units
and energy storage systems (ESSs) in households has pro-
liferated. The households may not only consume energy but
also export energy to the power grid. Many utility companies
use net metering programs to encourage households to install
rooftop PV units [7], [8]. Net metering programs typically have
a feed-in tariff and allow households to sell their extra energy
to the power grid. In [9], a coordinated algorithm is proposed
to minimize the users’ payments. The proposed algorithm in
[9] controls both the household load and distributed energy
resources (DERs) (e.g., PV units). A game-theoretic approach
is proposed in [10] which jointly controls the load, DERs, and
ESSs. In [11], an energy consumption scheduling algorithm
is proposed for a PV-based microgrid, where the time of
use probabilities of different loads are considered. The works
in [9]–[11] focus on the case where a few households are
equipped with DER units and are encouraged to export their
generation to the grid. However, if a large number of users
are equipped with PV units, the results in [9]–[11] may not
be directly applicable because the reverse power flow in those
areas may cause the voltage rise problem. Therefore, in areas
with high penetration of PV units, new DSM programs are
necessary.

The voltage rise problem is an important challenge for the
integration of a large number of rooftop PV units into the
power grid [12], [13]. Traditional voltage control strategies
assume the unidirectional power flow from the substation to
the households [14]. A substantial reverse power flow from
households to the substation can cause the voltage magnitude
of some of the households to exceed the upper limit of the
allowed voltage variation. This is referred to as the voltage
rise problem. For example, in North America, the ANSI C84.1
standard [15] requires the voltage magnitude in the distribution
network to be no more than 1.05 per unit (pu) of the normal
state. For the rest of the paper, we assume that the upper limit
for the allowed voltage variation is 1.05 pu.

In countries such as Germany with high penetration of
rooftop PV units, the voltage rise problem has already emerged
and different mechanisms have been proposed to tackle the
problem [16], [17]. The distribution network operators (DNOs)
have upgraded the transformers (e.g., with on-load tap changer
transformers) and have enhanced the feeder to host more
PV units in some areas [16]. Moreover, the reverse power
flow from PV units can be controlled by adjusting the active
and reactive power of PV inverters [17]. In particular, the



German Renewable Energy Sources Act revision in 2012 [18]
enforces energy generation curtailment for rooftop PV units.
The DNO measures the voltage magnitude and sends control
signals to the PV units for curtailment. The PV units are
required to either install remote controllers that curtail the
generation based on the control signal received from the DNO
or permanently limit the active power feed-in to 70% of the
installed capacity [16].

Besides generation curtailment, load control techniques and
ESSs (e.g., battery systems) can be used to reduce the reverse
power flow during high solar radiation hours and mitigate the
voltage rise problem [19]–[23]. The work in [19] proposes
the activation of additional heating, ventilation, and air con-
ditioning (HVAC) load whenever a voltage rise is detected.
The works in [20]–[22] focus on using ESSs to mitigate the
voltage rise problem. ESSs can absorb the reverse power flow
when the voltage rise is detected. However, the control of
residential load and ESSs requires the approval of household
owners. Economic incentives such as TOU pricing should
be considered in the DSM programs to encourage household
participation. On the other hand, the voltage rise problem
should also be taken into account in DSM programs if many
households are equipped with PV units. Moreover, it is hard to
respond to variations of voltage and pricing signals manually.
Hence, it is important to have a scheduling algorithm for an
autonomous ECS to manage load and ESSs without human
intervention.

The contributions of this work are as follows:

• We propose a residential energy consumption scheduling
algorithm for areas with high penetration of rooftop
PV units. The proposed algorithm aims to reduce the
energy expenses of the users and mitigate the voltage rise
problem. It shifts deferrable load from peak consumption
hours to hours with high solar power generation.

• We introduce a cost function to model the undesired
voltage rise. The objective function comprises a mone-
tary cost for household energy consumption, the energy
generation revenue from PV units, and an external cost
for the voltage rise. The external cost is modeled with the
sensitivity of the voltage magnitudes with respect to the
household energy export, which can be obtained from
power flow analysis. We formulate a stochastic energy
consumption scheduling problem to minimize the cost
function. We transform the problem into a linear program
(LP) when the feed-in tariff does not exceed the energy
consumption price and the cost function is convex piece-
wise linear. Otherwise, when the cost function is non-
convex, a mixed-integer program (MIP) is formulated.

• We compare our proposed algorithm with the algorithm
in [19] on a 33 bus radial distribution test system. Sim-
ulation results show that our proposed algorithm reduces
the energy expenses of the users. The results also show
that our algorithm can mitigate the voltage rise problem
for areas with high penetration of PV units and reduce
the peak-to-average ratio (PAR) of the aggregate load.

The rest of the paper is organized as follows. The system
model is introduced in Section II. In Section III, we present the
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Fig. 1. A schematic diagram of the proposed energy consumption scheduling
scheme. The DNO performs the power flow analysis and provides the ECS
with information regarding the voltage rise (e.g., the sensitivity of the voltage
with respect to the household energy export) at the beginning of the day.

problem formulation and the proposed algorithm. Numerical
results are presented in Section IV, and conclusions are drawn
in Section V.

II. SYSTEM MODEL

A block diagram of the proposed energy consumption
scheduling scheme for a household equipped with a PV unit
and an ESS is shown in Fig. 1. The power flows from the
distribution network to the load when the power generated by
the PV unit is insufficient to meet the demand. The direction
of the power flow is reversed when the power generated by the
PV unit is higher than the load. Each household is equipped
with an ECS [2], which is embedded in the household smart
meter. The ECS retrieves the pricing information from the
utility company. A DNO performs the power flow analysis
[14] for the local distribution network and determines the
hours when the households may have abnormally high voltage
magnitude if load shifting is not performed. We assume the
DNO performs the power flow analysis based on historical
records of demand and generation. The DNO sends the power
flow analysis results to the ECS at the beginning of each day.
The ECS determines the operational schedule of the deferrable
load to minimize the electricity bill and reduce the reverse
power flow for hours when voltage rise may happen. Examples
of such deferrable load include clothes dryers and electric
water heaters. Some other loads such as TV and computers are
must-run load [5] because their energy consumption cannot
be shifted. We also consider the ESSs in our model, e.g.,
battery systems owned by the household. We denote the sets
of deferrable load, must-run load, and ESSs by Sd, Sm, and
Ss, respectively. We note that the demand and PV energy
generation are stochastic in practice and can be different from
the values obtained from the historical records. This may
introduce inaccuracy when the DNO performs the power flow
analysis. In Section IV, we analyze the effect of forecast errors
via simulations.

We denote the set of operating time slots under considera-
tion by T ∆

= {1, . . . , T}. The selection of an appropriate length
of the time slot depends on the formulated problem. On the



one hand, a relatively short time slot is helpful to model the
dynamics of the load and the energy generation of PV units.
Short time slots make the assumption that the active power,
reactive power, and phase on the buses are static within one
time slot more realistic. On the other hand, longer time slots
reduce the computational complexity of the algorithm. In this
paper, we choose the length of a time slot to be 15 minutes
in order to achieve a balance between the performance and
the complexity of the algorithm. Furthermore, we use Edi (t),
Emj (t), and Esl (t) to denote the energy consumption of the
deferrable load i ∈ Sd, the energy consumption of the must-
run load j ∈ Sm, and the charged or discharged energy of
the ESS l ∈ Ss at time slot t ∈ T , respectively. The energy
generated from PV units at time slot t is denoted by Eg(t).
For a household connected to bus b, the exported energy at
time slot t is denoted by Exb (t) and is given by

Exb (t) = Eg(t)−
∑
i∈Sd

Edi (t)−
∑
j∈Sm

Emj (t)−
∑
l∈Ss

Esl (t). (1)

The ECS adjusts Exb (t) by controlling the operation of de-
ferrable loads and ESSs. Let et represent the vector of the
energy consumption of the deferrable loads and the charged
or discharged energy of the ESSs at time slot t. et can be
written as

et = (Ed1 (t), . . . , Ed|Sd|(t), E
s
1(t), . . . , Es|Ss|(t)), (2)

where |Sd| and |Ss| are the cardinalities of sets Sd and Ss,
respectively. We model the PV units as non-controllable re-
sources because household rooftop PV units are typically non-
dispatchable [13]. Moreover, rooftop PV units are required
to operate with unity power factor according to the current
IEEE 1547 standard [24]. We restrict our model to consider
the active power generation (i.e., Eg(t)) of PV units.

A. Voltage Rise Problem

The voltage rise problem occurs when many households
in the distribution network have large positive Exb (t). A 33
bus radial distribution network [25] is shown in Fig. 2. The
households are connected to the buses. We denote the set of
buses as B (e.g., B = {1, . . . , 33} in Fig. 2). We denote the
voltage magnitude on bus n ∈ B as |Vn(t)|. Note that we
use b to specify the bus to which the considered household
is connected, whereas bus n is an arbitrary bus. The value
of |Vn(t)| is determined using the power flow analysis. We
assume the active power, reactive power, voltage magnitude,
and phase are static within one time slot. We first consider the
case when load shifting is not performed. The DNO executes
the power flow analysis using historical records of demand
and generation. In this case, |Vn(t)| may exceed an upper
limit (e.g., 1.05 pu in North America) on some of the buses.
Hence, we obtain a set of buses with abnormally high voltage
magnitude in time slot t, which is denoted by Bv(t). We aim
to decrease the voltage magnitude |Vn(t)| of buses n ∈ Bv(t)
by decreasing Exb (t) via load shifting, when Bv(t) is not ∅.

The sensitivity of the voltage magnitude |Vn(t)| of an
arbitrary bus n with respect to household energy export Exb (t)
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Fig. 2. One line diagram of a 33 bus radial distribution test system [25]. The
households are connected to the buses. The voltage rise problem occurs when
many households have substantial positive energy export. The DSM program
encourages households to shift loads to hours with high solar radiation to
mitigate the voltage rise problem.

is characterized by the partial derivative ∂|Vn(t)|
∂Ex

b (t) . We note that
|Vn(t)| depends on the power flow of all the buses. Moreover,
a non-convex problem has to be solved to obtain |Vn(t)|.
However, in order to reduce the computational complexity,
a linear model of the external cost is adopted, and the
partial derivatives ∂|Vn(t)|

∂Ex
b (t) are used to analyze the sensitivity

of |Vn(t)| with respect to Exb (t). ∂|Vn(t)|
∂Ex

b (t) is obtained from
power flow analysis using the Newton-Raphson method [14].
That is, the Newton-Raphson method is used to obtain the
Jacobian matrix which contains the information about the
partial derivatives of the active and reactive powers with
respect to the voltage magnitude and phase. Next, the partial
derivative ∂|Vn(t)|

∂Ex
b (t) is obtained from the inverse of the Jacobian

matrix [26], [27]. The exact values can be calculated using off-
the-shelf software such as PowerWorld [28] or Matlab. We
assume the DNO performs the power flow analysis based on
the historical records of demand and generation. The DNO
sends the results, i.e., ∂|Vn(t)|

∂Ex
b (t) and |Vn(t)|, to the ECS as the

input for the energy consumption scheduling algorithm.

B. Cost Function

The energy export of a household on an arbitrary bus b may
contribute to the voltage rise problem of other households in
the distribution network (including the households on other
buses). We model the contribution of the household energy
export to the abnormally high voltage magnitude of other
households as an external cost. In economics, an externality
arises when a person engages in an activity that influences the
well-being of a bystander [29]. We assume the household aims
to minimize its own electricity bill and its external cost.

To tackle the voltage rise problem, the DNO can encourage
households to reduce the exported energy to be less than a
certain threshold h in each time slot. The DNO determines the
value of h by running the power flow analysis in an iterative
manner. The power flow analysis is used to determine the bus
voltage magnitude. In this analysis, the DNO first sets the
energy export from each household to be zero and runs the
power flow analysis. In this case, the voltage magnitude on



each bus is lower than 1.05 pu. Then, the DNO gradually
increases the energy export of all households simultaneously
and repeats the power flow analysis to obtain the voltage
magnitude for different energy exports. As the energy export
increases, the voltage magnitude obtained in the power flow
analysis increases as well. When the voltage magnitude of
any bus reaches 1.05 pu, the DNO stops increasing the
energy export and the obtained value of the energy export
can be used as the value of threshold h. The value of h
depends on the voltage magnitude on the secondary winding
of the substation transformer, the line impedance, the line
length between adjacent buses, and the number of households
connected to each bus. These values are used as inputs in
the power flow analysis to calculate the voltage magnitude.
The value of h should be determined by the DNO for each
distribution network according to its specific parameters.

Hence, all households should have the same threshold h to
ensure fairness. Parameter h is used as a threshold to obtain the
external cost rather than a limit for the energy export. Although
households with different PV units can export different amount
of energy [30], the prices and threshold h should be the same
for the energy export of all households. This is because all
households have equal rights to use the public distribution
network.

Consider an arbitrary household connected to bus b ∈ B,
we model the external cost of the household energy export as

cx(et) = η
( ∑
n∈Bv(t)

∂|Vn(t)|
∂Exb (t)

)
[Exb (t)− h]

+
, (3)

where [x]
+

= max{x, 0}.
∑
n∈Bv(t)

∂|Vn(t)|
∂Ex

b (t) is the contribu-
tion of one unit household energy export to the abnormally
high voltage magnitude of the buses n ∈ Bv(t). Note that
in practice, voltage rise happens on some of the buses, i.e.,
the buses in set Bv(t). The parameter η is a non-negative
coefficient. Note that (3) is obtained using a sensitivity-based
linear model of the voltage rise. The first order derivative
∂|Vn(t)|
∂Ex

b (t) models the sensitivity of the voltage magnitude with
respect to the power flows. The sensitivity-based linear model
has been widely used to study the voltage rise problem [26],
[27], [31], [32]. The accuracy of the model may degrade when
power flows and voltage deviate from their expected values
significantly.

Assume the ECS aims to reduce the monetary cost (i.e.,
the electricity bill) and the external cost1. The household
purchases energy at price pe(t) when Exb (t) < 0 and sells
energy with a feed-in tariff ps(t) when Exb (t) ≥ 0. The total

1One promising method to enforce the households to consider the external
cost is the monetization of the external cost [33], which has been used
in several areas [34]–[37], such as the carbon emission tax in the energy
generation. This concept can be used for those areas with high rooftop PV
penetration. The external cost can be incurred to the user by means of a
carefully selected price function. For example, the utility company may collect
an additional charge from households with an energy export exceeding the
threshold h. Some utility companies (e.g., Georgia Power) have already been
collecting a monthly charge from households which connect their rooftop
PV units to the distribution network. Note that with the advanced metering
infrastructure (AMI), the utility company can monitor the household energy
export in short time intervals and determine the external cost according to the
energy export.
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Fig. 3. Piecewise linear cost function for a household with PV unit. We
consider the case ps(t) ≤ pe(t) in this figure, i.e., the feed-in tariff does
not exceed the energy consumption price. Note that some utility companies
promote the rooftop PV installation aggressively and have ps(t) > pe(t)
(e.g., [8]).

cost at time slot t is given by

c(et)=


η
∑

n∈Bv(t)

∂|Vn(t)|
∂Exb (t)

(Exb (t)−h)−ps(t)Exb (t), if Exb (t) ≥ h,

−ps(t)Exb (t), if 0 ≤ Exb (t) < h,
pe(t)|Exb (t)|, if Exb (t) < 0,

(4)
where |Exb (t)| represents the absolute value of Exb (t). Param-
eter η can be tuned to adjust the weight between the external
cost and the monetary cost. By increasing η, the ECS tends
to shift more load to the high solar radiation hours to reduce
the external cost of the voltage rise problem. By decreasing
η, the ECS puts more weight on minimizing the electricity
bill. When η = 0, the ECS only aims at minimizing the bill
and neglects the potential voltage rise problem. Fig. 3 shows
that cost function c(et) is a convex piecewise linear function
[38] when ps(t) ≤ pe(t). However, it becomes a non-convex
piecewise linear function when ps(t) > pe(t). Both cases will
be considered in Section III.

The households schedule their load in a distributed manner.
Distributed load control algorithms are preferred as they
reduce the computational complexity and offer more privacy
compared to centralized algorithms. We investigate the energy
consumption scheduling problem for the ECS by an arbitrary
household.

III. ENERGY CONSUMPTION SCHEDULING WITH
UNCERTAIN PV POWER GENERATION

In this section, we consider the energy consumption
scheduling problem for minimizing the expected payment
and external cost of the user. We formulate the problem as
a stochastic programming problem [39]. The uncertainty in
the power generation from PV units is taken into account in
our formulation. Note that the PV power generation Eg(t) is
intermittent and random in nature [40]–[42]. The ECS needs
to determine et at the current time slot t, before the future PV
power generation Eg(t + 1), . . . , Eg(T ) can be observed. In
the next time slot, t+ 1, the power consumption vector et+1

will be updated as the new information about the PV power
generation is received.



For the rest of this paper, we denote the current time slot
by t, whereas τ represents an arbitrary time slot. We define
Tt

∆
= {t, . . . , T} as the set of time slots from the current time

slot t onwards.

A. Nested Stochastic Formulation

For current time slot t, we define Eri (t) as the amount of
energy required to finish the operation of appliance i ∈ Sd.
The energy requirement Eri (t) is updated as

Eri (t+ 1) = max
{
Eri (t)− Edi (t), 0

}
, i ∈ Sd. (5)

We denote the maximum energy consumption of the ith
deferrable load within one time slot by Emax

i,d . Moreover,
Emax
l,s ≥ 0 represents the maximum energy that can be stored

in ESS l during one time slot. Emin
l,s ≤ 0 is the maximum

energy that can be derived from ESS l during one time slot.
We denote the state of charge (SOC) of ESS l at time slot t
by sl(t). The battery capacity of ESS l is denoted by bl. For
ESS l, its SOC is updated as

sl(t) = sl(t− 1) +
Esl (t)

bl
, l ∈ Ss. (6)

At current time slot t, the ECS optimizes et for minimiza-
tion of the cost from the current time slot t onwards. The
nested form of our stochastic problem is

minimize
et∈χt

c(et)+E
[

inf
et+1∈χt+1

c(et+1)+ · · ·+E
[

inf
eT∈χT

c(eT )
]]

(7a)

subject to
Td
i∑

τ=t

Edi (τ) = Eri (t), i ∈ Sd, (7b)

where T di is the deadline by which the operation of deferrable
load i ∈ Sd has to be finished. E represents the expectation
with respect to the uncertain PV power generation. Note that
the must-run load may also have uncertainty, depending on
how accurately we can forecast the must-run load profile. We
also assume that the household users determine the operational
constraints of each appliance. The feasible set, χτ , τ ∈ Tt, in
(7a) can be written as

χτ = { eτ | 0 ≤ Edi (τ) ≤ Emax
i,d , ∀ i ∈ Sd,

Emin
l,s ≤ Esl (τ) ≤ Emax

l,s , ∀ l ∈ Ss,
Smin ≤ sl(τ) ≤ 1, ∀ l ∈ Ss } . (8)

The first two constraints in (8) ensure that the energy con-
sumption of load i and charged or discharged energy of ESS l
at hour τ do not exceed their respective maximal values. The
third constraint prevents the ESS from discharging to an overly
low SOC, where Smin is the minimum SOC of the ESS, e.g.,
Smin = 0.3. Note that discharging an ESS to an overly low
SOC may degrade the life cycle of the ESS.

Problem (7) is difficult to solve directly. Hence, we adopt
the sample average approximation (SAA) technique [39] to
solve problem (7).

B. Sample Average Approximation

The SAA technique generates scenarios for unknown future
PV power generation and evaluates the objective function
by averaging over different scenarios. Suppose we have K
scenarios {ω1, . . . ,ωK} based on the historical records of
the PV power generation. Each scenario is a possible re-
alization of (Eg(t + 1), . . . , Eg(T )). For the kth scenario
ωk, the hourly PV power generation is denoted as (Eg(t +
1,ωk), . . . , Eg(T,ωk)), where Eg(τ,ωk), τ ∈ Tt+1, is the
value of Eg(τ) under scenario ωk. We define K ∆

= {1, . . . ,K}
as the set of scenarios. For an arbitrary scenario k ∈ K, let
Edi (τ,ωk), Emj (τ,ωk), Esl (τ,ωk), Exb (τ,ωk), sl(τ,ωk), and
e(τ,ωk) denote the energy consumption of the ith deferrable
load, the energy consumption of the jth must-run load, the
charged or discharged energy of the lth ESS, the household
energy export, the SOC of the lth ESS, and the energy con-
sumption vector at time slot τ under scenario ωk, respectively.

We estimate the expected cost by averaging the cost over
different scenarios ωk,∀k ∈ K. By using the SAA technique,
problem (7) becomes

minimize
e(τ,ωk),

τ ∈ Tt, k ∈ K

∑
k∈K

P(ωk)
∑
τ∈Tt

c(e(τ,ωk)) (9a)

subject to
Td
i∑

τ=t

Edi (τ,ωk) = Eri (t), i ∈ Sd, k ∈ K, (9b)

0 ≤ Edi (τ,ωk) ≤ Emax
i,d , i ∈ Sd, τ ∈ Tt,
k ∈ K, (9c)

Emin
l,s ≤ Esl (τ,ωk) ≤ Emax

l,s , l ∈ Ss, τ ∈ Tt,
k ∈ K, (9d)

Smin ≤ sl(τ,ωk) ≤ 1, l ∈ Ss, τ ∈ Tt,
k ∈ K, (9e)

e(t,ωk) = e(t,ωl), k, l ∈ K. (9f)

The term e(τ,ωk) is the energy consumption vector of con-
trollable loads and ESSs at time slot τ under scenario ωk.
c(e(τ,ωk)) denotes the cost function in time slot τ under
scenario ωk.

∑
τ∈Tt c(e(τ,ωk)) in (9a) indicates the total

cost under scenario ωk from time slot t to time slot T . The
objective function (9a) is the cost from time slot t onwards,
averaged across the K scenarios. Constraints (9b) – (9e)
are the extensions of the constraints in (7b) and (8) under
scenario ωk. Constraint (9f) is the non-anticipativity constraint
of stochastic programming [39]. Note that t in constraint (9f)
is the current time slot while τ in problem (9) denotes an
arbitrary time slot. Constraint (9f) reflects the fact that the ECS
is required to make a deterministic decision in the current time
slot before the unknown parameters are revealed. Constraint
(9f) enforces the variables of the current time slot t to be equal
under different scenarios, such that the obtained solution in the
current time slot t is deterministic, i.e., does not depend on a
specific scenario. Problem (9) has an objective function which
can be either convex or non-convex piecewise linear. For both
the convex and non-convex cases, problem (9) will be studied
in the following subsections.



C. Convex Piecewise Linear Objective Function

First, we consider the case for which ps(τ) ≤ pe(τ), τ ∈ Tt.
Fig. 3 illustrates the cost function for this case. The cost
function c(e(τ,ωk)) is a convex piecewise linear function
since c(e(τ,ωk)) in (4) can be written as

c(e(τ,ωk)) =max
{
− ps(τ)h+

(
(η
∑

n∈Bv(τ)

∂|Vn(τ)|
∂Exb (τ)

− ps(τ))

(Exb (τ,ωk)− h)
)
,−ps(τ)Exb (τ,ωk), pe(τ)(−Exb (τ,ωk))

}
.

(10)

By introducing auxiliary variables u(τ,ωk), τ ∈ Tt, k ∈ K,
problem (9) can be rewritten as

minimize
e(τ,ωk), u(τ,ωk),
τ ∈ Tt, k ∈ K

∑
k∈K

P(ωk)
∑
τ∈Tt

u(τ,ωk) (11a)

subject to u(τ,ωk)≥−ps(τ)h+
(

(η
∑

n∈Bv(τ)

∂|Vn(τ)|
∂Exb (τ)

−ps(τ))(Exb (τ,ωk)− h)
)
, τ ∈ Tt, k ∈ K,

(11b)
u(τ,ωk) ≥ −ps(τ)Exb (τ,ωk), τ ∈ Tt,

k ∈ K, (11c)
u(τ,ωk) ≥ pe(τ)(−Exb (τ,ωk)), τ ∈ Tt,

k ∈ K, (11d)
Constraints (9b) – (9e).

The linear constraints (11b) – (11d) are introduced to replace
the piecewise linear objective function c(e(τ,ωk)) in (10).
Problem (11) is a linear program (LP) and can be solved
efficiently.

D. Non-convex Piecewise Linear Objective Function

For the case in which ps(τ) > pe(τ), τ ∈ Tt, the cost func-
tion is a non-convex piecewise linear function, cf. Fig. 4. The
high feed-in tariff is typically used to encourage households
to install rooftop PV units. For example, in the province of
Ontario in Canada, the feed-in tariff for rooftop PV units is
32.9 − 39.6 cents per kWh [8] while the residential energy
consumption price is 7.2− 12.9 cents per kWh. Moreover, in
the state of Georgia in the United States, the utility company
has a residential energy retailing price of 4.8− 9.6 cents per
kWh while purchases energy from rooftop PV units at 17 cents
per kWh [43]. The high feed-in tariff in the province of Ontario
in Canada and Georgia state in the United States are for the
roof-top PV units only.

A non-convex piecewise linear objective function cannot
be directly transformed into an LP. To tackle problem (9)
with a non-convex piecewise linear objective function, we
introduce new variables q0(τ,ωk), q1(τ,ωk), and q2(τ,ωk)
to represent the components of energy export Exb (τ,ωk) in
the three different pricing ranges, cf. Fig. 4. Then, we have

q0(τ,ωk) = min{ Exb (τ,ωk)−H, |H|}, (12)

q1(τ,ωk) = min{max{ Exb (τ,ωk), 0 }, h}, (13)
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Fig. 4. Non-convex piecewise linear cost function. This case occurs when
the feed-in tariff of the utility company is higher than the energy consumption
price (i.e., ps(τ) > pe(τ)) [8].

q2(τ,ωk) = max{ Exb (τ,ωk)− h, 0 }, (14)

Exb (τ,ωk) = (H + q0(τ,ωk)) + q1(τ,ωk) + q2(τ,ωk), (15)

c(e(τ,ωk)) = pe(τ)(|H| − q0(τ,ωk))− ps(τ)q1(τ,ωk)

−(ps(τ)− η
∑

n∈Bv(τ)

∂|Vn(τ)|
∂Exb (τ)

)q2(τ,ωk), (16)

where H is a negative constant, cf. Fig. 4. The value of H
is selected to be less than the minimum of Exb (τ,ωk). Now,
problem (9) can be rewritten as

minimize
e(τ,ωk), q0(τ,ωk),
q1(τ,ωk), q2(τ,ωk),

τ ∈ Tt, k ∈ K

∑
k∈K

P(ωk)
∑
τ∈Tt

(
pe(τ)(|H| − q0(τ,ωk))

−ps(τ)q1(τ,ωk)

−
(
ps(τ)− η

∑
n∈Bv(τ)

∂|Vn(τ)|
∂Exb (τ)

)
q2(τ,ωk)

)
(17a)

subject to 0 ≤ q0(τ,ωk) ≤ |H|, τ ∈ Tt, k ∈ K, (17b)
0 ≤ q1(τ,ωk) ≤ h, τ ∈ Tt, k ∈ K, (17c)
0 ≤ q2(τ,ωk), τ ∈ Tt, k ∈ K, (17d)
q1(τ,ωk)(q0(τ,ωk)− |H|) = 0, τ ∈ Tt,

k ∈ K, (17e)
q2(τ,ωk)(q1(τ,ωk)− h) = 0, τ ∈ Tt,

k ∈ K, (17f)∑
i∈Sd

Edi (τ,ωk)+
∑
j∈Sm

Emj (τ,ωk)+
∑
l∈Ss

Esl (τ,ωk)

≥ 0, τ ∈ Tt, k ∈ K, (17g)
Constraints (9b) – (9e), and (15).

Constraints (17b) – (17d) ensure that q0(τ,ωk), q1(τ,ωk),
and q2(τ,ωk) are selected within their ranges. Because of
constraint (17e), q1(τ,ωk) can have a non-zero value only
if q0(τ,ωk) has reached its maximum. Similarly, because of
constraint (17f), q2(τ,ωk) can be non-zero only if q1(τ,ωk)
has reached its maximum. Constraint (17g) ensures that, under
high feed-in tariff, the households export energy from their PV
units rather than their ESSs. Note that both Ontario Hydro and
Georgia Power [8], [43] restrict that only the energy export
from certain types of renewable resources are eligible for high



feed-in tariff.2 Otherwise, some households may misuse the
high feed-in tariff by storing energy from a utility company
and sell the energy later. The problem defined in (17) is still
difficult to solve because constraints (17e) and (17f) are neither
linear nor convex.

To tackle this problem, we introduce new auxiliary bi-
nary variables b1(τ,ωk) and b2(τ,ωk) to indicate whether
q1(τ,ωk) and q2(τ,ωk) are strictly positive or not, respec-
tively. For example, we have b1(τ,ωk) = 1 if q1(τ,ωk) > 0,
and b1(τ,ωk) = 0 otherwise. Next, we transform problem
(17) as

minimize
e(τ,ωk), q0(τ,ωk),
q1(τ,ωk), q2(τ,ωk),
b1(τ,ωk), b2(τ,ωk),
τ ∈ Tt, k ∈ K

∑
k∈K

P(ωk)
∑
τ∈Tt

(
pe(τ)(|H| − q0(τ,ωk))

−ps(τ)q1(τ,ωk)

−
(
ps(τ)− η

∑
n∈Bv(τ)

∂|Vn(τ)|
∂Exb (τ)

)
q2(τ,ωk)

)
(18a)

subject to b1(τ,ωk)≥ q1(τ,ωk)

h
, τ ∈ Tt, k ∈ K, (18b)

b2(τ,ωk)≥ q2(τ,ωk)

G
, τ ∈ Tt, k ∈ K, (18c)

b1(τ,ωk)≤ q0(τ,ωk)

|H|
, τ ∈ Tt, k ∈ K, (18d)

b2(τ,ωk)≤ q1(τ,ωk)

h
, τ ∈ Tt, k ∈ K, (18e)

b1(τ,ωk), b2(τ,ωk) ∈ {0, 1}, τ ∈ Tt, k ∈ K,
(18f)

Constraints (9b) – (9e), (15), (17b) – (17d),
and (17g),

where G is a positive constant and larger than the maxi-
mum of q2(τ,ωk). Constraints (18b), (18c), and (18f) yield
b1(τ,ωk) = 1 and b2(τ,ωk) = 1 if q1(τ,ωk) and q2(τ,ωk)
are strictly positive, respectively. Constraints (18b) and (18d)
replace nonlinear constraint (17e) in problem (17). They
guarantee that q1(τ,ωk) is strictly positive only if q0(τ,ωk)
is at its maximum. Note that if q0(τ,ωk) < |H|, we have
b1(τ,ωk) = 0 according to constraints (18d) and (18f). Then,
we can infer q1(τ,ωk) = 0 according to (18b). Similarly,
constraints (18c) and (18e) replace nonlinear constraint (17f).
They ensure that q2(τ,ωk) is strictly positive only if q1(τ,ωk)
is at its maximum. Problem (18) is a mixed-integer program
(MIP) and can be solved with an off-the-shelf optimization
software such as MOSEK [44] or CPLEX [45]. We will
discuss its computational complexity in Section IV.

We present the proposed energy consumption scheduling
algorithm in Algorithm 1. The algorithm is executed at the
beginning of each hour t by the ECS. The ECS first initializes
the parameters and retrieves the pricing information and power
flow analysis information from the utility company and the
DNO, respectively (Lines 1-3). Then, the ECS constructs

2Under the current net metering programs of Ontario Hydro and Georgia
Power, the discharged energy from an ESS can be used to support the load
but cannot be compensated if used to export energy. Some utility companies
(e.g., Georgia Power) require the households to install an additional meter for
their PV units, such that the utility can determine whether the energy export
comes from the PV units or not.

Algorithm 1 Energy consumption scheduling algorithm exe-
cuted at the beginning of each time slot t by the ECS

1: Initialize Sd, Ss, Eri (t), T di , i ∈ Sd, Tt, and K.
2: Retrieve pe(τ), ps(τ), τ ∈ Tt from the utility company

through the communication network.

3: Retrieve η, h, |Vn(τ)|, and
∑

n∈Bv(τ)

∂|Vn(τ)|
∂Exb (τ)

from the DNO.

4: Construct scenarios ωk, k ∈ K, according to the ex-
pected power generation from the PV units under different
weather conditions (e.g., sunny, cloudy, rainy).

5: if ps(τ) ≤ pe(τ), τ ∈ Tt then
6: Solve problem (11) to obtain the scheduling results.
7: else
8: Solve problem (18) to obtain the scheduling results.
9: end if

10: Control the operation of the deferrable load and ESSs
according to the scheduling results.

11: Update Eri (t + 1), sl(t + 1) according to (5) and (6),
respectively.

scenarios ωk, k ∈ K, according to historical data records of
PV power generation (Line 4). Subsequently, problem (11)
is solved when the objective function is a convex piecewise
linear function, otherwise problem (18) is solved (Lines 5-9).
The results are used to control the operation of the deferrable
load and ESSs (Line 10). Finally, the ECS updates Eri (t+ 1)
and sl(t + 1) to prepare for the scheduling for the next hour
(Line 11).

IV. PERFORMANCE EVALUATION

In this section, we present simulation results and assess the
performance of the proposed energy consumption scheduling
algorithm. We compare our proposed algorithm with the
algorithm in [19], which we refer to as the HDA (HVAC load
Direct Activation) algorithm. Both the HDA algorithm and our
proposed algorithm consider residential load management in
the presence of the voltage rise problem. While our proposed
algorithm schedules household loads based on a cost function,
the HDA algorithm is based on a real-time voltage signal.
The HDA algorithm activates the idle HVAC load (e.g., water
heater) when a voltage rise is detected. We also compare our
proposed algorithm with a benchmark algorithm, where the
ECS is not deployed and the deferrable load is not controlled.

We consider the 33 bus radial distribution test system
[25]. We assume there are 10-40 households on each bus
and each household has installed PV units and ESSs. The
households have deferrable loads as shown in Table I. The
daily consumption of the must-run load for each household
is randomly selected from the interval [6, 18] kWh and the
hourly consumption profile is generated according to [46]. The
hourly profile of PV power generation is obtained from [47].
The daily energy generation from PV units for each household
is randomly selected from the interval [8, 24] kWh. We denote



TABLE I
LIST OF DEFERRABLE LOADS

Load Energy Usage (kWh) Task Deadline
Dish washer [0, 4] [6 pm, 8 pm]
Water heater [0, 10] [7 pm, 12 am]
Clothes dryer [0, 3] [10 pm, 12 am]

the percentage of deferrable load by β. We have

β =

∑
τ∈T

∑
i∈Sd Edi (τ)∑

τ∈T

(∑
i∈Sd Edi (τ) +

∑
j∈Sm Emj (τ)

) × 100%.

We consider the case where the household is equipped with a
small-scale local battery system. The capacity of the battery
is 4 kWh [22]. The maximum charged and discharged energy
in one hour is 1 kWh and −1 kWh, respectively.

We use two pricing schemes in order to analyze the two
cases presented in Sections III-C and III-D. We denote the
first pricing scheme by Price1, where we have ps(τ) = pe(τ).
Price1 is similar to the TOU net metering program of Southern
California Edison [48]. The second pricing scheme is denoted
by Price2, where the energy selling price is obtained from [8].
Price2 represents the case when the utility company sets the
feed-in tariff higher than the price of energy consumption, as
Ontario Hydro does.

Our simulations cover a period of 30 days. The number of
sunny, cloudy, and rainy days is 23, 4, and 3, respectively.
Note that different PV units may experience different weather
conditions, especially when the distribution network covers a
large geographical area. Moreover, because of the elevation
angle of the sun, even on sunny days, some PV units may not
be able to produce energy at their full capacity. Hence, for the
sunny days, we assume 85% of the PV units generate energy
with their full capacity and the remaining 15% of the PV units
produce power at 60% of the capacity in each time slot.

We first perform the power flow analysis with the Newton-
Raphson method and obtain the partial derivatives of the
voltage magnitudes with respect to household energy export
[14], [26], [27]. We assume η = 2×10−4 in (3) for simulation
purpose. The value of η is selected such that the external cost
is comparable to the monetary cost. We consider an arbitrary
household on bus b=18 in the 33 bus radial distribution test
system (cf. Fig. 2). The line impedances and distances between
buses are obtained from [25].

A. Computational Complexity

We investigate the computational complexity of the pro-
posed algorithm in Table II. We use the optimization software
MOSEK to solve LP problem (11) and MIP problem (18).
The run time is evaluated with a desktop computer which has
a quad-core processor and 16 gigabyte memory. For an MIP
problem, MOSEK uses the branch-and-cut method and is able
to find an ε-optimal solution within a reasonable time. Here, ε
denotes the optimality gap (i.e., the gap between the obtained
objective value and the optimal objective value does not exceed
a small value ε). The run time was measured for ε = 0.01.

As shown in Table II, an ε-optimal solution can be obtained
with MOSEK within a short period of time.

TABLE II
COMPUTATIONAL COMPLEXITY TABLE FOR THE PROPOSED ALGORITHM

Pricing scheme Price1 Price2
Cost function convex non-convex
Formulation problem (11) problem (18)
Formulation type LP MIP
Continuous variables 3456 4032
Binary variables 0 576
Constraints 3870 4718
Run time (seconds) 0.189 7.654

We note that, in practice, a smart meter typically has much
less computational resources compared to a desktop computer.
For example, the Atmel smart meter [49] uses an ARM Cortex
CPU with a bus frequency of 120 MHz and the size of
the memory is 2 MB. Hence, for current smart meters, it is
difficult to implement the load scheduling algorithms which
require to solve complicated optimization problems. On the
other hand, we expect that future smart meters will have more
computational resources, considering that the prices of CPU
and memory are constantly dropping. Moreover, new computa-
tional infrastructure (e.g., cloud computing) can be leveraged
to tackle this problem. For an ECS, its task can be divided
into three steps. First, the ECS needs to retrieve the values
of required energy and task deadline from each appliance.
These values are used as inputs of the optimization problem for
load scheduling. Second, the optimization problem is solved
to determine the operating schedule of different appliances.
Third, the ECS uses the results to control the appliances. A
smart meter seems to be an ideal candidate to perform the
first and the third steps. However, it may not be necessary for
the smart meter to perform the second step. Instead, the smart
meter can offload the computational tasks to one or multiple
servers in a cloud platform (e.g., Microsoft Azure [50]), which
has abundant computational resources. After the servers have
solved the optimization problem, the results can be sent to the
ECS via a communication infrastructure.

B. Performance Gains for Voltage Rise Mitigation

We evaluate the performance of our proposed algorithm and
the HDA algorithm [19] for tackling the voltage rise problem.
We use the Newton-Raphson method to calculate the bus
voltage magnitude for each time slot after load shifting. Fig. 5
shows the voltage magnitude profile of bus 18 in Fig. 2. Bus
18 is selected as it has a longer distance from the substation
compared to other buses and experiences a larger voltage
variation (voltage drop and voltage rise) when the power flow
changes. As shown in Fig. 5, our proposed algorithm avoids
the voltage rise problem for households during the noon period
(10:00 - 14:00). The proposed algorithm outperforms the HDA
algorithm for two reasons. First, we jointly considered the
residential load and ESSs in our model. Second, for the
HDA algorithm, the tasks of some deferrable loads (e.g., dish
washers, clothes dryers) may have already been finished, when
voltage rise happens. These loads may not be activated in
this case. Note we consider Price2 in Fig. 5 but the proposed
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Fig. 5. Comparison of the household voltage magnitude profile of the
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Fig. 6. Comparison of the monthly electricity bill for different amount of
daily rooftop PV power generation.

algorithm achieves a similar performance in terms of voltage
rise mitigation for Price1.

C. Benefits Regarding Electricity Bill and PAR

Fig. 6 shows the monthly electricity bill for different amount
of daily rooftop PV power generation. When η = 2 × 10−4,
the proposed algorithm reduces the user payment from $11.6
to $7.5 when the daily generation is 16 kWh under Price1.
The user payment decreases from $1.3 to −$3.2 under Price2.
For the proposed algorithm, we consider two cases, namely
η = 2×10−4 and η = 0. Note that the value of η can be tuned
in the proposed algorithm to adjust the weight on reducing
the voltage rise magnitude and reducing the electricity bill.
When η = 0, the ECS neglects the potential voltage rise
problem and only aims to reduce the electricity bill. As shown
in Fig. 6, the bill is reduced when η = 0, compared to the
case when η = 2 × 10−4. In particular, the bill is decreased
from $7.5 to $6.1 when η is decreased from 2 × 10−4 to 0
under Price1. Under Price2, the bill is decreased from −$3.2
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Fig. 7. Comparison of the aggregate load peak-to-average ratio (PAR) of the
proposed algorithm and the HDA algorithm from [19].

to −$4.9. The saving of load shifting depends on the pricing
scheme used by the utility company. For example, the Southern
California Edison has recently introduced a residential TOU
pricing scheme where the price during peak hours is 4.18
times higher than the price during the night hours [51]. The
load shifting can achieve a higher saving on electricity bill
in this case. Moreover, if ECSs are widely installed, the total
saving can be significant, considering the large numbers of
households. In Fig. 6, the electricity bill is the highest when
the ECS is not deployed because the loads are not shifted
during the expensive peak hours. The HDA algorithm reduces
the bill as some of the HVAC appliances finish their tasks
during high solar radiation hours and consume less during
peak hours. Our proposed algorithm further reduces the bill
as more loads are shifted from peak hours.

Fig. 7 shows the PAR of the aggregate load versus the
percentage of deferrable load β. The proposed algorithm
reduces the PAR from 1.81 to 1.49 when β = 40%. As β
increases from 0% to 40%, the PAR decreases because more
deferrable loads can be shifted from peak hours to off-peak
hours.

D. The Impact of Forecast Error

Forecast error refers to the difference between the forecasted
value and the actual value of the PV energy generation or
the load. Forecast errors persist as both solar radiation and
load are intrinsically stochastic. As forecasted values are used
in the proposed algorithm, the forecast errors may degrade
its performance. We use the mean absolute percentage error
(MAPE) to measure the forecast error, which is defined
as 1

2T

∑
t∈T

( |Êg(t)−Eg(t)|
Eg(t) +

|
∑

j∈Sm Êm
j (t)−

∑
j∈Sm Em

j (t)|∑
j∈Sm Em

j (t)

)
,

where Êg(t) and
∑
j∈Sm Êmj (t) are the forecasted values

of the energy generation of the PV unit and the energy
consumption of must-run loads in time slot t ∈ T , respectively.
We adopt different scenarios to model the uncertainty in
energy generation. Therefore, the forecasted energy generation
is calculated as Êg(t) =

∑
k∈K P(ωk)Êg(t,ωk), where

Êg(t,ωk) is the forecasted energy generation under scenario
ωk in time slot t. In Figs. 8 and 9, we allocate the same



0% 10% 20% 30% 40%
0

0.5

1

1.5

2

2.5

Forecast Error (MAPE)

V
o

lt
a

g
e

 R
is

e
 (

p
u

)

 

 

Without ECS Deployment

HDA Algorithm [19]

Proposed Algorithm

Fig. 8. The voltage rise versus the forecast error. The y-axis is the summation
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Fig. 9. The saving on the monthly electricity bill versus the forecast error.
The y-axis is the percentage of the saving. The baseline of the percentage is
the saving when the energy generation and loads are perfectly known. The
saving decreases as the forecast error increases.

MAPE for the energy generation and must-run load. This is
because the gap between the energy generation and must-run
load affects the load shifting. We are particularly interested
in the performance of the proposed algorithm under different
forecast errors for this gap. Furthermore, we consider the
summation of the voltage rise magnitude at different buses
for different time slots, i.e.,

∑
t∈T

∑
n∈B(Vn(t) − V̄ )+, as a

metric to evaluate the severity of the voltage rise problem.
We have V̄ = 1.05 pu as we consider the ANSI C84.1
standard [15] which is used in North America. Fig. 8 shows
the voltage rise versus the forecast error. As illustrated in Fig.
8, the performance of the proposed algorithm in mitigating
the voltage rise problem degrades when the forecast error
is significant. However, our proposed algorithm is able to
reduce the magnitude of voltage rise even in the presence
of forecast error, since the ECS tends to shift the load to
high solar radiation hours. Note that the voltage magnitude
is affected by the load profile of multiple households while
each household may overestimate or underestimate its energy
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Fig. 10. The voltage rise versus the daily power generation of the rooftop
PV unit. The y-axis is the summation of the voltage rise over time slots and
buses, which can be written as

∑
t∈T

∑
n∈B(Vn(t) − V̄ )+. We choose

η = 2× 10−4.

generation and consumption. The forecast errors of different
households sometimes have opposite impacts on the voltage
magnitude.

The forecast error may also degrade the ability of the
proposed algorithm to reduce the monthly electricity bill of the
users. We use the saving on the electricity bill as a metric of
performance. The saving is defined as the difference between
the monthly bill of the user for the proposed algorithm and
the bill in the case when the ECS is not deployed. To have
a baseline to compare with, we consider the case in which
the energy generation and loads are perfectly known. For the
case with complete information of generation and demand, we
can achieve the maximum energy saving. In the following, we
calculate the saving under different forecast errors. The saving
as a function of the forecast error is shown in Fig. 9. Results
show that the saving decreases as the forecast error increases.
However, the saving is still considerable in the presence of
forecast error. This is because the ECS tends to shift the load
from peak hours when the energy consumption price is high
to off-peak hours.

E. The Impact of PV Power Generation and Parameter η

The power generation of the PV units is important to the
voltage rise problem. In this section, we study the performance
of the proposed algorithm for different daily power generations
of the rooftop PV units and different values of parameter η.
Fig. 10 depicts the voltage rise magnitude versus the daily
power generation of rooftop PV units under the proposed
algorithm. As shown in the figure, the voltage rise magni-
tude increases as the power generation of rooftop PV units
increases. Fig. 11 shows the magnitude of the voltage rise
versus parameter η. When parameter η is small, the ECS does
not shift load to mitigate the voltage rise. As parameter η
increases, the voltage rise decreases since the ECS tends to
put more weight on the voltage rise mitigation rather than
reducing the electricity bill. The daily energy generation of
PV units is assumed to be 16 kWh in Fig. 11.
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Fig. 11. The impact of parameter η. The y-axis is the summation of the
voltage rise

∑
t∈T

∑
n∈B(Vn(t) − V̄ )+. Note that η is a parameter of

the proposed algorithm. The performance of the cases when the ECS is not
installed or the HDA algorithm is used are not affected by η.

V. CONCLUSION

In this paper, we proposed a residential energy consumption
scheduling algorithm for areas with high penetration of rooftop
PV units. The proposed algorithm aimed to jointly shave
the peak load and mitigate the voltage rise problem during
high solar radiation hours. We modeled the adverse effect of
excessive energy export on causing abnormally high voltage
magnitude as an external cost based on the power flow
analysis. A stochastic program was formulated to minimize
the household electricity bill and the external cost under the
uncertainty in PV power generation. The objective function
was convex piecewise linear when the feed-in tariff did not
exceed the energy consumption price. Otherwise, the objective
function was non-convex piecewise linear and we transformed
the problem into an MIP. Simulation results confirmed that
the proposed algorithm reduced the electricity bill and the
PAR of the aggregate load. The algorithm is also effective for
mitigating the voltage rise problem caused by high penetration
of rooftop PV units. An interesting topic for the future work
is the joint consideration of residential load scheduling and
real-time control of the ESSs and PV inverters to make
the algorithm more resilient to inaccurate forecast of energy
generation and load.
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