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RESIDUAL BASED A POSTERIORI ERROR ESTIMATION FOR DIRICHLET

BOUNDARY CONTROL PROBLEMS

Hamdullah Yücel1

Abstract. We study a residual–based a posteriori error estimate for the solution of Dirichlet boundary
control problem governed by a convection diffusion equation on a two dimensional convex polygonal
domain, using the local discontinuous Galerkin (LDG) method with upwinding for the convection term.
With the usage of LDG method, the control variable naturally exists in the variational form due to its
mixed finite element structure. We also demonstrate the application of our a posteriori error estimator
for the adaptive solution of these optimal control problems.

1. Introduction

In this study, we investigate a numerical approximation of Dirichlet boundary control problems governed by
a convection diffusion equation:

minimize J(y, u) =
1

2
‖y − yd‖20,Ω +

ω

2
‖u‖20,Γ (1)

subject to

∇ · (−ε∇y + βy) + αy = f in Ω, (2a)

y = u on Γ, (2b)

where Ω is a convex polygonal domain in R2 with Lipschitz boundary Γ = ∂Ω. We refer to u as the control
on the Dirichlet boundary, to y as the state, and to (2) as the state equation. The velocity field is denoted by

β ∈
(
W 1,∞(Ω)

)2
and we suppose that it satisfies incompressibility condition, that is, ∇ · β = 0. The constant

coefficients ε > 0 and α > 0 are corresponding to diffusion and reaction terms, respectively. The regularization
parameter ω is a positive constant. For the source function f and the desired state yd, we assume f, yd ∈ L2(Ω).

By following the standard arguments in [21, 26], Dirichlet boundary control problem (1)-(2) is equivalent to
the following optimality system:

∇ · (−ε∇y + βy) + αy = f in Ω, y = u on Γ, (3a)

∇ · (−ε∇z − βz) + αz = y − yd in Ω, z = 0 on Γ, (3b)

ωu− ε ∂z
∂n

= 0 on Γ, (3c)
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where z is the adjoint variable and n is the unit outer normal to Γ. The adjoint equation (3b) is also a convection
diffusion equation, but with convection term −β instead of β. The convergence properties of discretization
methods applied to the optimal control problems can be substantially different from the convergence properties
of discretization methods applied to a single convection dominated PDEs due to the transport of the information
in the optimality system with opposite directions.

In such kind of problems (1)-(2), the specific difficulty is that the control variable is not involved in the vari-
ational form of the standard finite element setting. To handle this difficulty, various numerical approaches have
been proposed including very weak variational setting [7,9,13], modified cost functionals [11,14], approximating
the Dirichlet boundary condition with a Robin boundary condition [4], weak boundary penalization (also called
as Nitsche’s penalty technique) [10], and a mixed formulation [15]. In this study, we employ local discontinuous
Galerkin (LDG) method as a discretization technique since discontinuous Galerkin methods exhibit better con-
vergence for the spatial discretization of optimal control problems governed by convection dominated PDEs [20]
and the control variable is naturally involved in the variational form thanks to the mixed finite element structure
of LDG and the weak enforcement of the boundary conditions. We would like to refer to [1, 24] and references
therein for details about local discontinuous Galerkin methods.

To obtain better accuracy with as few of degrees of freedom as possible, one particular way is adaptive finite
element method. Although adaptive finite element method, contributed to the pioneer work of Babus̆ka and
Rheinboldt [2], has become a popular approach for the efficient solution of boundary and initial value problems
for the PDEs, it is quite recent for constrained optimal control problems, initiated by Liu, Yan [23] and Becker,
Kapp, Rannacher [3]. Adaptive finite element methods have been applied for various optimal control problems,
see, e.g., [16,17,22,27,30,31] for control constrained problems, [5,18,29] for state constrained problems, and [6,19]
for Neumann boundary control problems. However, there are a few studies for a posteriori error estimation of
Dirichlet boundary control problems. Primal–dual weighted error estimates were derived in [28] for Dirichlet
boundary control problem governed by a convection diffusion equation with control constraints. In [11, 14], a
residual–type a posteriori error analyses were carried out for Dirichlet boundary control governed by an elliptic
equation with the control variable defined on an equivalent form of the norm in H

1
2 (Γ), using continuous finite

element discretization. With the present paper, we intent to contribute a residual–based a-posteriori error
estimates for the solution of Dirichlet boundary control problem governed by a convection diffusion equation,
using the local discontinuous Galerkin method with upwinding for the convection term.

The rest of this paper is as follows: In the next section we present Dirichlet boundary control problem
discretized by the local discontinuous Galerkin method. Section 3 is devoted to derivation of a residual–based a
posteriori error estimator. Numerical results are given in Section 4 to illustrate the performance of the proposed
error estimators.

2. Discretization of Model Problem

Throughout the paper we adopt the standard notation Wm,p(Ω) for Sobolev spaces on Ω with norm ‖ ·‖m,p,Ω

and seminorm | · |m,p,Ω for m ≥ 0 and 1 ≤ p ≤ ∞. We denote Wm,2(Ω) by Hm(Ω) with norm ‖ · ‖m,Ω and
seminorm | · |m,Ω. The L2–inner products on L2(Ω) and L2(Γ) are defined by

(v, w)0,Ω =

∫
Ω

v w dx ∀v, w ∈ L2(Ω) and 〈v, w〉0,Γ =

∫
Γ

v w ds ∀v, w ∈ L2(Γ),

respectively. In addition, C denotes a generic positive constant independent of the mesh size h and differs in
various estimates.

The LDG method, one of several discontinuous Galerkin methods, can be considered as a mixed finite
element method. As in mixed finite element methods, we rewrite the optimality system as a system of first
order equations and discretize it by introducing auxiliary variables. Introducing q = ε

1
2∇y and p = −ε 1

2∇z,
the optimality system (3) can be rewritten as a system of the first order equations:
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∇ · (βy − ε 1
2q) + αy = f in Ω, y = u on Γ, (4a)

q = ε
1
2∇y in Ω, (4b)

∇ · (ε 1
2p− βz) + αz = y − yd in Ω, z = 0 on Γ, (4c)

p = −ε 1
2∇z in Ω, (4d)

ωu+ ε
1
2p · n = 0 on Γ. (4e)

We assume that the domain Ω is polygonal such that the boundary is exactly represented by boundaries of
triangles. We denote {Th}h as a family of shape-regular simplicial triangulations of Ω. Each mesh Th consists
of closed triangles such that Ω =

⋃
K∈Th K holds. The set of all edges Eh consists of the set E0

h of interior edges

and the set E∂h of boundary edges so that Eh = E0
h ∪ E∂h . The diameter of an element K and the length of an

edge E are denoted by hK and hE , respectively, and also h = max
K∈Th

hK . Let the edge E be a common edge for

two elements K and Ke. Then, the jump [[·]] and average {{·}} of the scalar function y and the vector field q
across the edge E are defined as

[[y]] = y|EnK + ye|EnKe , {{y}} =
1

2

(
y|E + ye|E

)
, [[q]] = q|E · nK + qe|E · nKe , {{q}} =

1

2

(
q|E + qe|E

)
,

where nK (resp. nKe) denotes the unit outward normal to ∂K (resp. ∂Ke). For a boundary edge E ∈ K ∩ ∂Ω,
we set {{q}} = q and [[y]] = yn, where n is the outward normal unit vector on Γ.

To obtain weak formulation for the state equation in (4a)-(4b), we multiply it by piecewise smooth test
functions v and r, respectively, and integrate by parts over the element K ∈ Th

(ε
1
2q− βy,∇v)0,K + (αy, v)0,K − 〈(ε

1
2q− βy) · n, v〉0,∂K = (f, v)0,K v ∈ V, (5a)

(q, r)0,K + (ε
1
2 y,∇ · r)0,K = 〈ε 1

2 y, r · n〉0,∂K r ∈W, (5b)

where V :=
{
v ∈ L2(Ω) : v |K∈ H1(K), ∀K ∈ Th

}
and W :=

{
w ∈

(
L2(Ω)

)2
: w |K∈

(
H1(K)

)2
, ∀K ∈ Th

}
.

Next, we seek to approximate the state solutions (y,q) with functions (yh,qh) in the following finite element
spaces Vh ×Wh ⊂ V ×W:

Vh =
{
v ∈ L2(Ω) : v |K∈ S1(K), ∀K ∈ Th

}
, (6a)

Wh =
{
w ∈

(
L2(Ω)

)2
: w |K∈

(
S1(K)

)2
, ∀K ∈ Th

}
, (6b)

Uh =
{
u ∈ U = L2(Γ) : u |E∈ S1(E), ∀E ∈ E∂h

}
, (6c)

where S1(K) (resp. S1(E)) is the local finite element space, which consists of linear polynomials in each element
K (resp. on E).

For all (v, r) ∈ Vh ×Wh the approximate solution (yh,qh) of the state solution (y,q) satisfies

(ε
1
2qh − βyh,∇v)0,K + (αyh, v)0,K − 〈(ε

1
2 q̂h − βỹh) · n, v〉0,∂K = (f, v)0,K , (7a)

(qh, r)0,K + (ε
1
2 yh,∇ · r)0,K = 〈ε 1

2 ŷh, r · n〉0,∂K , (7b)

where q̂h, ỹh, ŷh denote numerical fluxes. They have to be suitably defined in order to ensure the stability of
the method and to enhance its accuracy. The numerical traces of y associated with the diffusion and convection
terms are characterized as done in [31]

ŷh =

{
{{yh}}+ C12 · [[yh]], E ∈ E0

h,
uh, E ∈ E∂h ,

and ỹh =

 uh, E ∈ Γ−,
{{yh}}+ D11 · [[yh]], E ∈ E0

h,
yh, E ∈ Γ+,

(8)
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respectively. We note that the numerical trace of y with respect to convection term is the classical upwinding
trace. In addition, the numerical flux q̂h is given by

q̂h =

{
{{qh}}+ C11[[yh]]−C12[[qh]], E ∈ E0

h,
qh + C11(yh − uh) · n, E ∈ E∂h .

(9)

In the numerical implementations, C11 is chosen as C11 =
√
ε/hE for each E ∈ Eh, whereas we take C12 normal

to the edges and modulus 1/2, i.e., C12 ·nE = 1
2 , and the vector function D11 is given by D11 ·n = 1

2 sign
(
n ·β

)
.

Employing optimize–discretize approach, see, e.g., [26], to solve the Dirichlet boundary control problem
(1)-(2), we obtain discrete optimality system for

(
yh,qh, zh,ph, uh

)
∈ Vh ×Wh × Vh ×Wh × Uh:

a(qh, r) + b(yh, r) = m1(uh, r) ∀r ∈Wh, (10a)

−b(v,qh) + c(yh, v) = m2(uh, v) + (f, v)0,Ω ∀v ∈ Vh, (10b)

a(ph, ψ)− b(zh, ψ) = 0 ∀ψ ∈Wh, (10c)

b(φ,ph) + c(φ, zh) = (yh − yd, φ)0,Ω ∀φ ∈ Vh, (10d)

〈ωuh + ε
1
2ph · n, w〉0,Γ = 0 ∀w ∈ Uh, (10e)

where

a(q, r) =

∫
Ω

q · r dx,

b(y, r) = −
∑

K∈Th

∫
K

ε
1
2∇y · r dx+

∑
E∈E0h

∫
E

ε
1
2

(
{{r}} −C12[[r]]

)
· [[y]] ds+

∑
E∈E∂h

∫
E

ε
1
2 yr · n ds,

c(y, v) =
∑

K∈Th

∫
K

(
αy v − yβ · ∇v

)
dx+

∑
E∈E0h

∫
E

(
{{y}}+ D11 · [[y]]

)
β · [[v]] ds

−
∑
E∈E0h

∫
E

ε
1
2C11[[y]] · [[v]] ds+

∑
E∈Γ+

∫
E

(n · β)y v ds−
∑
E∈E∂h

∫
E

ε
1
2C11y v ds,

m1(u, r) =
∑
E∈E∂h

∫
E

ε
1
2u r · n ds, m2(u, v) = −

∑
E∈E∂h

∫
E

ε
1
2C11u v ds−

∑
E∈Γ−

∫
E

|β · n|u v ds.

We refer to [12, 31] for derivation of (bi)–linear forms and references therein. Further, it is easy show that the
continuous solution

(
y,q, z,p, u

)
satisfies the following optimality system:

a(q, r) + b(y, r) = m1(u, r) ∀r ∈W, (11a)

−b(v,q) + c(y, v) = m2(u, v) + (f, v)0,Ω ∀v ∈ V, (11b)

a(p, ψ)− b(z, ψ) = 0 ∀ψ ∈W, (11c)

b(φ,p) + c(φ, z) = (y − yd, φ)0,Ω ∀φ ∈ V. (11d)

3. A Posteriori Error Estimates

In this section we derive a residual–based a posteriori error estimate for Dirichlet boundary control problem
governed by a convection diffusion equation, discretized by the local discontinuous Galerkin (LDG). We first
give some known results, which will be needed throughout of the paper.

• Let ih : V → Vh and Ih : W→Wh be the L2 projection operators satisfying (see [8, Chapter III])

(y − ihy, v)0,Ω = 0,
(
∇ · (q− Ihq), v)0,Ω = 0 ∀v ∈ Vh. (12a)
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Then, the following approximation estimates hold

‖y − ihy‖−s,2,Ω ≤ Ch1+s|y|1,2,Ω, s = 0, 1, y ∈W s,2(Ω), (13a)

‖y − ihy‖−s,2,Γ ≤ Ch1/2+s|y|1,2,Ω, s = 0, 1, y ∈W s,2(Ω), (13b)

‖q− Ihq‖s,2,Ω ≤ Ch1−s|q|1,2,Ω, s = 0, 1, q ∈
(
W s,2(Ω)

)2
, (13c)

‖q− Ihq‖s,2,Γ ≤ Ch1/2−s|q|1,2,Ω, s = 0, 1, q ∈
(
W s,2(Ω)

)2
. (13d)

• Let ϕ be the solution of a convection diffusion equation in mixed formulation on a convex domain Ω
with smooth boundary. Then, for any right–hand side function g the following estimate holds [25,
Lemma 1.18]

ε3/2‖ϕ‖2,Ω + ε1/2‖ϕ‖1,Ω + ‖ϕ‖0,Ω ≤ C‖g‖0,Ω. (14)

To prove our reliability result, we need the auxiliary solution
(
y[uh],q[uh], z[uh],p[uh]

)
∈ V ×W× V ×W,

which solves the following system:

a(q[uh], r) + b(y[uh], r) = m1(uh, r) ∀r ∈W, (15a)

−b(v,q[uh]) + c(y[uh], v) = m2(uh, v) + (f, v)0,Ω ∀v ∈ V, (15b)

a(p[uh], ψ)− b(z[uh], ψ) = 0 ∀ψ ∈W, (15c)

b(φ,p[uh]) + c(φ, z[uh]) = (y[uh]− yd, φ)0,Ω ∀φ ∈ V. (15d)

Then, with the help of the bilinear forms (11) and (15) and the corresponding coercivity property of the bilinear
forms, we obtain

‖q− q[uh]‖0,Ω + ‖y − y[uh]‖0,Ω ≤ C ‖u− uh‖0,Γ, (16a)

‖p− p[uh]‖0,Ω + ‖z − z[uh]‖0,Ω ≤ C ‖y − y[uh]‖0,Ω, (16b)

where the constant C is dependent on ε.
Now, we derive a residual based a posteriori error estimate for the control u, the state y, and the adjoint z.

Theorem 3.1. Let
(
y,q, z,p, u

)
and

(
yh,qh, zh,ph, uh

)
be the solutions of (4) and (10), respectively. Then,

it holds that
‖u− uh‖20,Γ + ‖y − yh‖20,Ω + ‖z − zh‖20,Ω ≤ C

(
ηy + ηz

)
, (17)

where

ηy =

( ∑
K∈Th

h2
K

ε
‖f −∇ · (βyh − ε

1
2qh)− αyh‖20,K +

∑
K∈Th

h2
k

ε
‖ε 1

2∇yh − qh‖20,K

+
∑
E∈E0h

(
hE
2
‖[[qh]]‖20,E +

(
hE
2ε

+
ε

hE

)
‖[[yh]]‖20,E

)
+
∑
E∈E∂h

(
hE
ε

+
ε

hE

)
‖yh − uh‖20,E

 , (18a)

ηz =

( ∑
K∈Th

h2
K

ε
‖yh − yd −∇ · (ε

1
2ph − βzh)‖20,K +

∑
K∈Th

h2
k

ε
‖ε 1

2∇zh + ph‖20,K

+
∑
E∈E0h

(
hE
2
‖[[ph]]‖20,E +

(
hE
2ε

+
ε

hE

)
‖[[zh]]‖20,E

) ∑
E∈E∂h

(
hE
ε

+
ε

hE

)
‖zh‖20,E

 . (18b)

Proof. For u− uh ∈ U we have(
ωu+ ε

1
2p ·n, u− uh

)
0,Γ
−
(
ωuh + ε

1
2p[uh] ·n, u− uh

)
0,Γ

= ω‖u− uh‖20,Γ + ε
1
2

(
(p−p[uh]) ·n, u− uh

)
0,Γ
. (19)

The optimality systems (11) and (15) give us
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(y − yd, y)0,Ω = b(y,p) + c(y, z) + a(p,q)− b(z,q) = m1(u,p) +m2(u, z) + (f, z)0,Ω, (20a)

(y − yd, y[uh])0,Ω = b(y[uh],p) + c(y[uh], z) + a(p,q[uh])− b(z,q[uh]) = m1(uh,p) +m2(uh, z) + (f, z)0,Ω.(20b)

From (20), we have (
y − yd, y − y[uh]

)
0,Ω

= m1(u− uh,p) +m2(u− uh, z). (21)

Similarly, we can deduce(
y[uh]− yd, y − y[uh]

)
0,Ω

= m1(u− uh,p[uh]) +m2(u− uh, z[uh]). (22)

Combining (21) and (22) we obtain

ε
1
2

(
(p− p[uh]) · n, u− uh

)
0,Γ

= ‖y − y[uh]‖20,Ω +m2(u− uh, z[uh]− z). (23)

From the optimality conditions (4e), (3c), and definition of m2(·, ·), we have

ω‖u− uh‖20,Γ ≤
(
u− uh, ε

1
2 (ph − p[uh]) · n

)
0,Γ

+
(
u− uh, ε

1
2 (p[uh]− p) · n

)
0,Γ

≤
(
u− uh, ε

1
2 (ph − Ihp[uh]) · n

)
0,Γ︸ ︷︷ ︸

M1

+
(
u− uh, ε

1
2 (Ihp[uh]− p[uh]) · n

)
0,Γ︸ ︷︷ ︸

M2

+
(
u− uh, (C11ε

1
2 + |β · n|)(z[uh]− z)

)
0,Γ︸ ︷︷ ︸

M3

. (24)

We first find a bound for the first term in (24) by using trace, inverse, and Young’s inequalities as follows

M1 ≤ ‖u− uh‖0,Γε
1
2 ‖ph − Ihp[uh]‖0,Γ ≤ ‖u− uh‖0,Γεh−3/2‖z[uh]− zh‖0,Ω ≤ Cδ‖u− uh‖20,Γ + C(δ)‖z[uh]− zh‖20,Ω.

(25)

Next, the estimate in (13), the bound (14) with g = yh − y[uh], and Young’s inequality give us

M2 ≤ ‖u− uh‖0,Γε
1
2 ‖Ihp[uh]− p[uh]‖0,Γ ≤ ‖u− uh‖0,Γε

1
2h1/2‖p[uh]‖0,Ω ≤ Cδ‖u− uh‖20,Γ + C(δ)‖yh − y[uh]‖20,Ω,

(26)

M3 ≤
(
u− uh, (C11ε

1
2 + |β · n|)(z[uh]− ihz)

)
0,Γ

+
(
u− uh, (C11ε

1
2 + |β · n|)(ihz − z)

)
0,Γ

≤ Cδ‖u− uh‖20,Γ + C(δ)‖z[uh]− zh‖20,Ω + Cδ‖u− uh‖20,Γ + C(δ)‖yh − y[uh]‖20,Ω, (27)

where for any small δ > 0. We note that it is assumed that ihz approximates zh.
Putting (25) -(27) into (24), we obtain

‖u− uh‖20,Γ ≤ C
(
‖yh − y[uh]‖20,Ω + ‖z[uh]− zh‖20,Ω

)
. (28)

Now, define the following functional

A(y,q; v, r) = a(q, r) + b(y, r)− b(v,q) + c(y, v). (29)

Then, the following Galerkin orthogonality property holds

A(y[uh]− yh,q[uh]− qh; vh, rh) = 0 ∀vh ∈ Vh, ∀rh ∈Wh. (30)
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By the definitions of (bi)–linear forms in (10) and then applying integration by parts, we obtain

A(y[uh]− yh,q[uh]− qh; v, r)

= m1(uh, r) +m2(uh, v) +
(
f, v
)

0,Ω
− a(qh, r)− b(yh, r) + b(v,qh)− c(yh, v)

=
∑

K∈Th

∫
K

(
f −∇ · (βyh − ε

1
2qh)− αyh

)
v dx−

∑
E∈E0h

∫
E

(
ε

1
2

(
{{v}}+ C12 · [[v]]

)
[[qh]] +

(
D11 · [[v]]− {{v}}

)
β · [[yh]]

)
ds

+
∑
E∈E0h

∫
E

ε
1
2C11[[v]] · [[yh]] ds+

∑
E∈E∂h

∫
E

ε
1
2C11(yh − uh)v ds+

∑
E∈Γ−

∫
E

|β · n|(yh − uh)v ds

+
∑

K∈Th

∫
K

(
ε

1
2∇yh − qh

)
r dx−

∑
E∈E0h

∫
E

ε
1
2

(
{{r}} −C12[[r]]

)
[[yh]] ds+

∑
E∈E∂h

∫
E

ε
1
2 (uh − yh)r ds. (31)

To obtain an estimate for ‖y[uh]− yh‖0,Ω, we apply duality argument as follows

A∗(φ, ψ; v, r) =
∑

K∈Th

∫
K

(y[uh]− yh)v dx, (32)

where A∗(z,p; v, r) = a(p, r) − b(z, r) + b(v,p) + c(v, z), ∀v ∈ V, ∀r ∈ W. Setting v = y[uh] − yh and
r = q[uh] − qh in (32), and using the operators defined in (12), the definition of A(·, ·), and the Galerkin
orthogonality (30), we obtain

‖y[uh]− yh‖20,Ω = A∗(φ, ψ; y[uh]− yh,q[uh]− qh) = A(y[uh]− yh,q[uh]− qh;φ, ψ)

= A(y[uh]− yh,q[uh]− qh;φ− ihφ, ψ − Ihψ). (33)

By the residual (31) and Cauchy–Schwarz inequality, we get

‖y[uh]− yh‖20,Ω ≤
∑

K∈Th

‖f −∇ · (βyh − ε
1
2qh)− αyh‖0,K‖φ− ihφ‖0,K +

∑
K∈Th

‖ε 1
2∇yh − qh‖0,K‖ψ − Ihψ‖0,K

+
∑
E∈E0h

ε
1
2 ‖{{φ− ihφ}}+ C12 · [[φ− ihφ]]‖0,E‖[[qh]]‖0,E

+
∑
E∈E0h

ε
1
2 ‖{{ψ − Ihψ}} −C12[[ψ − Ihψ]]‖0,E‖[[yh]]‖0,E

+
∑
E∈E0h

‖{{φ− ihφ}} −D11 · [[φ− ihφ]]‖0,E‖β · [[yh]]‖0,E +
∑
E∈E0h

ε
1
2 ‖C11[[yh]]‖0,E‖[[φ− ihφ]]‖0,E

+
∑

E∈Γ−

|β · n|‖yh − uh‖0,E‖φ− ihφ‖0,E +
∑
E∈E∂h

ε
1
2C11‖yh − uh‖0,E‖φ− ihφ‖0,E

+
∑
E∈E∂h

ε
1
2 ‖yh − uh‖0,E‖ψ − Ihψ‖0,E . (34)

The estimates in (13), regularity estimate in (14), Young’s inequality, and the assumption β = O(1) in (14)
yield
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‖y[uh]− yh‖20,Ω ≤ C

( ∑
K∈Th

h2
K

ε
‖f −∇ · (βyh − ε

1
2qh)− αyh‖20,K +

∑
K∈Th

h2
k

ε
‖ε 1

2∇yh − qh‖20,K

+
∑
E∈E0h

(
hE
2
‖[[qh]]‖20,E +

(
hE
2ε

+
ε

hE

)
‖[[yh]]‖20,E

)

+
∑
E∈E∂h

(
hE
ε2

+
ε

hE

)
‖yh − uh‖20,E

 ≤ Cη2
y. (35)

Then, combining (16a) and (35), we obtain

‖y − yh‖20,Ω ≤ Cη2
y + C‖u− uh‖20,Γ. (36)

Now, we derive an upper bound for ‖z[uh]− zh‖0,Ω by following the procedure as in the derivation of (31).

A∗(z[uh]− zh,p[uh]− ph; v, r)

= (y[uh]− yd, v)0,Ω +
∑

K∈Th

∫
K

(
−∇ · (ε 1

2ph − βzh)− αzh
)
v dx−

∑
K∈Th

∫
K

(
ε

1
2∇zh + ph

)
r dx

+
∑
E∈E0h

∫
E

(
ε

1
2

(
{{v}}+ C12 · [[v]]

)
[[ph]]−

(
D11 · [[v]] + {{v}}

)
β · [[zh]]

)
ds+

∑
E∈E0h

∫
E

ε
1
2C11[[v]] · [[zh]] ds

+
∑
E∈E∂h

∫
E

ε
1
2C11zhv ds−

∑
E∈Γ+

∫
E

|β · n|zhv ds+
∑
E∈E0h

∫
E

ε
1
2

(
{{r}} −C12[[r]]

)
[[zh]] ds+

∑
E∈E∂h

∫
E

ε
1
2 zhr ds. (37)

Analogously, we apply the duality argument to find an estimate for ‖z[uh] − zh‖0,Ω. It is easy see that (φ, ψ)
satisfies

A(φ, ψ; v, r) =
∑

K∈Th

∫
K

(
z[uh]− zh

)
v dx. (38)

Setting v = z[uh]− zh and r = p[uh]− ph in (38), and using the operators defined in (12) and the definition of
A∗(·, ·), we obtain

‖z[uh]− zh‖20,Ω = A(φ, ψ; z[uh]− zh,p[uh]− ph) = A∗(z[uh]− zh,p[uh]− ph;φ, ψ)

= A∗(z[uh]− zh,p[uh]− ph;φ− ihφ, ψ − Ihψ) + (y[uh]− yh, ihφ). (39)

Using the residual (39) with the estimates (13), regularity estimate in (14), and Young’s inequality, we get

‖z[uh]− zh‖20,Ω ≤ C

( ∑
K∈Th

h2
K

ε
‖yh − yd −∇ · (ε

1
2ph − βzh‖20,K +

∑
K∈Th

h2
k

ε
‖ε 1

2∇zh + ph‖20,K

+
∑
E∈E0h

(
hE
2
‖[[ph]]‖20,E +

(
hE
2ε

+
ε

hE

)
‖[[zh]]‖20,E

)

+
∑
E∈E∂h

(
hE
ε

+
ε

hE

)
‖zh‖20,E

+ C‖y[uh]− yh‖20,Ω

≤ Cη2
z + C‖y[uh]− yh‖20,Ω ≤ C

(
η2
z + η2

y

)
. (40)
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Figure 1. Global errors of the state, adjoint, and control in L2–norm on adaptively and
uniformly refined meshes with ε = 10−2 and θ = 0.6 in the bulk criterion.

Combination of (16) and (40) yields

‖z − zh‖20,Ω ≤ C
(
η2
y + η2

z

)
+ C‖u− uh‖20,Γ. (41)

In conclusion, the desired result is obtained by combining (28), (36), and (41). �

4. Numerical Experiments

An adaptive procedure consists of successive loops of the following sequence:

SOLVE → ESTIMATE → MARK → REFINE. (42)

The SOLVE step is the numerical solution of the optimal control problem with respect to the given triangu-
lation Th using the LDG discretization with upwind for the convection. The ESTIMATE step requires the
computation of the residual–based a posteriori error estimators. We use a bulk criterion in the MARK step to
specify the elements in Th by using the a posteriori error estimator and by choosing subsetsMK ⊂ Th such that
the bulk criterion is satisfied for a given marking parameter Θ with 0 < Θ < 1: Θ

∑
K∈Th

ηK ≤
∑

K∈MK

ηK , where

ηK is the a posteriori error estimator derived in Section 3. Finally, in the REFINE step, the marked elements
are refined by longest edge bisection, whereas the elements of the marked edges are refined by bisection strategy.
The adaptive procedure repeats until a given complexity #vertices, i.e., the number of vertices, is satisfied.

Now, we test the performance of the residual-based a posteriori error estimators (18) for the following data:

Ω = [0, 1]2, β = [1, 1]T , α = 2, ω = 0.1.

The source function f and the desired state yd are computed by using the following analytical solutions

y(x1, x2) = −ε
(
x1(1− x1) + x2(1− x2)

)
, z(x1, x2) = ω

(
x1x2(1− x1)(1− x2)

)
.

Figure 1 illustrates the performance of the error estimator (18) in terms of the number of vertices for the
marking parameter θ = 0.60 and the diffusion parameter ε = 10−2 on adaptively and uniformly refined meshes.
In Table 1, we display global errors with ε = 10−3 on adaptively and uniformly refined meshes. Due to oscillation
on the inflow boundary, we do not obtain stable solutions for the control on uniformly refined meshes. However,
more stable solutions are obtained on adaptively refined meshes, see Figure 2. In conclusion, the obtained
results show that adaptive refinements lead to better approximate solutions than uniform refinements.
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Table 1. Global errors of the state, adjoint, and control in L2–norm on adaptively and uni-
formly refined meshes with ε = 10−3 and θ = 0.5 in the bulk criterion.

Uniform Adaptive
DoF ‖y − yh‖ ‖z − zh‖ ‖u− uh‖ DoF ‖y − yh‖ ‖z − zh‖ ‖u− uh‖
1089 2.68e-04 4.84e-05 2.03e-04 2589 1.58e-04 2.78e-05 3.58e-04
4225 2.54e-04 4.58e-05 3.51e-04 4144 9.22e-05 1.49e-05 2.38e-04
16641 1.60e-04 2.84e-05 3.63e-04 5355 7.06e-05 1.06e-05 1.88e-04
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Figure 2. Computed control on adaptive meshes for ε = 10−2 (left) and ε = 10−3 (right).
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[2] I. Babuška, W. C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978)

736–754.
[3] R. Becker, H. Kapp, R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: Basic

concepts, SIAM J. Control and Optimization 39 (2000) 113–132.

[4] F. Belgacem, H. E. Fekih, H. Metoui, Singular perturbation for the Dirichlet boundary control of elliptic problems, M2AN
Math. Model. Numer. Anal. 37 (2003) 883–850.

[5] O. Benedix, B. Vexler, A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints,

Comput. Optim. App. 44 (1) (2009) 3–25.
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