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Abstract 

Electricity demand response refers to consumer actions that change the utility load 

profile in a way that reduces costs or improves grid security. The focus of demand 

response has mainly been on the commercial and big industrial sectors because of the 

large demand reduction that they can offer to the utility grid operators. Utilities are 

showing increasing interest in residential demand response (RDR). RDR can be 

treated as an energy resource which can be assessed and commercially developed, 

however, there are still some issues that remain to be addressed for RDR to be 

successful. These include price unresponsiveness of some residential consumers, 

equity issues and high cost of the metering infrastructure. The aim of this paper is to 

investigate and present some of the challenges in achieving effective voluntary 

demand reduction based on a review of residential demand response literature as well 

as the general residential energy use behaviour literature. The authors propose the 

use of a hybrid engineering approach using social psychology and economic 
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behaviour models to overcome these challenges and realize the benefits of supply 

security and cost management. 

Key Words: Residential peak demand, demand response behaviour, energy use 

behaviour, Peak-time pricing, Consumer behaviour 

1. Introduction  

Peak demand, the highest demand that has occurred on a utility network over a 

specified period of time, has become a major global issue. Critical peak demand 

typically occurs when there is co-incident high usage among all the end use sectors; 

residential, industrial and commercial. In a particular network, this may occur for 

only a few hours in a year [1]. For example, the load duration curve of South 

Australian power networks for 2011 shows that demand exceeded 2,500 MW for 

approximately 0.7% of the time [2]. Critical peak demand poses a high risk of power 

system failure. The generation and distribution investments to maintain sufficient 

reserve margin have high marginal cost [3]. Peak load is usually supplied with fossil 

fuels and pumped storage hydropower plants, resulting in high emission factors and 

environmental impacts.  

Demand response is an alternative to additional infrastructure to maintain the safe 

margin between generation and/or distribution capacity and demand. The broadest 

definition of demand response is the one given by the United State Department of 

Energy as: “Changes in electric usage by end-use customers from their normal 

consumption patterns in response to changes in the price of electricity over time, or 

to incentive payments designed to induce lower electricity use at times of high 

wholesale market prices or when system reliability is jeopardized” [4]. Demand 

response programs are used to reduce demand peaks and fill load valleys, thus 
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levelling out the load pattern to better match base load, improving the system load 

factor (i.e. the average load over peak load). Demand response can ultimately reduce 

the stresses on electricity networks. 

Demand response is a particular type of traditional demand-side management 

(DSM) program. DSM programs enable utilities to manage electricity supply 

reliability and costs by influencing consumer demand patterns to optimally deploy 

generation assets [5]. DSM encompasses a broad set of actions on the part of 

consumers and utilities. DSM programs have promoted energy efficient appliances, 

conservation, co-generation and automation of industrial processes and space 

conditioning.  DSM programs mainly rely on the electricity price signals and 

education campaigns [5].  

The benefits of demand response include cost reduction, improved environmental 

sustainability (if it results in reduced fossil fuel use), increased supply reliability and 

market efficiency, customer service improvement and market power mitigation [6].  

Demand response is increasingly recognized as essential to a well-functioning 

electricity market and it forms part of the “smart grid” concept [7].  Developments in 

information and communication technologies (ICT) could make a highly responsive 

system feasible.  

Past experience of demand response has mainly been in the industrial and 

commercial sectors where significant demand reductions have been reported for 

some programs [8]. There has been a growing interest in residential demand response 

particularly due to the significant contribution of the residential sector to the system 

peak demand: more than 45% in the UK [9]; above 50% in New Zealand [10] and 

more than 50% in South Australia [11]. Positive results have been reported for 

residential DR programs in terms of reducing peak load[12, 13]. In these programs, 
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large residential loads like air conditioners or electric water heaters are controlled by 

the utilities using ripple controls.  

Price response is a category of demand response that has garnered attention in recent 

times. While positive results have been reported for some price response programs, 

with the majority of them being on pilot bases [14], issues still remain. A significant 

proportion of residential customers are non-responsive to price [15], and higher 

prices discriminate against lower income households [16]. The cost of supporting 

infrastructure (smart meters, in-home-displays, etc) would be staggering[14]. The 

lack of quantitative understanding of consumer behaviour and end-use activity 

adaptive capacity is a significant barrier to design and deployment of effective DR 

programs [17].  For example, most smart appliances have automatic energy saving 

modes that can be set up by the customers so that they run only during off-peak 

hours [18], but it is still not clear how customers will embrace these ‘smart’ machine. 

For example, a study that monitored the operating modes of 35,471 installed 

programmable thermostats in households within the jurisdiction of four utilities in 

the USA (LIPA, ConEd, SCE, SDG&E) found only 47% in program mode in which 

the thermostat uses the schedule previously input by the occupant to control 

temperature set points. The rest were in Hold mode, which effectively turns the 

thermostat into a manual thermostat [19].  

This paper reviews the potential, as well as economic and social issues, and 

concerns raised by demand response practitioners and researchers. The first part of 

the paper reviews social and behavioural factors in household end-use demand 

response. This is followed by a review of models that are employed for measuring 

consumer demand response as well as reviews of major demand response case 

studies, highlighting their success in terms of behaviour change and the demand 
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reduction achieved. Key issues and concerns identified in the literature are also 

highlighted. The authors provide suggestions on how effective demand response 

programs could be achieved in the residential sector. 

2. Variation in Residential Energy Use – the Significance of human Behaviour  

Households vary significantly in the amount of energy they use [20]. These 

variations could be attributed to differences in engineering and economic factors, 

energy type and household characteristics (family size, age of household members, 

race/ethnicity, etc.). However, when these factors are controlled or set, large 

variations in the amount of energy use in individual houses still remain. This was 

first revealed by a study at the Princeton Centre for Energy and Environmental 

Research (the Twin River Project, New Jersey) [20].  In that study, Socolow and his 

team showed that houses of similar sizes, occupied by demographically similar 

families, with a similar set of appliances and under the same geographical condition, 

varied in energy consumption by as much as 200%. When some houses were 

monitored for energy consumption after they have been retrofitted to the same 

standard, large variations in consumption still remained [20]. Finally, in the houses 

where the occupants had moved, the energy consumption of the new occupants could 

not be predicted from  the  previous  families'  levels  of energy use [21].  

Similarly, a recent study that measured the energy use in ten identical all-electric 

homes, with the same set of appliances and equipment, found the energy use of the 

lowest to the highest consumers varied by as much as 260% [22]. A review of this 

type of research from the 1970s to the early 1990s conducted by Lutzenhiser, [23] 

concluded that “...the residential sector consumption seems to be characterized by 

variability and change, with human behaviour playing a central role in both the short 
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term and long term initiation, maintenance and alteration of energy flow”. These 

results suggest that intervention strategies designed to promote sustainable energy 

consumption behaviours could result in significant energy savings. 

Literature on human energy use behaviour can broadly be divided between 

economics, where demand is calculated using income and price elasticity, and social-

psychological studies that collect information about attitudinal and behavioural 

attributes (habits, emotions, social norms, moral behaviours and cognitive 

limitations) that affect personal decisions to manage energy consumption more 

effectively [24]. Section 2.1 and 2.2 review these two main disciplinary perspectives 

on residential energy consumption. 

2.1 Economic Model of Behaviour 

As a social science discipline, a major part of economics is concerned with the 

study of human behaviour. In economics, price and income are important 

determinants of energy consumption. From the income and price theories of demand, 

several useful predictions can be made about consumer behaviour. An Engel curve 

[25], for example, describes how the quantity demanded of a good or service changes 

as the consumer’s income level changes. The ratio of percentage change in demand 

to the percentage change in a consumer’s income is referred to as Income Elasticity 

of Demand. Consumer behaviour has also been studied under price changes. A 

change in consumer demand that results from a unit change in price is commonly 

referred to as price elasticity of demand. The model of influencing consumer demand 

with price is based on the microeconomic theory of utility maximization and 

consumer rationality [26]. This theory is based on the notion that consumers weigh 

the expected costs and benefits of different actions and choose those actions which 
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are most beneficial or least costly to them [27]. Demand-side management programs 

that promote conservation through energy pricing, development of new technologies 

and subsidies  are based on this theory [5]. A very important part of DSM process 

involves consistent evaluation of demand-side to supply-side alternative to assess 

their cost-effectiveness. 

The elasticity of electricity demand with respect to price change has been 

calculated in many residential sector electricity demand studies [14, 15, 28, 29]. One 

measurement of elasticity is the customer change in demand in the same time period 

that the price change occurs, known as own price elasticity (commonly referred to as 

price elasticity). It is mathematically written as: 
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∆

=
%

%
       Equation 2.1 

Where EP is the own price elasticity, %ΔQ represents demand change resulting 

from %ΔP price change. The other measurement of load shifting behaviour is known 

as the elasticity of substitution. It is defined as the negative of the percentage change 

in the ratio of peak to off-peak demand, divided by the percentage change in the ratio 

of peak to off-peak price. Mathematically, it is written as:  
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Where, EPsubs, is price elasticity of substitution, calculated from the percent 

change in peak to off-peak price ratio, %Δ (PP/PO), and the peak to off-peak demand 

ratio, %Δ (QP/QO). When the necessary data is available, elasticity of substitution 

can be compared with own price elasticity [30]. In other words, load shifting studies 

can be compared to load reduction studies when the necessary data (appliance 
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holdings, customer characteristics, and climate) are properly accounted for. 

Examples of these measurements are provided in section sections 3.1 and 3.2. 

2.2 Socio-psychological Model of behaviour   

Experimental work conducted by psychologists shows that individuals do not make 

consistently rational decisions, as suggested by the economists [31]. Time 

inconsistency, reference dependence and bounded rationality are some of the 

examples cited in the literature as far as energy use is concerned [32]. In each of 

these cases, individual choices violate one or more of the axioms of preference on 

which utility theory is based. Stern for example argues that, not only is the 

information regarding residential energy use held by consumers incomplete, but 

systematically incorrect and that people tend to overestimate the amount of energy 

they use and what may be saved through application of energy efficiency 

technologies [33]. The economic theory of rational actors does not fully describe 

human behaviour; specifically, it does not adequately capture energy related 

behaviour in the residential sector. Psychologists have therefore been arguing that the 

economic models of "rational behaviour" should include the "cost" of the time, 

attention and effort required for adaptation to changing prices. In business decision-

making these indirect costs are probably small when compared with the direct costs 

that depend on the decisions, but in household decision-making the indirect costs 

might be higher than the possible savings in the direct costs. The concept of bounded 

rationality by Simon (1986), for instance, suggests that individuals employ heuristics 

to make decisions rather than a strictly rigid rule of optimization [34]. They do so 

because of the complexity of the situations, and their inability to process and 

compute the expected utility of every alternative action. 
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There has been a small group of researchers that have demonstrated the 

importance of looking at the residential energy in the social context. They argue that 

though promoting changes in individual behaviour is important, social level analysis 

provides a broader framework for understanding residential energy use. As a result 

models such as cultural model of household energy consumption [35] and Value-

belief-norm theory applied to residential energy use [32] have been developed. The 

importance of looking at residential demand response from social science perspective 

has recently been re-emphasized by Yolande Strengers [36].   

3. Residential Demand Response Pricing Strategies 

Programs that investigate the impact of price on electricity demand usually feature 

time-of-use (TOU) tariffs. TOU tariffs charge different prices for electricity used 

within defined time periods. These prices are fixed for the blocks of time within 

which they apply as illustrated in Fig. 1.a. The price per kWh of electricity used at 

peak hours is higher than electricity used during off-peak hours.   

Due to the static nature of these tariffs (i.e. fixed price at specific time range), 

some studies have investigated the impact of dynamic tariffs, such as critical peak 

pricing (CPP) tariffs and real-time-pricing (RTP) tariffs. CPP tariffs have higher 

charges for electricity used during the periods that are designated as critical by the 

utility. This tariff structure is similar to the TOU rates except that the times and the 

prices are not fixed as illustrated in Fig. 1.b. The dotted lines indicate that prices are 

not fixed and could move in both vertical and horizontal directions depending on the 

system condition. There is a customer friendly approach to dynamic tariffs known as 

peak time rebate (PTR). It is dispatched the same way as CPP however; customers 

remain on their existing tariffs but receive rebate payments if they reduce their 



10 
 

consumption during peak load events. The rebate payment is usually based on the 

reduced consumption from a calculated baseline (based on an event day). Real time 

pricing (RTP) tariffs on the other hand vary continuously based on wholesale price or 

regional demand as shown in Fig. 1.c. 

Demand response programs are reported in various ways, usually as the effect of 

the program in reducing peak demand, which is the goal of most programs. This 

effect is usually expressed as a percentage of the peak load or as kilowatt reduction 

per customer. In addition to the above, dynamic pricing programs often include 

customer price elasticity. The next section presents results of some studies conducted 

in different countries. 

3.1 Time of Use (TOU) Rates  

The U.S. Federal Energy Administration initiated fourteen experiments in the 

1970 and 80s to gain knowledge about how customers would change their electricity 

usage in response to TOU tariffs. Some years after the experiments, Caves and 

Christensen initiated a study to investigate whether consistency could be found 

across the experiments when differences in the experimental characteristics were 

controlled [37]. They reviewed several experiments and selected five with sufficient 

high quality that could be used to pool the data. The selected experiments were from 

Carolina Power and Light, Connecticut Light and Power, Los Angeles Department of 

Water and Power, Southern California Edison, Wisconsin Public Service. Their 

pooled model yielded estimates of elasticity of substitution for any combination of 

appliance ownership, and house type, household size and climate. For summer, they 

found the elasticity of substitution to be 0.14 for a typical customer and 0.07 for 

customers without major appliances (such as air conditioners), while the elasticity for 
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a customer with all the major appliances was found to be 0.21. For winter, the results 

were 0.10 for a typical customer, 0.06 for a customer without major appliance and 

0.17 for customers with all major appliances.  

A more recent large-scale pricing experiment of this nature in the U.S. was the 

California State Wide Pricing Pilot, conducted to test the impact of several pricing 

structures, including TOU price on peak demand [38]. A total of 2,500 customers 

were involved in the experiments that ran from July 2003 to December 2004. This 

experiment found an average demand reduction of 13% for low-demand customers 

(mainly residential customers with demand less than 20 kW). The estimated price 

elasticity of substitution varied from 0.04 to 0.13 for a peak to off-peak price ratio of 

3 to 6 [38].  

In Germany, tariff experiments with TOU prices for residential customers took 

place in the 1970s and ‘80s. Examples of places where the experiments were 

conducted are Freiburg and the German State of Saarland [39]. In Freiburg, the TOU 

tariff was tested for 450 households over a duration of about one year. The tariff had 

three different prices on workdays and only two prices at the weekend. The peak 

time price was about two and half times higher than the off-peak price. In between, 

there was a shoulder peak price of 1.5 times the off-peak price. The study found a 

reduction in peak demand of 3% and reduction in electricity consumption of 8%. The 

state of Saarland experiment which involved a much larger population (1500 

households) found a peak demand reduction of 10%.  

In Switzerland, Filippini examined the impact of TOU pricing on residential 

electricity demand in the mid 1990s. For this purpose, a model of two log-linear 

stochastic equations for peak and off-peak electricity consumption were estimated 

from the aggregate of four year electricity prices and demand data covering 40 cities 
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[28]. The study found Swiss households to be highly responsive to electricity price 

changes. Short-run  price  elasticities  of -0.60  during  the  peak  period  and  -0.79  

during  the off-peak period were estimated in the study. 

King and Chatterjee reviewed price elasticities estimated in 52 experiment in the 

residential and small commercial sector (in the US and international) conducted 

between 1980 and 2003 and found average own-price elasticity of -0.30. Majority of 

the experiments have their elasticity lying between -0.10 and -0.40 with two outliers 

in the range of -0.70 and -0.80. 

 Filippini carried out a similar study in Indian households, but this time using 

disaggregated household level survey data [29]. The study estimated household 

electricity demand elasticity with respect to price (and also income) for each of the 

three seasons in India (winter, monsoon and summer). The study estimated price 

elasticity of –0.42 for winter, -0.51 for summer and -0.29 for the monsoon season.  

Table 1 gives a summary of TOU studies reviewed in this study. These results 

across the three continents (Asia, Europe and America) indicate that residential 

customers do respond to a time dependent electricity tariff, but the extent of their 

response varies in each of the studies. This may be expected due to the differences in 

the study methodology and also the share of energy costs of the total household 

budget in the study area. The elasticities estimated from computational methods are 

much higher than those estimated from measured and survey data. For example, 

there is a large difference between the computed results for the Swiss and Indian 

households byy Filippini compared to the other studies.  Also, if the costs of energy 

are marginal to households, they may be insensitive to price signals[15]. The 

magnitude of demand response with respect to price when expressed as a percentage 
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of peak loads has been found to be higher for low-income households compared to 

high income households [40]  

 

3.2 Dynamic Pricing  

Residential dynamic tariff programs include real-time pricing (RTP) and critical-

peak pricing (CPP). An example of a residential RTP tariff is that of Commonwealth 

Edison of Chicago in the USA. The program uses low cost technology (internet, text 

message and automated phone call) to inform participants about the prices of 

electricity over the day. These prices are based on the actual price of electricity in the 

wholesale market. Customers are told a day in advance of hourly prices via the 

internet [41]. They receive a special notice or “pricing alert” via text messaging and 

automated phone call when prices exceed a certain threshold (0.14 U.S. cents/kWh in 

2012). A price elasticity of -0.049 was determined from the program experiment 

conducted in 2005 [14]. 

Another RTP experiment is the GridWise Olympic Peninsula Project [42] that 

tested the impact of RTP on electricity usage for 112 households in Olympia, 

Washington. Households were equipped with smart technologies (smart 

communication devices and smart appliances) that could be programmed to respond 

to TOU, CPP, and RTPprices that change as frequently as every five minutes. The 

experiment lasted for about a year, from March 2006 to March 2007. It was designed 

to mimic the expected future of the electric power industry where distributed 

generation is expected to be used to meet a significant proportion of the electricity 

demand. One of the objectives of the project was to gain an understanding of how the 

resources perform individual and when interacting near real-time to meet common 

grid management objectives. The distributed systems used in the experiment were 
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five 40-HP water pumps distributed between two municipal water pumping stations 

representing a name plate total of 150 kW, two diesel generators of capacity 175 and 

600 kW. The residential demand response was used together with these distributed 

generation resources to respond to stresses on a virtual distribution feeder. The 

contribution of each resource was monitored online using an interface that shows 

how much of it has been dispatched and how much is available. The average 

contribution of the residential demand response to system peak demand reduction 

was determined to be about 15% [42]. 

The critical peak pricing tariff is an example of a commonly used tariff to reduce 

peak demand in the residential sector. In France, the Electricity de France (EDF) 

introduced critical peak price tariffs for its residential consumers in 1996. Prior to 

this introduction, they conducted an experiment with the so-called tempo tariff. With 

this scheme, the year was divided into 22 red, 43 white and 300 blue days, and each 

day had a peak and an off-peak period. The red day charges were the highest prices 

and had the largest peak/off-peak price ratio, while the blue day charges were the 

lowest prices with the smallest ratio. Customers were informed of the next day’s 

colour at the end of each previous day (usually at 8 p.m.) through a “smart meter” 

(“Le compteur électronique”). The prices corresponding to the colours were fixed 

and known to the customers, but the colour itself was unknown until the evening 

before the pricing came into effect.  

The program participants from the residential sector totalled about 350,000. The 

tempo tariff led to a reduction in electricity consumption of 15% on white days and 

45% on red days, representing an average reduction of 1 kW per customer [43]. An 

unusually high price elasticity  of -0.79 was estimated for the peak demand and -0.18 

for off-peak demand [44]. While the Tempo tariff has been successful, less than 20% 
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of electricity customers in France have chosen this tariff option. It is important to 

note that the Tempo tariff was designed specifically for the situation where EDF is a 

monopolistic generator and retail supplier of electricity.  

Several experiments have been conducted to test the impact of electricity prices 

on demand. They have taken place in many places across the globe. More 

information about these kinds of studies can be found in the references [14, 30, 45, 

46]. The studies vary significantly in method, test sample sizes and results. Table 2 

gives a summary of dynamic pricing studies reviewed. It is worth mentioning that 

price elasticity determined in the Commonwealth Edison of Chicago RTP study is 

very low compared to that of other studies that use TOU and CPP tariffs. Though 

very difficult to make conclusion based on the limited number RTP studies that are 

out there, one can only say that, perhaps consumers can better identify with TOU and 

CPP and their response is better. 

4. Some Issues about Price-based Demand Response. 

4.1 Price Unresponsiveness 

While the results of most studies show that residential customers do respond to  a 

time-varying electricity price, a detailed analysis by Reise and White indicates that a 

significant proportion of households do not respond to price [15]. Using extensive 

data for a representative sample of 1,300 Californian households, the results of their 

model showed a strikingly skewed distribution of household electricity price 

elasticities in the population, with a small fraction of households accounting for most 

of the aggregated -0.39 price elasticity found by the study. Price elasticities determined 

for the households ranged from -2.0 to 0. Where a household is located in the elasticity 

distribution is related to household income and amount of electricity the household 
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consumes. The elasticity decreases as household’s income increases. Elasticity of 

lowest income (annual income less than $US 18,000)   households was almost 50% 

higher than that of the highest income (annual income greater than $US 60,000) 

households).  A significant fraction of households (44%) did not show any price 

responsiveness. Households with major appliances, like space heating and air 

conditioners, responded the most. [15]. Based on these findings, Reise and White 

concluded that there are two main groups of households: those that use electricity for 

space heating or air conditioning and exhibit some electricity price responsiveness 

and those that do not use electricity for either of the purposes stated above and 

exhibit near zero elasticity. Another conclusion that can be drawn from the study is 

that households demand responsiveness to price decreases as household income 

increase 

4.2 Equity Issues 

There have been mixed opinions about the impact of price on low socio-economic 

households. One opinion has it that high prices would disproportionately affect low 

income households who do not have the capacity to take action to avoid paying high 

peak prices [47]. If low income households would be able to reduce their demand, 

they would do so at the expense of their comfort and wellbeing, as well as 

convenience[48]. This could be true because low-income households typically use 

less energy than the average consumer; as a result their ability to conserve energy is 

reduced [49]. Also, when confronted with an increase in energy costs, lower-income 

families tend to make “lifestyle cutbacks” [48]. The evidence of this is the increase in 

“food insecurity” among the elderly households during periods associated with high 

heating and cooling demand when they spend a significant proportion of their 
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income on energy (see the discussions in [47]). Another example is in Queensland, 

Australia, where the number of consumers contacting the Ombudsman over “account 

payment difficulties” almost quadrupled to 1103 in 2008-09 as electricity prices 

increased [50]. Based on the equity concern, three approaches to achieving cost-

effective demand response have been suggested to take care of vulnerable 

households: the use of energy efficiency measures; a voluntary approach to dynamic 

pricing, including time of use pricing and peak time rebate [47].  

 On the other hand, if load profiles of low income households are such that 

demand could be shifted to off-peak periods, then they could benefit from demand 

response. The most recent analysis by Ahmad Faruqui of the Brattle Group, using 

data from an urban utility shows that about 80% of low-income customers would 

actually gain from dynamic pricing. With a modest amount of demand response the 

percentage increases to about 92%. 

4.3 Smart Metering Cost 

Another issue that often comes up in the discussion of demand response and 

Advanced Metering Infrastructure (AMI) or Smarter Meters is whether customer 

response to time-varying pricing would be sufficient to offset the investment and 

maintenance costs of AMI. This is seen as one of the barriers to the rapid up-take of 

demand response in the residential sectors in Europe [51]. Even if it is assumed that 

investment in this smart technology has the potential to lower prices in the long-run, 

most utilities will not choose to or agree to absorb the additional costs in the short-

run. Analysis done by Faruqui and Sergici shows that at least part of the cost would 

have to be borne by the residential customers [14], possibly in the form of monthly 

fixed charges. Higher monthly fixed charges may have a more adverse impact on 



18 
 

lower income customers where the fixed charges represent a higher percentage of the 

total monthly bill [14].  

5.  Conclusions   

From the literature on demand response, the fundamental assumption has been 

that there is no better signal than price and that socially optimum behaviour can be 

brought about with “high” prices. Despite the growing interest in price-response, 

experience with such programs shows mixed results. Dynamic pricing is in the 

category of price response programs that has garnered the greatest attention in recent 

times. While customers have been found to respond to price on an aggregate level, a 

more detailed study shows a surprisingly high fraction of household that do not 

respond to price. This may be due to different reasons. Some ‘rich’ households may 

not care about the price of energy as it is only a tiny fraction of their available 

budget. Some households may lack the competence to respond to the price signal 

(e.g. may not understand the pricing system or do not learn due to missing immediate 

feedback). Some households may either not have the capacity or decision options to 

respond. 

The above results need to be considered in the design of residential demand 

response programs. Researchers in demand response need to recognize that prices 

alone will not necessarily create the conditions needed to achieve effective peak 

demand management that could be reliably deployed to reduce the need to build 

more generation and transmission infrastructure. Social and psychological researches 

have shown that people’s behaviour can be explained by a combination of different 

factors (e.g. norm, beliefs, values etc.). For example, people who place much value 

on the environment will be more likely to respond to environmental information than 
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they would do with price information. The benefits of demand response to consumers 

in all sectors include lower peak price, market discipline, and reliable electrical 

service and possibly lower environmental emissions. Better explanation of all these 

benefits to the consumer is perhaps necessary to achieve effective demand response 

in the residential sector.  

An experimental test conducted by the authors [52] a couple of years ago on 

residential customers using price, environment, and security as response signals 

showed a promising result for security and environment to be used as response 

signals; with the security signal having the same effect on demand as price.  We 

therefore suggest the range of signals for residential demand response leave 

customers with room to act on voluntary bases, based on their capacity to respond. 

We further suggest that demand response engineering should use a hybrid approach 

employing knowledge from social psychology and economic behaviour models.  

 

References 

1. Stoft, S., Power System Economics: Designing Markets for Electricity 

Institute of Electrical and Electronics Engineering (IEEE) Inc. , 2002. 

2. ETSA, ETSA Utilities: Project EPR 0022 - Response to the AEMC Issues 

Paper - 'Power of Choice'. 2011. 

3. Sweeney, J. L., The California Electricity Crisis. Hoover Institution Press, 
Publication 513, Stanford, CA, 2002. 

4. USDOE, Benefits of Demand Response in Electricity Markets and 

Recommendations for achieving them. Report to the United State Congress 

Pursuant to the Section 1252 of the Energy Policy Act of 2005, . United State 
Department of Energy (USDOE). 2006. 

5. Gellings, C. W. and K. E. Parmenter, Demand-Side Management. Handbook 
of Energy Efficiency and Renewable Energy, Edited by Frank Kreith and D. 
Yogi Goswani, 2007. 



20 
 

6. PLMA, Demand Response: Priciples for Regulatory Guidance. Prepared by 
Peak Load Management Alliance, 2002. 

7. EUTP, European Technology Platform, Vision and Strategy for Europe’s 

Electricity Networks of the Future. 2006. 

8. Barbose, G., C. Goldman, and B. Neenan, Real Time Pricing Tarrifs: A 

survey of Utility Program Experience. LBNL-54238. Barkeley, California: 
Lawrence Barkeley National Laboratory, 2004. 

9. Darby, S. J. and E. McKenna, Social Implications of Residential Demand 

Response in Cool Temperate Climates. Energy Policy 2012. 49(2012): p. 
759–769. 

10. Electricity-Commission, New Zealand Efficiency Potential Study Vol.1  

Electricity Commission Wellington, New Zealand 2007. 

11. CRA, Peak Demand on ETSA Utilities System. Prepared by the Charles River 
Associate (Asia Pacific) Property Ltd, 2004. 

12. Ericson, T., Direct Load Control of Residential Water Heaters. Discussion 

Papers No. 479, Statistics Norway, Research Department. 2006. 

13. IEADSM, Case Studies of Network-Driven DSM: Orion Network Demand 

DSM, New Zealand. Web. >http://www.ieadsm.org/CaseStudies.aspx< Last 
accessed: 10 Oct. 2009., 2008. 

14. Faruqui, A. and S. Sergici, Household Response to Dynamic Pricing of 

Electricity - A Survey of the Experimental Evidence   2009. 

15. Reiss, P. C. and M. W. White, Household Electricity Demand, Revisited. 
Stanford University Publication, 2002. 

16. Simons, S. I. and I. H. Rowlands, TOU Rates and Vulnerable Households: 

Electricity Consumption Behavior in a Canadian Case Study Department of 
Environment and Resource Studies  2007. 

17. DRRC, Understanding Customer Behaviour to Improve Demand Response 

Delivery in California PIER Demand Response Research Centre Research 
Opportunity Notice DRRC RON -3. , 2007. 

18. Stamminger, R., Strategies and Recommendations for Smart Appliances. A 
report Prepared as part of the EIE Project „Smart Domestic Appliances in 
Sustainable Energy Systems (Smart-A)”. D8.2 of WP 8 from the Smart-A 
project, 2009. 

http://www.ieadsm.org/CaseStudies.aspx%3c


21 
 

19. Archacki, R., Personal Correspondence Regarding Carrier Thermostat Mode 

Summary, Summer 2003. Cited in Social Dimensions of Demand Response 

Technologies byPeffer, T & Arens, E.  PhD. Research Poster. 2004. 

20. Socolow, R.H., Saving Energy in the Home: Princeton’s Experiments at Twin 

Rivers. Cambridge, MA, USA. Ballinger Publishing Company, 1978. 

21. Sonderegger, R.C., Movers and Stayers: The Resident's Contribution to 

Variation Across Houses in Energy Consumption for Space Heating. Jounal 
of  energy buildings Vol1 Issue 3 P313-324 1978(3). 

22. Parker, D., M. and S. Mazzara, J. , Monitored Energy Use Patterns in Low-

Income Housing in a Hot and Humid Climate. Proceedings of the Tenth 
Symposium on Improving Building Systems in Hot Humid Climates, Ft. 
Worth, TX, p. 316, 1996. 

23. Lutzenhiser, L., Social and Behavioural Aspects of Energy Use. Annual 
review Energy and Environment 1993. 18: p. 247-89. 

24. Parker, P., I. H. Rowlands, and D. Scott, Innovations to Reduce Residential 

Energy Use and Carbon Emissions: An Integrated Approach. Energy Studies 
Working Paper 2002-1, Faculty of environmental studies, University of 
Waterloo, Waterloo, Canada, 2002. 

25. Lewbel, A., ENGEL CURVES Entry for The New Palgrave Dictionary of 

Economics, 2nd edition. Boston College, 2006. 

26. Sanstad, A. H. and R. B. Howarth, Consumer Rationality and Energy 

Efficiency Proceedings of the ACEEE 1994 Summer Study on Energy 
Efficiency in Buildings, 1994. 

27. Jackson, T., Motivating Sustainable Consumption, a Review of Evidence on 

Consumer Behaviour and Behavioural Change. Sustainable Development 
Research Network, 2005. 

28. Filippini, M., Swiss Residential Demand for Electricity by Time-of-Use: an 

Application of the Almost Ideal Demand System. Journal of Energy, 1995. 
16(1): p. 27-39. 

29. Filippini, M. and S. Pachuari, Elasticity of Electricity Demand in Urban 

Indian Households. CEPE Working Paper, Vol. 16. Centre for Energy and 
Economic Planning, Swiss Federal Institute of Technology, 2002. 

30. King, C., Ontario-Power eMeter Communication. 2005  



22 
 

31. Stern, P., et al., The Effectiveness of Incentives for Residential Energy 

Conservation. 1986. 

32. Wilson, C. and Dowlatabadi, Model of Decision Making and Residential 

Energy Use. Annual Review Resources and Environment 2007. 32: p. 169-
203. 

33. Stern, P. C., Blind Spots in Policy Analysis: What Economics doesn't say 

about Energy Use. Journal of Policy Analysis and Management; Contained in 
the Model of Decision Making and Residential Energy Use by Wilson C. and 
Dowlatabadi H. Annual Environmental Resources, 2007, 1986. 

34. Simon, H. A., Rationality in Psychology and Economics Journal of Business 
1986 (59): p. 209-224. 

35. Lutzenhiser, L., A cultural Model of Households Energy Consumption. 
Energy, 1991. 17(1): p. 47 - 60. 

36. Strengers, Y., Peak ElectricityDemandand Social Practice Theories: 

Reframing the Role of Change Agents in the Energy Sector. Energy Policy 
2012. 44(2012): p. 226–234. 

37. Caves, D.W., L.R. Christensen, and M. Ivaldi, Consistency of Residential 

Response in Time of Use Electricity Pricing Experiments. Journal of 
Econometrics, 1984. 26: p. 179-203. 

38. CRA, Residential Hourly Load Response to Critical Peak Pricing in the 

State-wide Pricing Pilot. Presented by CRA International, 5335 College 
Avenue, Oakland, Ca. 94618-2700, 2006. 

39. Schlomann, B., Short- and Long-Term Impact of a Linear and Time-

Dependent Electricity Tariff on the Load Curve of a Utility Presented to the 
ENER Joint Seminar, Berlin, January 13-15, 1993. 

40. Wolak, F. A., An Experimental Comparison of Critical Peak and Hourly 

Pricing: The PowerCentsDC Program. Department of Economics Stanford 
University Stanford, CA 94305-6072, 2009. 

41. ComEd, commonwealth Edison Real Time Pricing Demand Response 

Program Web. http://www.thewattspot.com  Last accessed 20.09.08., 2007. 

42. Hammerstrom, D. J., The Pacific Northwest GrideWise Testbed 

Demontration Project. Part 1. Olympic Peninsula Project, 2007. 

http://www.thewattspot.com/


23 
 

43. IEADSM, Case Studies of Network-Driven DSM:Tempo Electricity Tariff - 

France Web. > http://www.ieadsm.org/CaseStudies.aspx< Last accessed 
10.10.2009., 2008. 

44. Aubin, C. D., E. Fougere, and M. Ivaldi, Real-Time Pricing for Residential 

Customers: Econometric Analysis of an Experiment. Journal Applied 
Econometrics, 1995. 10(4): p. 171-191. 

45. Ericson, T., Improving the Power Market Performance by Automatic Meter 

Reading and Time-Differentiated Pricing. . Statistic Norway., 2006. 

46. King, C. and S. Chatterjee, Predicting California Demand Response. Public 
Utility Fortnightly, 2003. 

47. Alexander, B. R., Dynamic Pricing? Not so Fast! A Residential Customer 

Perpective. The Electricity Journal, 2010. 23(6). 

48. Dillman, D. A., E. A. Rosa, and D.J. J., Lifestyle and Home Energy 

Conservation in the United States: The Poor Accept Lifestyle Cutbacks While 

the Wealthy Invest in Conservation. Journal of Economic Psychology, 1983. 
3: p. 299-315. 

49. Brandon, G. and A. Lewis, Reducing Household Energy Consumption: a 

Qualitative and Quantitative Field Study. Journal of Environmental 
Psychology, 1999. 1999(19): p. 75-85. 

50. SGA, Smart Grid Australia: Maximizing Consumer Benefits. 2011. 

51. Torriti, J., M. Hassan, and M. Leach, Demand Response Experience in 

Europe: Policies, Programmes and Implementation. . Energy, 2010. 35(4): p. 
1575-1583. 

52. Gyamfi, S. and S. Krumdieck, Price, Environment and Security: Exploring 

Multi-Modal Motivation in Voluntary Residential Peak Demand Response. 
Energy Policy, 2011. 39(2011): p. 2993–3004. 

 
 

http://www.ieadsm.org/CaseStudies.aspx%3c


Pr
ice

 ($
/k

W
h)

Pr
ice

 ($
/k

W
h)

Time (hours)

Pr
ice

 ($
/k

W
h)

Time (hours)

Time (hours)

a) Time-of-use

b) Critical-peak-pricing

c) Real-time-pricing

Event I Event II

 

Fig. 1.  Schematic sketches of the types of time varying price structure 

 

 



Table 1. A summary of TOU studies reviewed 

Region 

Elasticity 
type  

Estimated elasticity Comment 
Year of 
Experiment 

Source 

US 
(California, 
Connecticut, 
Wisconsin) 

 
Substitution 

0.14/10 
winter/summer 
typical customer 
0.07/0.06 
Winter/Summer 
customers without 
major appliances 
0.21/0.17 
winter/summer 
major appliances 
customers 

Pooled result from 5 
residential TOU 

1977-1980 
 Cave & 
Christensen[37] 

US 
(California) 

substitution 0.04 – 0.13 13% Peak reduction 
2003 - 
2004 

Charles River 
Associates[38] 

Germany 
(Freiburg) 

 
 
 
 

 

3% Peak reduction 
8% consumption 
reduction 

1970 & 
80s 

Barbara 
Schlomann [39] 

Germany 
(Saarland) 

 

 
Peak reduction 10% 

1970 & 
80s 

Barbara 
Schlomann [39] 

Switzerland 
(40 cities) 

 
Own-price  

-0.60 peak hours 
-0.79 off-peak 
hours 

Modelling results 
using aggregated 
data  

1990 Filippini [28] 

India 

 
 
Own-price 

-0.42 (winter) 
-0.51 (Summer) 
-0.29 (Monsoon) 
 

Modeling results 
using disaggregated 
household level data 

2002 Filippini[29] 

US and 
International  

 
 
Own-price -0.30 

Average of 54 
international studies 

 

King & 

Chatterjee[40] 

 

 

 

 

Table 2. A Summary of dynamic pricing studies demand response program 

Region 

Elasticity 
type Estimated 

elasticity 
Comment 

Year of 
Experiment 

Source 

US 
Chicago 

 
Own-price 

-0.049 
Residential 
RTP 

2005  ComEd [42] 

US 
(Washington) 

 
 

15% 
contribution to 
peak demand 
reduction 

2007 Hammerstrom[43] 

France 

 
 
Own-price 

- 0.79 peak 
-0.18 off-peak 

 
CPP; Average 
of 1kw per 
household peak 
reduction 

1996 Aubin [45] 
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