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Abstract 

Background: Conducting surveys in low- and middle-income countries is often challenging because many areas 

lack a complete sampling frame, have outdated census information, or have limited data available for designing and 

selecting a representative sample. Geosampling is a probability-based, gridded population sampling method that 

addresses some of these issues by using geographic information system (GIS) tools to create logistically manage-

able area units for sampling. GIS grid cells are overlaid to partition a country’s existing administrative boundaries into 

area units that vary in size from 50 m × 50 m to 150 m × 150 m. To avoid sending interviewers to unoccupied areas, 

researchers manually classify grid cells as “residential” or “nonresidential” through visual inspection of aerial images. 

“Nonresidential” units are then excluded from sampling and data collection. This process of manually classifying 

sampling units has drawbacks since it is labor intensive, prone to human error, and creates the need for simplifying 

assumptions during calculation of design-based sampling weights. In this paper, we discuss the development of a 

deep learning classification model to predict whether aerial images are residential or nonresidential, thus reducing 

manual labor and eliminating the need for simplifying assumptions.

Results: On our test sets, the model performs comparable to a human-level baseline in both Nigeria (94.5% accu-

racy) and Guatemala (96.4% accuracy), and outperforms baseline machine learning models trained on crowdsourced 

or remote-sensed geospatial features. Additionally, our findings suggest that this approach can work well in new areas 

with relatively modest amounts of training data.

Conclusions: Gridded population sampling methods like geosampling are becoming increasingly popular in coun-

tries with outdated or inaccurate census data because of their timeliness, flexibility, and cost. Using deep learning 

models directly on satellite images, we provide a novel method for sample frame construction that identifies resi-

dential gridded aerial units. In cases where manual classification of satellite images is used to (1) correct for errors in 

gridded population data sets or (2) classify grids where population estimates are unavailable, this methodology can 

help reduce annotation burden with comparable quality to human analysts.
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Background
Nationally representative survey samples are needed for 

studies in low- and middle-income countries to support 

decision-making in research areas ranging from interna-

tional development to public health. For a probability-

based sample, this requires an updated sampling frame 

with adequate coverage of the target population. For a 

face-to-face survey of households, a country’s national 

census may provide an outdated sampling frame. How-

ever, to obtain a statistically efficient probability-based 

sample of households, an up-to-date roster of house-

holds within the sampled area units is necessary. �is is 

often unavailable in low- and middle-income countries, 

so researchers have traditionally relied on field enu-

meration of the smallest administrative units or random 

walk to sample households [1]. In a field enumeration 

approach, researchers conduct a listing of all households 

within the sampled areas to construct a sampling frame; 

the sample of households is then randomly selected from 

this list. A full listing is time consuming and expensive 

and requires skilled personnel [2], and it is susceptible to 

main-street bias (oversampling of highly populous areas), 

among other errors. In a random-walk approach (also 

called random route sampling), field staff do not enumer-

ate all households within a selected area; instead, they 

are provided a starting point and a set of instructions for 

selecting households while in the field (e.g., sample every 

fourth house along a specified route). �is approach is 

less resource intensive but lacks statistical rigor because 

of underlying assumptions about the selection method 

[3, 4], and may be prone to bias because of the effects of 

interviewer behavior [5–13].

Geosampling for gridded population sampling

Researchers are developing new and innovative methods 

that facilitate probability-based survey samples in devel-

oping countries at a reasonable cost. One such method, 

geosampling, uses a geographic information system (GIS) 

to partition areas of interest into logistically manageable 

grid cells for sampling [14], contributing to the growing 

literature on gridded population sampling [2, 15–22]. 

�e first step of geosampling is typically to use a coun-

try’s administrative geography (e.g., states, districts) from 

the most recent census to design a multistage probabil-

ity-based sample up to the smallest administrative unit 

with reliable information (Fig. 1). Once the smallest avail-

able administrative units are sampled, a grid is overlaid 

on the sampled units to partition them into 1  km2 grid 

cells, called primary grid cells (PGCs). A probability-

based sample of PGCs is then selected with the option of 

integrating population estimate data, derived from GIS 

resources such as LandScan [23] into the sample design.

�e PGCs are further divided into smaller area units 

called secondary grid cells (SGCs) using a similar 

approach, albeit without a population estimate at that 

lower level, and a probability-based sample of SGCs is 

selected. Using SGCs as the smallest area unit ensures 

a manageable area size for the field staff conducting 

data collection, and reduces the degree to which sur-

vey respondents are clustered in a particular geographic 

area. High clustering of sampled units can lead to inflated 

variance estimates, thus reducing accuracy of survey esti-

mates [24]. Interviewers are then instructed to survey all 

households within selected SGCs, reducing the potential 

for interviewer selection bias. Note that SGCs can vary 

in size (50 m × 50 m to 150 m × 150 m grid cells) based 

on population density and urbanicity, rendering smaller 

areas in dense urban environments and larger areas in 

more rural settings. �is flexibility in grid size variation 

is designed to help field staff better manage logistics, as 

large grid areas in population-dense environments make 

it more difficult for interviewers to effectively scan the 

entire targeted area, identify households to include in the 

sample, and attempt to interview all targeted respondents 

within the grid unit during one visit.

Given the logistical challenges, it is undesirable and 

costly to send field staff to uninhabited or sparsely pop-

ulated areas. Prior to sampling PGCs and SGCs, sev-

eral steps are taken to refine the set of grid cells eligible 

for selection. First, PGCs with a LandScan population 

Fig. 1 Overview of an example multistage geosampling design outside of Kampala, Uganda
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estimate lower than 250 people per  km2 are excluded 

from sampling. While gridded population datasets are 

becoming more detailed [25], population predictions 

at smaller area sizes have historically been less accurate 

than at larger geographic units. In particular, case studies 

have reported large absolute differences existing across 

gridded population data sets in more populous regions 

when compared to low density areas [26], and root mean 

squared error (RMSE) between gridded population esti-

mates and high spatial resolution population census data 

increasing as the geographic units are more granular [27]. 

To help mitigate these inaccuracies, a random sample 

of PGCs with an estimated population greater than 250 

people per  km2 is selected for visual residential screen-

ing. Screening utilizes a human coder who determines 

if a PGC is residential by using aerial photography to 

establish the context in which buildings are located. �is 

enables the coder to perceive the likely purpose for the 

structures. �e presentation of residential buildings on 

an aerial photograph is not uniform within or between 

communities and countries. It is necessary to consider 

various geospatial characteristics such as community 

size, building pattern, and proximity to other land uses 

when determining whether a building is residential. �e 

final sample of PGCs is selected among those classified as 

residential.1

For SGCs, it becomes difficult to reproduce the screen-

ing strategy used for PGCs because LandScan popula-

tion estimates are not available for SGCs and because 

the set of SGCs is much larger, increasing the time and 

cost of screening. Prior applications of geosampling 

have relied on sequential sampling from a hypergeo-

metric distribution to implement a manageable form of 

residential screenings for SGCs. A hypergeometric dis-

tribution provides the number of successes in sample 

draws, without replacement, from a finite population 

of size that contains an exact number of successes (i.e., 

achieving the draw with the targeted characteristic—in 

our case, a residential SGC), wherein each draw is either 

a success or a failure. SGCs are sequentially selected at 

random, screened for residences, and only enter the sam-

ple if deemed residential; this process continues until 

the desired SGC sample size has been achieved. Because 

screening ceases before all SGCs within a PGC have been 

screened, this approach does not provide all the neces-

sary information to calculate appropriate probabilities of 

selection for residential SGCs. Consequently, a simplify-

ing assumption that the population is uniformly distrib-

uted across all SGCs within a PGC must be made during 

weighting.

Motivation

Our goal is to create a protocol for how to efficiently and 

accurately classify SGCs as residential versus nonresi-

dential so that nonresidential grids can be excluded from 

sampling and accounted for in probabilities of selection. 

�is study assesses the utility of machine learning for this 

task, as an alternative to manual screening. �e advan-

tages of this approach are a reduced level of effort and 

the ability to create a complete residential screening of all 

SGCs within sampled PGCs. Furthermore, the availabil-

ity of complete screening information for SGCs would 

eliminate the need for simplifying assumptions during 

calculation of SGC sampling weights. Although geosam-

pling and other methods use satellite imagery for final-

stage selection [2, 15–18, 20, 22, 28, 29], this is the first 

instance, to the authors’ knowledge, of using machine 

learning to aid in sample frame construction in GIS-ena-

bled sampling methodologies.

Methods for classifying satellite imagery

�e remote sensing community has a long history of 

detecting geospatial features of interest in satellite 

imagery. Traditional approaches for feature extraction 

use spectral properties from individual pixels to deter-

mine land use or coverage categories [30–32]. With the 

wider availability of high-resolution satellite imagery, 

researchers have expanded to Geographic Object-based 

Image Analysis (GEOBIA) methods [33–35]. �ese 

methods are aimed at identifying and demarcating spe-

cific objects of interest, such as lakes or buildings, instead 

of assigning broad land-cover categories to pixels, such as 

“water” or “urban.”

Increasingly, deep learning models [36] are being 

used to analyze satellite imagery on diverse tasks, such 

as semantic segmentation [37], per-pixel classification 

[38], and poverty mapping [39]. Deep learning has also 

been particularly successful in scene classification tasks 

[40–44], which assign an entire aerial image into one of 

several distinct land-use or land-cover categories. Con-

ceptually, scene classification is equivalent to a binary or 

multiclass object recognition task in the computer vision 

literature, except that input images are aerial landscapes 

instead of portrait or in-profile photographs. As such, 

our problem can be framed as a two-category scene clas-

sification task (predicting whether a satellite image scene 

is residential vs. nonresidential), where the model results 

are used to determine which areas are eligible for the sur-

vey selection process.

In the following sections, we discuss components of 

the study, including the data used to test the approach, 

the machine learning models used for scene classifi-

cation, and the results. We assess the performance of 

our deep convolutional neural network (CNN) models 
1 A residential PGC or SGC is a grid cell with at least one building structure 
detected in the aerial imagery.
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against two benchmarks: (1) a human baseline represent-

ing the raw agreement between two independent coders, 

and (2) a machine learning baseline trained on a set of 

crowdsourced geospatial features from OpenStreetMaps 

(OSM) and remotely sensed features from the Euro-

pean Space Agency (ESA) Land Cover data set. To bet-

ter understand the generalizability and reproducibility of 

our approach, we have tested the models in two different 

countries—Nigeria and Guatemala—and evaluated the 

extent to which model accuracy is affected by changes in 

the training set sample size. Lastly, we conclude with dis-

cussions on the approach and future work.

Methods
Data preparation

�e data used for this study are from two geosampling-

based projects. �e first data set is from a random sub-

sample of SGCs from the states of Lagos and Kaduna 

in Nigeria. All SGCs in the subsample were manually 

screened and then split to create training and test data 

sets. An additional data set, which included SGCs from 

Guatemala City, was used to validate the model’s gen-

eralizability across different countries and geographic 

settings. �e process of generating the SGC images was 

the same for both Nigeria and Guatemala. Table 1 sum-

marizes the different grid areas sizes for the Nigeria and 

Guatemala data sets, respectively.

Aerial and satellite images were retrieved through 

three web map services, providing global access to recent 

Google, Bing, and Esri base maps and imagery. Grid-

based polygon layers for both PGCs and SGCs were 

constructed in ArcGIS, and the source of the imagery 

at the time of the survey was recorded for future repro-

ducibility. Google and Bing image services are com-

mercially available to ArcGIS users for a modest license 

fee, and Esri imagery is natively integrated into the 

GIS software. While these tiled image services provide 

worldwide coverage, they can vary in both age and spa-

tial resolution from 1 to 2  m depending on the specific 

geographic location. As such, the imagery provided by 

each of these services may differ in resolution, color bal-

ance, brightness, and cloud cover from location to loca-

tion, and between vendors. To help determine the best 

imagery for identifying residential areas for a given loca-

tion, a graphical user interface (GUI) was developed to 

help human coders toggle between the different imagery 

services while classifying grids as residential versus non-

residential (see “Gold-standard labels” section for more 

detail on developing gold-standard labels). Although 

using different imagery sources complicates the analysis, 

it exposes the methodology to implementation scenarios 

that research teams may realistically encounter. Model 

performance across imagery sources and grid area sizes 

are presented in the Results.

We selected 71 random PGCs in Nigeria that contained 

residential development (Fig. 2a), as well as an additional 

6 PGCs in Guatemala (Fig. 2b). Because of the relatively 

smaller sample size in Guatemala, diversity in urbanicity 

and geographical characteristics were considered for 

PGC selection instead of a purely random selection to 

ensure better generalizability.

From these PGCs, 5350 SGC images were created for 

Nigeria and 1500 for Guatemala. �e size of the second-

ary grid unit was determined by its level of urbanicity as 

defined from the latest country census. Urban areas had 

smaller grid cells than rural areas to account for popu-

lation density, to avoid high clustering, and so that field 

staff would have a more consistent workload across 

SGCs.

Although this adds complexity to the modeling task, we 

included it in the study to more realistically mirror sur-

vey field work considerations. �e Nigerian images were 

composed of 410 grid cells of 50 m × 50 m, 3896 grid cells 

of 100 m × 100 m, and 1044 grid cells of 150 m × 150 m 

images. �e Guatemalan set was composed of 1200 grid 

cells of 50 m × 50 m and 300 grid cells of 100 m × 100 m 

images. Figure 3a shows an example SGC grid in Nigeria 

and Fig. 3b shows an example SGC grid in Guatemala.

Labelling data

Gold-standard labels

To develop the gold-standard labels of whether a grid is 

considered “residential” or “nonresidential,” SGCs were 

individually evaluated by coders to determine if they 

contained one or more buildings within the image. If the 

image contained one or more buildings, the entire grid 

was considered “residential”; otherwise, it was considered 

“nonresidential.” Since there is a certain amount of sub-

jective decision making required by the coders to deter-

mine if buildings are present, the data were labelled by 

two independent coders, with a senior GIS analyst acting 

as an adjudicator to settle disputed labels and to ensure 

consistency and accuracy in selection. �e instances of 

coder disagreement were the motivation for the human 

benchmark metric (“Human benchmark metric” section) 

and is further examined in the “Discussion” section.

Table 1 Count of  images by  grid area sizes in  the  Nigeria 

and Guatemala data sets

Type Size Nigeria Guatemala

PGC 1 km × 1 km 71 6

SGC 50 m × 50 m 410 1200

SGC 100 m × 100 m 3900 300

SGC 150 m × 150 m 1044 0
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�is process was completed using a GUI tool devel-

oped within ArcGIS for applying a residential or nonresi-

dential label to each of the grid cells. Figure 4a provides 

an example residential SGC image whereas Fig.  4b pre-

sents an example nonresidential image.

Human benchmark metric

To provide a naïve human-level benchmark for how con-

sistently coders agree on labels for this task, we computed 

the raw agreement [45] between our two independent 

coders, prior to adjudication. �e raw agreement for two 

coders can be calculated using the following formula:

where N is the total number of images that are jointly 

labelled by the two coders, nij is the number of cases 

assigned as i by Coder 1 and j by Coder 2 for categories i, 

RawAgreement =

1

N

C∑

i=1

nii

Fig. 2 a Nigeria PGC Image (1 km × 1 km). b Guatemala PGC Image (1 km × 1 km)

Fig. 3 a Nigeria SGC Image (50 m × 50 m). b Guatemala SGC Image (100 m × 100 m)
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j = 1, …, C and C is the total number of categories (in our 

case, residential and nonresidential).

Although other measures of inter-rater reliability have 

been developed to correct for when coder agreement 

occurs by chance [46, 47], there are several benefits to 

using raw agreement for comparison. First, it provides 

the cleanest comparison to classification model predic-

tions, because it is mathematically equivalent to the 

“overall accuracy” evaluation metric commonly used in 

scene classification tasks. �e only distinction between 

the two is that raw agreement compares the difference in 

labels between two humans, whereas classification accu-

racy typically compares the difference between a gold-

standard human label and a model prediction. Second, 

inter-rater reliability measures that account for agree-

ment that is expected to occur through chance, such as 

Cohen’s kappa, can be controversial depending on the 

context. In the social and health sciences, Cohen’s kappa 

has been criticized for (1) its “base rate problem” [48], the 

difficulty in comparing kappa statistics across studies due 

to the statistic’s dependence on the proportions of posi-

tive and negative examples in any given sample, and (2) 

the assumptions the statistic inherently makes about the 

decision-making process of raters, which should instead 

be explicitly modeled for each rater individually [49]. 

In the remote sensing community, the kappa statistic 

has been heavily criticized for its use in assessing land 

change, being scrutinized for reasons such as its assump-

tion of randomness being an irrelevant baseline for many 

spatial classification problems [50] and being redundant, 

since it is highly correlated with overall accuracy [51]. 

For these reasons, raw agreement was used in this study 

over other reliability metrics, although additional evalu-

ation measures were used to assess model performance 

(“Model evaluation” section).

Of the 5350 Nigerian images, coders disagreed on 

labels for 482 grids, resulting in a raw agreement of 

91.0%. Of the 1500 Guatemalan images, coders disagreed 

on 44 grids, resulting in a raw agreement of 97.1%.

Training and test sets

�e Nigeria and Guatemala data were randomly split into 

training sets for building models (85%) and test sets for 

model evaluation (15%), stratified to preserve the class 

ratios of residential and nonresidential images found in 

the overall data. Although not severely unbalanced, non-

residential grids were more common than residential 

grids in both our Nigeria (63/37) and Guatemala (67/33) 

samples. Table  2 provides a breakdown of the training 

and test sets, respectively, by country and class type.

Fig. 4 a Example SGC residential scene (100 m × 100 m). b Example SGC nonresidential scene (100 m × 100 m)

Table 2 Training and  test data set allocation for  Nigeria 

and Guatemala

Nigeria Guatemala

Training set 4550 1275

 Residential 1676 417

 Nonresidential 2874 858

Test set 800 225

 Residential 295 73

 Nonresidential 505 152

Total 5350 1500
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As of writing, most open source machine learning 

libraries do not support modeling.tiff files, so the images 

were converted to.png format. Additionally, the images 

were rescaled from 720p × 720p to 150p × 150p for com-

putational efficiencies, as smaller images allow for faster 

model training and easier handling of large batch sizes. 

When applicable, we performed additional pre-process-

ing steps for the pre-trained models assessed for trans-

fer learning, as specified in the original papers [52, 53]. 

�ese steps are necessary to ensure that the models pro-

duce reliable output by matching the input data format 

used to originally train the models.

Residential scene classi�cation models

To create a model that can accurately discern between 

residential and nonresidential aerial images, we develop 

a series of scene classification models based on machine 

learning methods. Machine learning is a subdiscipline of 

artificial intelligence that focuses on the ability of com-

puters to “learn” how to perform tasks without being 

explicitly programmed how to do so. For example, rather 

than hand-code software routines with specific instruc-

tions on how to identify residential scenes from images, 

a model is “trained” to learn how to distinguish between 

residential and nonresidential scenes from examples of 

labelled data. Exploring modern machine learning meth-

ods for aerial scene classification is attractive due to the 

near human-level performance they have achieved in 

tasks as diverse as object recognition [54–56], speech 

recognition [57, 58], and gaming [59–61]. Additionally, 

after a model is trained, predicting the classes of new 

images can be automated without additional human 

intervention and performed at scale. For the use case of 

screening grids for residential or nonresidential scenes, 

these models can be used as the sole screening tool or 

as an additional quality check to assist a team of human 

annotators.

�e scene classification models presented in this paper 

can be classified into two overarching groups: (1) “deep 

learning” models [36], which learn data representations 

by processing raw data inputs through multiple succes-

sive model layers that detect features (most commonly, 

performed with artificial neural network models) and 

(2) more traditional “shallow learning” models that learn 

decision rules from variables (i.e., features) created by 

modelers with expertise or experience with the phenom-

ena being modeled. In our case, we develop deep learning 

scene classification models directly from labelled satellite 

images without explicitly creating variables that distin-

guish between residential and nonresidential grids. �ese 

models are described in the “Deep learning models” sec-

tion. For comparison, we also develop shallow learning 

scene classification models with analyst-derived features 

from the open global GIS datasets OSM [86] and the 

European Scape Agencies Climate Change Initiative pro-

ject [62]. �ese models are described further in the “Shal-

low learning models”  section. A workflow diagram of 

the two sets of modeling approaches is also included in 

Fig. 5. In total, there are 11 models developed for Nigeria 

and another 11 models for Guatemala, whose predictions 

are compared with each other on the test sets and to the 

human coder raw agreement scores. Testing such a large 

number of models is motivated by the No Free Lunch 

�eorem [63], which states that there are no theoretical 

guarantees that any one standard machine learning algo-

rithm will work best on all tasks, implicitly promoting 

an empirical approach to model selection for supervised 

classification problems.

Deep learning models

Baseline convolutional neural network As a baseline 

deep learning model, we constructed an eight-layered 

convolutional neural network (CNN) consisting of three 

convolutional, three pooling, and two fully connected lay-

ers. A CNN is a type of artificial neural network model that 

contains a convolution filter as at least one of its layers. In 

image processing, a convolution filter (or kernel) is a small 

matrix of values that, when applied to a larger image, can 

help isolate notable image features (edges, corners, etc.). 

Convolution filters use the convolution matrix operation 

to extract features, often convolving the filter across the 

image in a sliding window to capture local details. While 

researchers have developed many specialized filters for 

feature extraction [64, 65], CNN filters are not specified 

a priori to extract any specific features. Instead, elements 

of the CNN filter matrix are included as model param-

eters and derived during the training process, effectively 

creating custom filters salient for the specific modeling 

task. Deep CNNs take this a step further by chaining con-

volution layers together, a process that ideally captures 

increasingly higher-level and more nuanced representa-

tions of the data. �is model uses 3 × 3 convolution filters 

with a stride of 1 to extract data representations.

Other types of layers besides convolutional layers are 

often included in CNNs to perform complementary 

actions. Max pooling [66] was performed in three layers 

with a 2 × 2 filter to reduce the number of parameters and 

help prevent overfitting. Max pooling is a simple dimen-

sion reduction technique in which a portion of a matrix 

is isolated and the max value of the isolated elements is 

returned. �is simplified representation summarizes 

characteristics of the earlier layers, helping later layers 

generalize more broadly rather than learn traits that are 

specific only to a particular image. In addition, rectified 

linear units (ReLU) were used for the activation function 

to speed up training [67]. Activation functions serve the 
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same purpose as link functions for general linear models 

(GLMs) in the statistics literature [68], providing a way of 

transforming a linear predictor into a nonlinear response 

space. ReLUs differ from other popular activation func-

tions like the logistic sigmoid function (commonly used 

in logistic regression) in that ReLUs return zero at any 

input values in the negative domain and return the input 

value itself in the positive domain:

�e first fully connected dense layer also used a ReLU 

activation function and leveraged a dropout method 

[p(dropout) = 0.5] to prevent overfitting [69]. Dropout is 

a regularization technique in which units in your neural 

network are randomly dropped (along with their connec-

tions) during training. �e intuition behind this method 

is that, by thinning the network connections in your fully 

connected layers, you prevent parameters from being too 

interdependent among themselves, resulting in a network 

that will generalize better to new examples. A final dense 

layer with a sigmoid activation function is used to create 

f (x) = x+
= max(0, x)

predicted probabilities of inclusion for either the “resi-

dential” or “nonresidential” classes. �e model was run 

with a batch size of 25 images each and trained over 35 

epochs. Figure  6 presents a simplified network diagram 

of the baseline CNN.

Transfer learning Large labelled data sets or strong 

regularization are often required to effectively train 

deep learning models without overfitting [69]. While 

many state-of-the-art deep learning models have dozens 

of layers [52, 53], this can results in thousands or even 

millions of model parameters to fit. Training an exceed-

ingly deep architecture from scratch with random ini-

tializations was prohibitive for our sample size, so we 

used a transfer learning approach [70–72] to leverage 

stable weights from deep CNN classification models 

trained on much larger data sets. Transfer learning is 

a learning framework in which the objective is to use 

a model trained in one source domain (or task) to help 

build a model in a related target domain (or task) with-

out the need for considerable new labelled data [70]. 

Fig. 5 Workflow diagram of modeling approach
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�is “knowledge transfer” paradigm, in which general 

features learned from one task help inform a similar 

task, has become particularly popular with deep CNNs, 

as pretrained models built on large labelled datasets are 

often available through open source code repositories.

To test a transfer learning approach, we used the Ima-

geNet dataset as our source domain and the labelled 

grid scene images as the target domain. ImageNet is 

a labelled image data set consisting of over 1.2 mil-

lion high-resolution images and 1000 categories [73], 

which were collected from the web and labelled by 

human coders on Amazon’s Mechanical Turk platform. 

ImageNet categories are based off the lexical database 

WordNet, which semantically organizes and groups 

commonly used words into concept hierarchies [74]. As 

such, ImageNet does not include aerial images because 

they are not generally associated with archetypical 

representations of objects (e.g., a standard image of a 

building would be more likely to be portrayed in profile 

or as part of a landscape rather than from an overhead 

view). In addition, aerial images may contain many 

distinct objects in the same image whereas ImageNet 

images do not. Even with this limitation, transfer learn-

ing with ImageNet trained models have produced state-

of-the-art results on images that do not fit this criteria, 

such as medical [75] and satellite imagery [76].

While it seems unintuitive that a model built on non-

aerial images could help develop a model that identifies 

residential gridded aerial units, deep CNNs have been 

shown to benefit from spatial hierarchies of patterns 

[77] in which earlier layers detect small localized pat-

terns (such as edges), while later layers construct more 

complex representations (such as shapes) composed of 

the localized patterns detected in earlier layers. While 

complex representations at later layers can reduce the 

performance of transfer learning to new tasks if they 

are too highly specialized [72], research suggests that 

transferring features even from dissimilar tasks can 

be better than using random parameter initializations 

[72]. In addition, transferability tends to increase as 

the similarity between tasks increases; [72] as such, we 

favor using pretrained model weights in this study that 

were originally trained to solve a task similar to ours 

(Inception V3 [52] and VGG16 [53] used for object 

recognition).

To test the viability of transfer learning, we used pre-

trained models from the well-known Inception V3 [52] 

and VGG16 [53] architectures. Inception and VGG16 

are deep CNN model architectures that won first and 

second place, respectively, at the ImageNet Large-Scale 

Visual Recognition Challenge 2014 (ILSVRC 2014) and 

have been used successfully for transfer learning on 

tasks diverse as cell nuclei classification on histopathol-

ogy images [78], human aquatic activities classification 

on micro-Doppler signatures [79], and fruit detection 

in orchards [80]. Model parameters (i.e., weights) for 

the architectures trained on ImageNet were acquired 

through the Python Keras library implementation [81]. 

To allow the pretrained weights to update for our mod-

eling task, we performed transfer learning in two steps. 

First, we ran our training and test images through the 

pretrained Inception V3 and VGG16 networks on all but 

the top layers, which often consist of a fully connected 

layer to flatten the dimensionality and an evaluative fully 

connected layer with a softmax activation function to 

provide predicted probabilities for class assignment. �e 

top layers of the pretrained models were not included, 

because we are not interested in predicting the original 

ImageNet classes. Second, we used the resulting “bottle-

neck features” [82] as the base for training our own small 

fully connected model with our classes of interest (resi-

dential vs. nonresidential). Our model includes a fully 

connected layer with ReLU activation units, a dropout 

layer with a probability of dropout = 0.5, and a final out-

put layer with a sigmoid activation function to produce 

class probabilities.

As a final experiment, we created an ensemble model 

[83–85] of our transfer learning models by averaging 

each model’s predicted probabilities. �e premise behind 

ensemble learning is that a diverse set of models can 

Fig. 6 Network diagram of baseline CNN
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achieve better predictive performance than any of the 

individual constituent models alone.

Shallow learning models

Although aerial and satellite images provide a direct 

way of detecting remote land features, modeling on 

aerial images is unnecessary if the features of interest 

are already captured in existing data sets. Large, open 

geospatial databases, such as OSM [86], provide crowd-

sourced annotations of roads and buildings for areas 

worldwide. Furthermore, open data sets of land cover 

categories, maintained by ESA used to study the effects 

of climate change [62], provide land use and develop-

ment patterns. As an additional benchmark, we devel-

oped classification models using data derived from OSM 

and ESA to compare the effectiveness of object recogni-

tion models using aerial satellite imagery to classification 

models using features derived from open geospatial data-

bases. To ensure that the methods could be reproduced 

in new countries, we only considered data sources that 

were both open source/freely available and had a global 

scope.

Table  3 provides a list of variables created for the 

OSM + ESA data set. �ese variables were assigned to 

each PGC and SGC by intersecting the grid cell bounda-

ries and the various contributing geospatial layers using 

ArcGIS. Building and road features were extracted from 

OSM while major land-cover variables were assigned to 

the grid cells from the ESA Climate Change Initiative 

project. �e intersection of buildings to grid cell bounda-

ries was performed twice. �e first analysis determined 

if a grid cell contained any building while the second 

intersection only included buildings that were not clas-

sified by OSM as having a non-residential use. Examples 

of non-residential buildings that were excluded from the 

intersection include churches, stores, and banks. �is 

variable within the dataset is referred to as semi-filtered 

as OSM building data is not comprehensively attributed. 

�e classification of grid cells using ESA data assigned 

each SGC with the land cover classification that inter-

sected the largest proportion of the grid cell.

We assessed the OSM + ESM data set on seven differ-

ent classifiers (decision trees, gradient boosting trees, 

AdaBoost, random forest, logistic regression, support 

vector machines, and k-nearest neighbors) using the 

scikit-learn package in Python [87]. �e models were run 

for both Nigeria and Guatemala using the same training 

and test splits as the deep CNN models for comparability.

Model evaluation

To evaluate model performance on the test set, we used 

the following four metrics to assess different aspects of 

the predictions:

1. Overall accuracy—percent of correct predictions.

2. Precision—true positives/(true positives + false posi-

tives). Indicates the number of true positives out of 

all observations that are predicted positive (i.e., of all 

the grids that are predicted residential, the percent-

age that are actually residential).

3. Recall—true positives/(true positives + false nega-

tives). Indicates the number of true positives detected 

(i.e., the percentage of all residential grids predicted 

residential by the model).

4. F1-score—harmonic mean of precision and recall:

 

�ese metrics were calculated for each model evalu-

ated, on both data sets. For additional model assess-

ments, we compared overall accuracy across imagery 

sources (Google, Bing, Esri) and SGC grid area sizes 

(50 m × 50 m, 100 m × 100 m, 150 m × 150 m). Last, we 

tested the model sensitivity with respect to the amount 

new of training data required, to better understand 

the expected data annotation burden on future survey 

projects.

F1 =
2

1

recall
+

1

precision

Table 3 GIS derived OSM + ESA variables

Variable name Type Number Description

ContainBuildings Binary 1 Whether an SGC contains an OSM building polygon

SemiFitBuild Binary 1 Whether an SGC contains a semi-filtered OSM building polygon

AnyRoad Binary 1 Whether the SGC intersects any OSM road

ResRoad Binary 1 Whether the SGC intersects any OSM road labelled residential

ResPlusUnRoad Binary 1 Whether the SGC intersects any OSM road labelled residential or unlabeled

Glob2015_MajLC Categorical 38 ESA land-cover categories, ranging from “cropland” to “permanent snow and ice”



Page 11 of 17Chew et al. Int J Health Geogr  (2018) 17:12 

Results
Scene classi�cation model results

Table  4 presents model evaluation metrics across the 

model runs for both Nigeria and Guatemala. Raw agree-

ment of the two independent coders is also provided as 

the human-level benchmark.

Of the four deep learning models assessed (baseline 

CNN, VGG16, IncetionV3, and VGG16 + Inception), 

the ensemble of VGG16 and InceptionV3 performed 

the best in Nigeria, with an accuracy of 94.4% and 

F1-score of 92.2%. �e ensemble also performed the 

best in Guatemala with a test set accuracy of 96.4% and 

F1-score of 96.5%. Overall, the transfer learning models 

performed considerably better than the baseline CNN, 

with over 93% accuracy for both VGG16 and Incep-

tionV3 in Nigeria (compared to 88.9% for the baseline 

CNN) and over 95% for both in Guatemala (compared 

to 93.3% for the baseline CNN). Both the transfer learn-

ing models and the ensemble compared favorably to 

the human benchmark for Nigeria, performing better 

than the raw agreement (94.5 vs. 91.0%). �ese models 

almost performed as well as the human benchmark in 

Guatemala (96.4 vs. 97.1%).

As a further comparison, we created shallow clas-

sification models using GIS-derived variables from 

OSM and ESA to predict residential grids in Nigeria 

and Guatemala. Using the same grids for training and 

test sets as the deep learning models, our best model 

accuracy using the OSM + ESA variables was 80.6% 

in Nigeria and 93.8% in Guatemala (Table 4). In Nige-

ria, all models except k-nearest neighbors performed 

similarly, with AdaBoost and logistic regression clas-

sifiers performing slightly better than others. In Gua-

temala all models performed in a tight range between 

92.4 and 93.8%, although only k-nearest neighbors and 

AdaBoost achieved an accuracy lower than 93.8%. Pre-

cision, recall, and F1-scores were also stable and con-

sistent within country samples.

Compared to the deep learning models trained 

directly on images, the shallow learning models using 

OSM + ESA variables performed worse in both Nigeria 

and Guatemala. Although model accuracy was relatively 

Table 4 Model evaluation metrics for the Nigeria and Guatemala test sets

*Raw agreement between two independent coders

Model Type Acc. Prec. Recall F1

Nigeria

 Baseline CNN Deep 88.9% 89.2% 88.9% 89.0%

 VGG16 with ImageNet weights Deep 93.4% 93.4% 93.4% 93.3%

 InceptionV3 with ImageNet weights Deep 93.6% 93.6% 93.6% 93.6%

 VGG16 and InceptionV3 ensemble Deep 94.5% 94.5% 94.5% 94.5%

 Decision Tree Shallow 80.3% 80.9% 80.3% 78.9%

 Gradient Boosting Shallow 80.3% 80.9% 80.3% 79.0%

 AdaBoost Shallow 80.6% 81.8% 80.6% 79.2%

 Random forest Shallow 80.1% 80.7% 80.1% 78.8%

 Logistic regression Shallow 80.6% 81.8% 80.6% 79.2%

 Support vector machine Shallow 79.9% 81.5% 79.9% 78.1%

 K-nearest neighbors Shallow 75.6% 81.3% 75.6% 71.3%

 Human benchmark Human 91.0%* – – –

Guatemala

 Baseline CNN Deep 93.3% 93.3% 93.3% 93.3%

 VGG16 with ImageNet weights Deep 96.4% 96.7% 96.4% 96.5%

 Inception V3 with ImageNet weights Deep 95.6% 95.9% 95.6% 95.6%

 VGG16 and InceptionV3 ensemble Deep 96.4% 96.7% 96.4% 96.5%

 Decision tree Shallow 93.8% 94.1% 93.8% 93.8%

 Gradient boosting Shallow 93.8% 94.1% 93.8% 93.8%

 AdaBoost Shallow 92.9% 93.1% 92.9% 93.0%

 Random forest Shallow 93.8% 94.1% 93.8% 93.8%

 Logistic regression Shallow 93.8% 94.1% 93.8% 93.8%

 Support vector machine Shallow 93.8% 94.6% 93.8% 93.9%

 K-nearest neighbors Shallow 92.4% 93.7% 92.4% 92.6%

Human benchmark Human 97.1%* – – –
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close between the image and OSM + ESA models in Gua-

temala (93.8 vs. 96.4%), there was a substantial difference 

in performance in Nigeria (80.6 vs. 94.4%). In addition, 

unlike the image-based models, the OSM + ESA mod-

els greatly underperformed the human-level benchmark 

in Nigeria (80.6 vs. 91.0%), while also slightly underper-

forming in Guatemala (93.8 vs. 97.1%).

A possible explanation for the difference in perfor-

mance of the OSM + ESA models between Nigeria and 

Guatemala may be because of the completeness of the 

OSM database for the two countries. Evidence of this 

comes from a recent study on road network complete-

ness in OSM [88], which found that Nigeria had a lower 

estimated fraction of roads captured (36%) than Gua-

temala (47%). Although using a GIS feature model may 

become more reliable as developing countries get better 

coverage, the models trained on satellite images in this 

study do not suffer from this limitation.

E�ect of imagery source and grid area sizes

As our data sets in Nigeria and Guatemala contain mul-

tiple image sources and grid area sizes, we test to see if 

accuracy on the best performing model is impacted by 

either sources of variation. Table  5 reports the test set 

accuracy across different SGC grid sizes. In Nigeria, the 

model was most accurate predicting 50  m × 50  m grid 

size images (98.65%), followed by the 150  m × 150  m 

grid sizes (95.48%). �e model was least accurate in pre-

dicting the 100  m × 100  m grid size images (93.52%). 

However, as the accuracies fall in a small range, we per-

formed a 3-sample test of proportions to account for the 

differences in accuracy that may occur due to chance. 

�e test results do not provide substantial evidence to 

reject the null hypotheses that all the accuracy meas-

ures across SGC grid sizes are equal, given α = 0.05 

(Chi-square = 3.691; p-value = 0.1579). Likewise, while 

Guatemala also predicted 50  m × 50  m grids (97.21%) 

more often than 100 m × 100 m grids (93.48%), the differ-

ences in accuracy were also not statistically significant at 

α = 0.05 (Chi-square = 0.595; p-value = 0.4403).

Table  6 reports the test set accuracy across different 

image sources. While three sets of images were provided 

for analysts to choose from (Google, Bing, and Esri), no 

images from Esri were selected for coding. In Nigeria, the 

model predicted near-identical accuracies across image 

sources (Google = 94.25%; Bing = 94.90%). �e 2-sam-

ple test of proportions also reflects this, failing to reject 

the null hypothesis at an α = 0.05 (Chi-square = 0.016; 

p-value = 0.8982). Surprisingly, Google was selected 

for all 50  m × 50  m grids and Bing was chosen for all 

100  m × 100  m grids in Guatemala. As such, the differ-

ences in accuracy and test statistics are the same as when 

stratifying by grid size.

E�ect of training set size

Operationalizing this method in new countries will 

require retraining the models with images from the new 

countries. To better understand the expected data anno-

tation burden, we created learning curves to test how sen-

sitive model performance is to training size [89]. Figure 7 

shows the test set accuracy and 95% confidence intervals 

for training set sizes at 10, 25, 50, 100, 250, 500, and 1000 

images. Five randomly sampled training sets were cre-

ated and trained for each set size, stratified to preserve 

the class ratios seen in the original training sets. �e five 

trained models for each training set size were then run 

on the corresponding countries complete validation set 

to determine accuracy metrics. Although results are only 

presented for the pretrained VGG16 model, the learning 

curves showed similar trends for InceptionV3.

As expected with smaller training sizes, there is 

a lower average and larger variance in the accuracy 

for both Nigeria and Guatemala. Average accuracy 

increases as training size increases, from 78.2% (n = 10) 

to 91.7% (n = 1000) in Nigeria and 90.5% (n = 10) to 

96.1% (n = 1000) in Guatemala. Although neither sets 

of models at these sample sizes exceed the human-level 

benchmarks, they do approach the baseline with mod-

est amounts of training data. �is finding both supports 

the robustness of transfer learning and the more practi-

cal case of portability to new areas.

Table 5 Test set accuracy by SGC grid size

SGC size Nigeria Guatemala

Count Accuracy Count Accuracy

50 × 50 m 74 98.65% 179 97.21%

100 × 100 m 571 93.52% 46 93.48%

150 × 150 m 155 95.48% 0 –

Test for equality 
of proportions

χ2 = 3.691, df = 2, 
p-value = 0.1579

χ2 = 0.595, df = 1, 
p-value = 0.4403

Table 6 Test set accuracy by image source

Image source Nigeria Guatemala

Count Accuracy Count Accuracy

Google 643 94.25% 179 97.21%

Bing 157 94.90% 46 93.48%

Test for equality 
of proportions

χ2 = 0.016, df = 1, 
p-value = 0.8982

χ2 = 0.595, df = 1, 
p-value = 0.4403
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Discussion
�ese findings suggest the effectiveness of deep CNNs 

for identifying residential grids for cluster sampling, 

providing an accurate and scalable way to help screen 

large areas with minimal data requirements. Although 

this method was demonstrated within the context of 

geosampling, the approach can be applicable to any 

household survey in low- and middle-income countries 

with a gridded population sample design. With studies 

showing a variety of inaccuracies for model-based pop-

ulation data sets at the sub-national level [26, 27], our 

approach could help verify, supplement, or even replace 

the need for gridded population estimates in certain 

cases.

Although little has been published on the use of scene 

classification for applications in survey research, our 

results support findings in the remote sensing literature 

on deep CNNs providing state-of-the-art performance 

on remote scene classification tasks [90], showing over 

95% overall accuracy on data sets containing anywhere 

from 2 [41] to 45 [91] scene categories. In particular, 

several studies have also documented the effectiveness 

of using transfer learning with CNNs pretrained on 

ImageNet for scene classification tasks [41–43], even 

though the underlying source data set does not contain 

satellite images. While other scene classification bench-

mark datasets [91, 92] can contain up to dozens of dif-

ferent categories (e.g., airplanes, stadiums, beaches, 

viaduct, etc.), many of these scenes are largely irrele-

vant for the purpose of household surveys that are only 

interested in residences. Of comparable studies that 

publish confusion matrices with scene specific accuracy 

metrics, residential scenes have been among the most 

difficult to correctly classify (Table  7). Han et  al. [42] 

and Hu et al. [43], whom both also use a transfer learn-

ing approach with deep CNNs pretrained on ImageNet, 

found that predicted accuracy of residential classes 

ranged from 85 to 95%, compared with our 94.5% accu-

racy in Nigeria and 96.4% accuracy in Guatemala. �is 

difficulty in predicting residential scenes may be due 

to their high similarity to other classes or ambiguity 

in the definition of what is considered a “residential” 

scene. Especially when encountering difficult-to-define 

categories, collapsing classes (such as our overarch-

ing “nonresidential” class) can increase classification 

accuracy by simplifying the modeling task, requiring 

the model to distinguish only between broad, distinct 

categories [93]. By focusing on only two scene classes 

Fig. 7 Learning curves for Nigeria and Guatemala

Table 7 Residential scene classi�cation accuracy across studies using deep CNNs transfer learning models

*Medium and Sparse residential tied for 19th/20th place

**Tied with “intersection” for 17th/18th place

***Tied with seven other classes for 12th–18th place

****Tied with “storage tank” for 19th/20th place

*****Tied with “idle land” for 10th/11th place

References Scene class Dataset # Classes Accuracy (%) Relative scene 
accuracy 
ranking

Hu et al. [43] Sparse Residential UC Merced 21 85 19 of 21*

Med. Residential UC Merced 21 85 19 of 21*

Dense Residential UC Merced 21 90 17 of 21**

Han et al. [42] Sparse Residential UC Merced 21 95 12 of 21***

Med. Residential UC Merced 21 90 19 of 21****

Dense Residential UC Merced 21 85 21 of 21

Residential SIRI-WHU 12 93 10 of 12*****

Residential WHU-RS 19 88 19 of 19

Chew et al. (in this study) Residential Nigeria 2 94.5 NA

Residential Guatemala 2 96.4 NA
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in our modeling, survey researchers not only benefit 

from a potentially higher accuracy model than if they 

included additional scenes, but the scenes included are 

only those relevant for downstream analysis.

In addition to providing survey research teams with 

a method for screening residential areas, our work also 

provides contributions to the larger scene classification 

literature. While deep CNNs have been effective on scene 

classification tasks ranging in spatial resolutions (2-m 

resolution in SIRI-WHU dataset [94] to 1-ft resolution 

in UC Merced dataset) [95], few studies have reported 

applying deep CNN scene classification models to data-

sets containing multiple spatial resolutions as found in 

our data set. We do not  find statistically significant dif-

ferences in accuracies between grid area sizes and image 

sources, suggesting that deep CNN models can perform 

well on image datasets that contain heterogeneous prop-

erties and that may resemble data collected by survey 

research and implementation teams on projects in devel-

oping countries. Additionally, most other benchmark 

scene classification datasets contain images from devel-

oped areas, such as the United States [40, 95], Europe 

[91], and urban areas in China [96], rather than low- and 

middle-income countries. By extending scene classifica-

tion to Nigeria and Guatemala, we provide additional evi-

dence that methods shown to be effective in developed 

nations also apply to developing nations where data qual-

ity and availability is generally worse.

While initial results are promising, future work could 

expand the training set to include a larger and more 

diverse geographic scope to better understand how the 

method generalizes across developing nations. Further-

more, since SGC images are localized within PGCs, our 

training samples are highly clustered geographically. �is 

is appropriate for our use case; however, future research 

could validate if the high accuracy found in this study 

applies when predicting random SGC grids within a 

country. Extended analyses could also examine the extent 

of spatial autocorrelation among residential grids and 

assess if methods that explicitly model this dependence 

(e.g., Markov random fields) can help improve model 

accuracy. In future work, deep learning models could also 

be applied at the PGC level. Although this could reduce 

the existing multistep process that is required to imple-

ment manual residential screening down to a single step, 

it is unclear whether the heterogeneity within the larger 

PGCs would impact the effectiveness of the method.

One limitation of our study was that our nonresiden-

tial grids contained a variety of landscapes, including 

agricultural, forested, and predominately commercial 

areas without residencies. While we argue that focus-

ing the problem specifically on residential versus non-

residential will likely be preferred for gridded population 

sampling for household surveys, future research can be 

directed toward better understanding whether creating 

more granular scene categories for nonresidential grids 

can refine the screening process, particularly in helping 

disambiguate areas in the built environment (residential 

vs. commercial). �is option would need to be balanced 

against the additional labelling burden of coders need-

ing to choose among multiple classes. �e current geo-

sampling methodology only requires knowing whether 

residential buildings are present in the area. However, the 

task could be reframed as an object detection problem 

with the objective of identifying the number of buildings 

in a grid instead of just the presence or absence of resi-

dential buildings. �e extension of this work to an object 

detection task could facilitate the estimation of popula-

tion estimates for SGCs or may allow direct selection of 

households from aerial images.

Lastly, although we present these metrics as an assess-

ment of how well our models compare to human perfor-

mance on this task, we recognize that the specific values 

for the human-level benchmark are only representative of 

the coders recruited to assist for this study. Coders with 

different levels of experience, skill, and conscientious-

ness than ours would likely produce different results. 

Additionally, these numbers represent the disagreement 

across both training and test sets in Nigeria and Guate-

mala, whereas the model predictions are only assessed on 

the test sets. Nonetheless, these ballpark figures do pro-

vide us greater assurance of this method’s merits com-

pared to the status quo and much needed context to the 

raw model performance metrics.

Conclusion
Using deep CNNs, we demonstrated that we can cor-

rectly classify whether areas are residential or non-

residential from aerial satellite images, meeting or 

exceeding a human-level benchmark in both Nigeria 

and Guatemala. Not only does this capability reduce 

the manual resources and calendar time needed for 

labelling images on future geosampling projects, but it 

will also improve calculation of probabilities of selec-

tion at GIS sampling stages by avoiding unnecessary 

assumptions about the population distribution. Our 

findings also suggest that this approach can work well 

in new areas with relatively modest amounts of train-

ing data. Lastly, in areas where GIS variables from data 

sources like OSM are well populated, using GIS derived 

feature variables can also accurately detect whether 

a grid is residential or nonresidential. However, our 

findings suggest that using CNNs trained on satellite 

images work even when crowdsourced spatial data sets 

are not well populated or maintained.
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