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Abstract. We considerH(curl; Ω)-elliptic problems that have been discretized by means of Nédélec’s
edge elements on tetrahedral meshes. Such problems occur in the numerical computation of eddy
currents. From the defect equation we derive localized expressions that can be used as a posteriori
error estimators to control adaptive refinement. Under certain assumptions on material parameters
and computational domains, we derive local lower bounds and a global upper bound for the total error
measured in the energy norm. The fundamental tool in the numerical analysis is a Helmholtz-type
decomposition of the error into an irrotational part and a weakly solenoidal part.

Résumé. Nous considérons des estimateurs d’erreur a posteriori efficaces et fiables pour l’approxima-
tion des champs électromagnetiques par la méthode des éléments finis curl-conformes. En particulier,
en utilisant les éléments à arêtes de Nédélec sur des maillages tétrahédraux, nous dériverons des bornes
inférieures locales et une borne supérieure globale pour l’erreur totale mesurée à la norme d’espace
H(curl; Ω). Le moyen fondamental en analyse numérique est une décomposition d’Helmholtz de
l’erreur en une part irrotative et une part faiblement solenöıdale.
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1. Introduction

The computation of quasistatic electromagnetic fields in conductors usually employs the eddy current model
[2, 5, 23, 33]. For the transient case, if we use formulations based on the electric field, we end up with the
degenerate parabolic initial-boundary value problem

∂t(σE) + curlχ curlE = −∂tj in Ω
E× n = 0 on Γ := ∂Ω
E(., 0) = E0 in Ω .

(1)

Here the unknown quantity is the electric field E : Ω × [0, T ] 7→ R
3 and Ω ⊂ R

3 stands for a connected
bounded polyhedral computational domain. Though the equations are initially posed on the entire space R

3,

Keywords and phrases. Residual based a posteriori error estimation, Nédélec’s edge elements, Helmholtz decomposition, eddy
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Figure 1. A model problem for eddy current computation (cf. Chap. 8 in [24]).

we can switch to a bounded domain by introducing an artificial boundary sufficiently removed from the region
of interest. This is commonplace in engineering simulations [29].

Further, χ ∈ L∞(Ω) denotes the bounded uniformly positive inverse of the magnetic permeability. We confine
ourselves to linear isotropic media, i.e. χ is a scalar function of the spatial variable x ∈ Ω only. Hence, for
some χ, χ̄ > 0 holds 0 < χ ≤ χ ≤ χ̄ a.e. in Ω. We rule out anisotropy also for the conductivity σ ∈ L∞(Ω),
for which holds σ ≥ 0 a.e. in Ω. Usually, there is a crisp distinction between conducting regions, where σ is
bounded away from zero, and insulating regions, where σ = 0. We will take for granted that σ ≥ σ > 0, for
some bound σ > 0, wherever σ 6= 0. The right-hand side j = j(x, t) is a time-dependent vectorfield in L2(Ω),
which represents the source current. For physical reasons div j(t, .) = 0 a.e. in Ω and for all times. We remark
that in many applications the exciting current, for instance the current in a coil, is provided through an analytic
expression. A typical arrangement is depicted in Figure 1.

We remark that (1) is an ungauged formulation, as we have already dropped the divergence constraint
div E = 0. Obviously, this forfeits uniqueness of the solution in parts of the domain where σ = 0. However, the
only relevant quantity there is curlE, which remains unique. Where E is of interest, inside the conductor, we
have σ > 0. There E is unique and div E = 0 is satisfied due to the solenoidality of the right-hand side.

For the sake of stability, timestepping schemes for (1) have to be L-stable [38]. This requirement can only be
met by implicit schemes like SDIRK-methods. In each timestep they entail the solution of a degenerate elliptic
boundary value problem of the form

curlχ curl u + βu = f in Ω
u× n = 0 on ∂Ω .

(2)

In this context, u denotes the new approximation to E to be computed in the current timestep, and f depends on
j and the approximation of E in the previous timestep. Note that we can still assume div f = 0. The coefficient
β agrees with σ except for a scaling by the length of the current timestep; accordingly, 0 < β ≤ β ≤ β̄ a.e. in
ΩC .

Problem (2) cast in weak form yields a variational problem in the Hilbert space H(curl; Ω) of L2(Ω)-
vectorfields whose curl is square integrable:

Find u ∈ H0(curl; Ω) such that

(χ curl u, curl q)L2(Ω) + (βu,q)L2(Ω) = (f ,q)L2(Ω) , ∀q ∈ H0(curl; Ω) . (3)

A subscript 0 indicates that vanishing tangential traces on ∂Ω are imposed on the fields (for details on traces
see, e.g. [4, 37]).

For β uniformly positive a.e. in Ω the Lax-Milgram lemma guarantees existence and uniqueness of a solution
of (3). If β = 0 on sets of positive measure, we can still expect a unique solution in the quotient space
H0(curl; Ω)/Ker(curl).
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It is now generally accepted that an appropriate finite element discretization of (3) should rely on gen-
uine H(curl; Ω)-conforming schemes that merely enforce the typical tangential continuity of the field across
interelement boundaries [3, 21, 22]. For simplicial meshes H(curl; Ω)-conforming finite elements of arbitrary
polynomial order were first introduced by Nédélec [49], generalizing the lowest order Whitney elements [56].
Similar schemes are also known for other shapes of elements [34, 49]. For all of them standard a priori error
bounds can be established [47, 48, 52]. Ultimately, the discretization of (3) by these so-called edge elements
leads to a large sparse system of equations for the degrees of freedom of the finite element space. Usually, an
approximate solution can only be obtained by iterative methods [28, 39].

Denoting by uh the exact solution of the discretized problem and by ũh some iterative approximation, we are
interested in an efficient and reliable residual based a posteriori error estimator for the total error e := u− ũh

with respect to relevant norms. The most significant is the energy (semi)norm ‖·‖E;Ω related to problem (1)
defined by

‖u‖2
E;Ω := (χ curl u, curl u)L2(Ω) + (βu,u)L2(Ω) , u ∈ H0(curl; Ω) .

In the current context, local a posteriori error estimation serves two purposes. Firstly, the error estimator can
be used for adaptive local refinement and coarsening of the underlying triangulation. Since the fields feature
strong singularities at reentrant corners [31] and at irregular material interfaces [32], a higher resolution of
the mesh in these zones is desirable. Precisely how much can only be concluded on the basis of information
about the local error. Secondly, information about the accuracy of the finite element solution is also required
to balance the spatial and temporal errors in the context of adaptive timestepping for the original parabolic
problem [17,18].

We note that a posteriori error estimators for adaptive local grid refinement are well established tools in
the efficient numerical solution of elliptic boundary value problems. In the framework of standard conforming
finite element approaches we acknowledge the pioneering work due to Babuska and Rheinboldt [8, 9] and the
more recent articles [11, 12, 35, 36, 54, 57]. Further references can be found in the survey article by Bornemann
et al. [19] and in the excellent monography by Verfürth [55]. In the context of nonconforming techniques we
mention [41,43]. For mixed finite element methods involving Raviart-Thomas elements we refer to [1,25,26,42,
44,45]. However, as far as finite element approximations based on Nédélec’s curl-conforming edge elements are
concerned, to the authors’ knowledge no work on a posteriori error estimation has been done so far.

The paper is organized as follows. In Section 2, we will introduce the curl-conforming approximation of (3)
by Nédélec’s edge elements. In addition we are going to supply a few technical devices required for the proofs.
Then, in Section 3, we consider the variational problem satisfied by the total error e and state the main result of
this paper in terms of a cheaply computable, efficient and reliable a posteriori error estimator for ‖e‖E;Ω. As the
main tool we will use a Helmholtz type decomposition of e into a curl-free part e0 and a “β–weakly solenoidal”
part e⊥. In particular, Section 4 contains the estimation of the irrotational part e0 whereas Section 5 is devoted
to the weakly solenoidal part e⊥. In both cases, the estimates result from an evaluation of the residuum with
respect to a dual norm. In the final section we report on numerical experiments that examine the performance
of the error estimator for a wide range of model problems.

2. Finite element spaces

We consider the finite element approximation of (3) by means of Nédélec’s edge elements with respect to a
hierarchy Thk

, k ∈ N0, of simplicial triangulations of Ω generated by successive local refinement of an initial
coarse triangulation Th0 . We use the standard refinement process developed by Bank et al. [10, 11] in the
2D case which has been extended to the 3D setting in [16, 50] (cf. also [19]). Alternative schemes are also
available [7, 13, 46]. For a description of the refinement strategies we refer to the literature cited above.

We demand that the coarsest mesh Th0 can resolve the boundaries of the conductors. This means that any
element either entirely belongs to the conducting region or to the nonconducting region.
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We fix some Thk
within the hierarchy and, for notational convenience, omit the lower index k, i.e., Th := Thk

.
For D ⊆ Ω̄, the sets of vertices, edges and faces in D are denoted by Nh(D), Eh(D) and Fh(D), respectively. If
D = Ω̄, we will simply write Nh, Eh,Fh and refer to N int

h , E int
h ,F int

h and NΓ
h , EΓ

h ,FΓ
h as the sets of vertices, edges

and faces located in the interior of Ω and on the boundary Γ, respectively. Those interior edges that belong to
Ω̄C constitute the set FC

h and for the set of elements in Ω̄C we write T C
h .

All the edges have to be endowed with a fixed internal orientation (direction). We denote by hT and hF

the maximal diameter of an element T ∈ Th and a face F ∈ Fh. Since the refinement rules imply regularity
and local quasiuniformity of the hierarchy of triangulations (cf. [16]), there exist constants κ1 > 0 and κ2 > 0
depending only on the local geometry of the initial triangulation T0 := Th0 such that

hT ′ ≤ κ1hT for T, T
′ ∈ Th, T ∩ T

′ 6= ∅
hF ≤ κ2hT for F ∈ Fh(T ) .

(4)

Following Nédélec’s construction of simplicial edge elements in [49], we denote by Pk(D), k ≥ 0, the linear space
of multivariate polynomials of degree ≤ k on D, and refer to P̃k(D), k ≥ 0, as the subspace of homogeneous
polynomials of degree k. We define

Sk(D) := {p ∈ P̃k(D)3, 〈x,p〉 :=
3∑

i=1

xipi = 0}, k ≥ 1 .

Then, for T ∈ Th and k ≥ 1, the local space for the Nédélec element is given by

NDk(T ) := Pk−1(D)3 ⊕ Sk(D) .

In the special case of lowest order edge elements, k = 1, we find the representation

ND1(T ) := {x 7→ a + b× x , a,b ∈ R
3} . (5)

Appropriate degrees of freedom are provided by linear functionals on NDk(T ) of the form (cf. e.g. [49])

(i) q 7→
∫

E
〈q, t〉 p ds , p ∈ Pk−1(E), E ∈ Eh(T ) ,

(ii) q 7→
∫

F 〈q× n,p〉 dσ , p ∈ Pk−2(F )2, F ∈ Fh(T ) ,

(ii) q 7→
∫

T
〈q,p〉 dx , p ∈ Pk−3(T )3.

Here, polynomial spaces with negative degree are supposed to be empty. This specification of the degrees of
freedom ensures that the global finite element space NDk(Ω; Th) is contained in H(curl; Ω). Then, setting

NDk,0(Ω; Th) := NDk(Ω; Th) ∩H0(curl; Ω) ,

the curl-conforming finite element approximation of (3) is as follows: Find uh ∈ NDk,0(Ω; Th) such that

(χ curl uh, curl qh)L2(Ω) + (βuh,qh)L2(Ω) = (f ,qh)L2(Ω) ∀qh ∈ NDk,0(Ω; Th) . (6)

We recall that Nédélec’s finite elements provide affine equivalent families of finite elements in the sense of [27],
if the vectorfields are subjected to a covariant transformation: For any T ∈ Th write Φ : T̂ 7→ T for the affine
mapping of a fixed reference tetrahedron T̂ to T and define

F(v)(x̂) := DΦT (x̂)v(Φ(x̂)) , x̂ ∈ T̂ . (7)
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Then it turns out that NDk(T̂ ) = F(NDk(T )) and the degrees of freedom are invariant under the transfor-
mation (7).

Edge elements provide one specimen of discrete differential forms [20, 40]. This accounts for the exceptional
property that the result that every curl–free vectorfield on a contractible domain is a gradient is preserved in
purely discrete context. The role of the potentials is played by Lagrangian finite element functions

Sk,0(Ω; Th) := {φh ∈ C0(Ω), φh|∂Ω = 0, φh|T ∈ Pk(T )} ·

The following lemma is a special case of Theorem 20 of [40].

Lemma 1 (Discrete potentials). If the boundary ∂Ω is connected, then for any qh ∈ NDk,0(Ω; Th), k ≥ 1,
with curl qh = 0 there exists a unique φh ∈ Sk,0(Ω; Th) such that qh = gradφh.

3. Residual based error estimator

We assume that ũh ∈ NDk,0(Ω; Th) is some iterative approximation of the unique solution uh of the curl-
conforming finite element solution of (6). It can be obtained, for instance, by the multigrid iterative solution
process as developed in [39]. Denoting the total error by e := u − ũh, it is easy to see that e ∈ H0(curl; Ω)
satisfies the defect equation

(χ curl e, curl q)L2(Ω) + (βe,q)L2(Ω) = r(q) ∀q ∈ H0(curl; Ω) , (8)

where r(·) stands for the residual

r(q) := (f ,q)L2(Ω) − (χ curl ũh, curl q)L2(Ω) − (βũh,q)L2(Ω) , q ∈ H0(curl; Ω) . (9)

The construction of the error estimator will be based on a direct splitting of the function space H0(curl; Ω)

H0(curl; Ω) = H0
0(curl; Ω)⊕H⊥

0 (curl; Ω) . (10)

It may be labelled a “β–orthogonal” Helmholtz type decomposition, since we require
• Both H0

0(curl; Ω) and H⊥
0 (curl; Ω) are closed subspaces of H0(curl; Ω).

• H0
0(curl; Ω) := {q ∈ H0(curl; Ω) ; curl q = 0} is the kernel of the curl operator.

•
(
βq⊥,q0

)
L2(Ω)

= 0 for all q0 ∈ H0
0(curl; Ω), q⊥ ∈ H⊥

0 (curl; Ω).

Evidently, a decomposition complying with these requirement is also orthogonal with respect to the energy
seminorm.

The following procedure furnishes a splitting of q ∈ H0(curl; Ω) according to (10): First decompose q|ΩC
=

u0 ⊕ ũ⊥, where u0, ũ⊥ ∈ H(curl; ΩC) and
(
βu0, ũ⊥

)
L2(ΩC)

= 0, curl u0 = 0. If meas(∂Ω ∩ ∂ΩC) > 0, we
also require that u0, ũ⊥ have vanishing trace on ∂Ω. Write u⊥ for the H(curl; Ω)-extension (cf. [4]) of ũ⊥

to Ω. Then, let v⊥ be the unique vectorfield in H0(curl; Ω/ΩC) such that curl v⊥ = curl q − curl u⊥ and
v⊥⊥Ker(curl) in H0(curl; Ω/ΩC). Finally set

q⊥ :=
{

ũ⊥ in ΩC

v⊥ + u⊥ in Ω/ΩC .

The functions q⊥ thus constructed form a closed subspace of H0(curl; Ω). This can be seen by completeness
arguments.
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Unfortunately, mere existence of such a decomposition is not enough; our theoretical examinations hinge on
the following assumption:

Assumption 2. We assume that a splitting (10) with the above features can be found such that H⊥
0 (curl; Ω)

is continuously embedded in H1(Ω) ∩H0(curl; Ω) and, moreover,∣∣q⊥∣∣
H1(Ω)

≤ C(Ω)
∥∥curl q⊥

∥∥
L2(Ω)

∀q⊥ ∈ H⊥
0 (curl; Ω) .

Thus far, the statement of this assumption can be shown only if ΩC = Ω and β, χ are continuously dif-
ferentiable and uniformly bounded away from zero [6, 37]. In this case we simply use the true Helmholtz-
decomposition.

A characterization of the kernel of the curl-operator is provided by the continuous version of Lemma 1
(cf. [37]):

Lemma 3. For any q ∈ H0
0(curl; Ω) there exists a unique φ ∈ H1

0 (Ω) such that q = gradφ, provided that the
boundary Γ of Ω is connected.

If Γ is not connected, i.e. Ω has embedded cavities, the entire kernel of curl is not provided by gradH1
0 (Ω).

This is only true modulo a space of small dimension (see Prop. 3.12 in [6]). To avoid technical difficulties we
do not allow cavities in Ω.

By means of the decomposition (10) we may split the total error according to e = e0 + e⊥, where e0 ∈
H0

0(curl; Ω) and e⊥ ∈ H⊥
0 (curl; Ω). We note that e0 represents the curl-free part of the total error whereas

e⊥ stands for a “β-weakly solenoidal” part. As a matter of course, e0 is only meaningful in ΩC .
It readily follows from (8) that e0 and e⊥ are the unique solutions of the variational equations(

βe0,q0
)
L2(Ω)

= r(q) ∀q0 ∈ H0
0(curl; Ω) ,(

χ curl e⊥, curl q⊥
)
L2(Ω)

+
(
βe⊥,q⊥

)
L2(Ω)

= r(q) ∀q⊥ ∈ H⊥
0 (curl; Ω) .

(11)

The irrotational and the β–weakly solenoidal part of the error will be estimated separately. For simplicity,
throughout the rest of this paper we assume the functions χ and β to be elementwise constant.

As far as the irrotational part e0 is concerned, the estimate is based on the evaluation of the residual r(·)
restricted to H0

0(curl; Ω) = gradH1
0 (Ω). In particular, exploiting that f is solenoidal, Green’s formula yields

r(grad v) =
∑

T∈Th

(f − βũh,grad v)L2(T )

=
∑

T∈T C
h

(div βũh, v)L2(T ) −
∑

F∈FC
h

([〈n, βũh〉]J , v)L2(F ) ,

where [〈n, βũh〉]J denotes the jump of the normal component of the vector field βũh across the interelement
face F ∈ F int

h . It is defined as follows: If F ∈ F int
h is the common face of two adjacent elements Tin, Tout ∈ Th

and n denotes the unit normal vector on F directed towards the interior of Tin, then

[〈n,q〉]J := 〈n,q〉|F⊂Tout
− 〈n,q〉|F⊂Tin

.

Note that [〈·,n〉]J does not depend on the specification of Tin and Tout.
As will be shown in Section 4, the upper and lower bounds for

∥∥e0
∥∥

L2(Ω)
involve the error terms

η(0) :=

 ∑
T∈T C

h

(ηT
0 )2

1/2

+

 ∑
F∈FC

h

(ηF
0 )2

1/2

, (12)



RESIDUAL BASED A POSTERIORI ERROR ESTIMATORS FOR EDDY CURRENT COMPUTATION 165

whose local contributions ηT
0 , ηF

0 are given by

ηT
0 := hT

∥∥div
√
βũh

∥∥
L2(T )

, T ∈ T C
h ,

ηF
0 := h

1/2
F

∥∥∥∥ 1√
βA

[〈n, βũh〉]J
∥∥∥∥

L2(F )

, F ∈ FC
h ,

where βA is defined as the average on F , βA := 0.5(β|Tout
+ β|Tin

). The scaling in the different terms of the
error estimator corresponds to the fact that we measure the error in the energy norm. For elements and faces
outside Ω̄C , we formally set the contributions ηT

0 and ηF
0 to zero.

The upper bound also involves the iteration error

η
(0)
it :=

∥∥∥√β(uh − ũh)
∥∥∥

L2(Ω)
. (13)

On the other hand, concerning bounds for e⊥, for q ∈ H⊥
0 (curl; Ω) the residual r(q) can be written as

r(q) =
∑

T∈Th

{
(f − βũh,q)L2(T ) − (χ curl ũh, curl q)L2(T )

}
=

∑
T∈Th

(f − curlχ curl ũh − βũh,q)L2(T ) −
∑

F∈F int
h

([n× χ curl ũh]J ,q)L2(F ) .

We note that a localization of the residual is not feasible due to the global character of the space H⊥
0 (curl; Ω).

Instead, we will use a localization by means of an interpolation with respect to the entire discrete space
NDk,0(Ω; Th). As we shall see in Section 5, this is at the expense of a coupling between e0 and e⊥. However,
this will not thwart the primary goal of obtaining an efficient and reliable estimate of the total error in the
energy norm. In particular, the bounds for

∥∥e⊥∥∥
E;Ω

comprise the error terms

η
(1)
1 :=

(∑
T∈Th

(ηT
1;1)

2

)1/2

+

 ∑
F∈F int

h

(ηF
1 )2

1/2

, (14)

η2 :=

(∑
T∈Th

(ηT
1;2)

2

)1/2

, (15)

with the local contributions ηT
1;ν , 1 ≤ ν ≤ 2, and ηF

1 given by

ηT
1;1 := hT

∥∥∥∥ 1
√
χ

(πhf − curlχ curl ũh − βũh)
∥∥∥∥

L2(T )

, T ∈ Th ,

ηT
1;2 := hT

∥∥∥∥ 1
√
χ

(f − πhf)
∥∥∥∥

L2(T )

, T ∈ Th ,

ηF
1 := h

1/2
F

∥∥∥∥ 1
√
χA

[n× χ curl ũh]J

∥∥∥∥
L2(F )

, F ∈ F int
h ,

where χA is defined as the average on F , χA := 0.5(χ|Tout
+ χ|Tin

). Here, πhf denotes the L2-projection of f
onto

∏
T∈Th

Pk(T )3.
Again, the iteration error

η
(1)
it := ‖uh − ũh‖E;Ω (16)
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will enter the upper bound. Be aware that using a fast asymptotically optimal iteration scheme, we can quickly
tell the truncation error from the size of the correction to the current iterate. Good bounds for η(0)

it and η
(1)
it

are at our disposal, thus.
As the main result of this paper we state the following a posteriori estimate for the total error e measured

in the energy norm.

Theorem 4. Let η1 := η(0) + η
(1)
1 , ηit := η

(1)
it + η

(0)
it with η(0), η(1)

1 , η(1)
it , η(0)

it given by (13), (12), (14), and
(16), respectively. If assumption 2 holds true, then there exist constants γν ,Γν > 0, 1 ≤ ν ≤ 2, depending only
on Ω, χ , β, χ̄ , β̄ and on the local geometry of Th0 such that

γ1η1 − γ2η2 ≤ ‖e‖E;Ω ≤ Γ1(η1 + η2) + Γ2ηit .

Eventually, we need an estimate for the energy of the error on each element. Such an element oriented error
estimator can be constructed by assigning half of the contribution of a face to either adjacent element. To
offset the impact of jumps in the coefficients it is advisable to resort to additional scaling. As the actual error
estimator we then get for each T ∈ Th

η̂2
T := (ηT

0 )2 + (ηT
1;1)

2 +
∑

F∈F(T )∩F int
h

β|T
2βA

(ηF
0 )2 +

χ|T
2χA

(ηF
1 )2 . (17)

Here βA and χA stand for the averages of the material parameters β and χ over the two elements adjacent to
the face F .

Since only local information is needed, the evaluation of η̂T is cheap. Low order numerical quadrature is
sufficient to compute the local norms. Of course ηT

1;2 is elusive, but πh has been chosen such that for smooth f
this quantity can be expected to decrease faster than the other contributions to the error estimator.

For lowest order edge elements and locally constant coefficients, we can capitalize on the simple local ansatz
space (5). First note that it contains only piecewise linear, divergence-free vectorfields. Therefore, χ curl ũh is
locally constant and we end up with the simplified local error estimator

η̂2
T =

h2
T

χ|T
‖πhf − βũh‖2

L2(T ) +
∑

F∈Fh(T )∩F int
h

1
2
hF

(
β|T
βA

‖[〈n, βũh〉]J‖
2
L2(F ) +

χ|T
χA

‖[n× χ curl ũh]J‖
2
L2(F )

)
.

(18)

Here, πh can be a suitable interpolation onto the space of piecewise linear vectorfields. Moreover, Gaussian
quadrature formulas that are exact for quadratic polynomials on T and F , respectively, can be used to evaluate
all the norms. Thus, only the values of degrees of freedom in a neighborhood of T and the local geometry of
the mesh will show up in an explicit expression for η̂2

T .

4. Estimator of the irrotational part of the error

Here, we will consider the irrotational part e0 of the error e. Upper and lower bounds for
(
βe0, e0

)
L2(Ω)

will be established by means of η(0) and the iteration error. The starting point for the error analysis is the
variational problem (11). The defect problem (8) restricted to the curl-free subspace of H0(curl; Ω) gives rise
to the following uniformly positive definite variational problem on H1

Γ(ΩC):
Find ψ ∈ H1

Γ(ΩC) such that

(β gradψ,gradφ)L2(ΩC) = r(grad φ) =: r̃(φ) ∀φ ∈ H1
Γ(ΩC). (19)
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Here, the space H1
Γ(ΩC) is defined as follows:

H1
Γ(ΩC) :=

{
{v ∈ H1(ΩC)| (1, v)L2(ΩC) = 0}, if meas (∂ΩC ∩ ∂Ω) = 0
{v ∈ H1(ΩC)| v|∂ΩC∩∂Ω = 0}, if meas (∂ΩC ∩ ∂Ω) 6= 0,

and the residual r(·) is defined in (9). Thanks to Lemma 3 we have e0 = gradψ in ΩC . We will also write ψ
for the harmonic extension to a function in H1

0 (Ω).
Following the same lines as in the H1(Ω)-elliptic setting [55], the dual norm of r̃(·) restricted on H1

Γ(ΩC)
provides bounds for

(
βe0, e0

)
L2(Ω)

. The upper bound for
(
βe0, e0

)
L2(Ω)

is obtained by applying Green’s formula.
Observing Lemma 1 and Galerkin orthogonality

r̃(ψh) = (β(ũh − uh),gradψh)L2(ΩC) , ψh ∈ Sk(ΩC ; Th)·

Here, Sk(ΩC ; Th) ⊂ H1
Γ(ΩC) denotes the Pk conforming finite element space. We find for ψh ∈ Sk(ΩC ; Th)(

βe0, e0
)
L2(Ω)

= r̃(ψ − ψh) + (β(uh − ũh),gradψh)L2(ΩC) . (20)

In particular, r̃(ψh) = 0 if the iteration error uh− ũh is zero. Upper bounds for the right side are obtained by a
suitable choice of ψh. We set ψh := P k

hψ, where P k
h : H1

Γ(ΩC) −→ Sk(ΩC ; Th) is a locally defined projection-like
operator satisfying approximation and stability properties

P k
hφh = φh, φh ∈ Sk(ΩC ; Th),∥∥φ− P k

hφ
∥∥

L2(T )
≤ ChT ‖gradφ‖L2(DT ) , (21)∥∥φ− P k

hφ
∥∥

L2(F )
≤ C

√
hF ‖gradφ‖L2(DF ) , (22)∥∥gradP k

hφ
∥∥

L2(T )
≤ C ‖gradφ‖L2(DT ) . (23)

Here, DT and DF contain all elements in Th sharing at least one vertex with T and F , respectively. Such
operators can be defined preserving boundary conditions by the use of dual basis functions. We refer to [51,53]
for more details. In the case of a posteriori error estimates, the interpolation operator of Clément is very often
used [30]. However, the Clément operator restricted on Sk(ΩC ; Th) is not the identity. Using Green’s formula,
the approximation properties (21), (22) of P k

h , and div f = 0, we get

r̃(ψ − P k
hψ) =

∑
T∈T C

h

(
div βũh, ψ − P k

hψ
)
L2(T )

−
∑

F∈FC
h

(
[〈n, βũh〉]J , ψ − P k

hψ
)
L2(F )

≤ C

 ∑
T∈T C

h

h2
T

∥∥∥div
√
βũh

∥∥∥2

L2(T )


1
2 ∥∥∥√βe0

∥∥∥
L2(ΩC)

+ C

 ∑
F∈FC

h

hF√
βA

‖[〈n, βũh〉]J‖
2
L2(F )


1
2 ∥∥∥√βe0

∥∥∥
L2(ΩC)

.

Here, we set [〈n, βũh〉]J |F := 0 if F ⊂ ∂ΩC ∩ ∂Ω and [〈n, βũh〉]J |F := βũhnT if F ⊂ ∂ΩC \ ∂Ω, F ⊂ ∂T . An
upper bound for the second term on the right side of (20) is obtained by means of (23). The stability of the
projection-like operator P k

h yields(
β(ũh − ũh),gradP k

hψ
)
L2(ΩC)

≤ C
∥∥∥√β(uh − ũh)

∥∥∥
L2(ΩC)

∥∥∥√βe0
∥∥∥

L2(ΩC)
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and thus ∥∥∥√βe0
∥∥∥

L2(ΩC)
≤ C

(
η(0) + η

(0)
it

)
.

We point out that in the proof for the upper bound of
∥∥√βe0

∥∥
L2(ΩC)

, the stability and approximation properties
of a suitable quasi-interpolation operator from H1

Γ(ΩC) onto Sk(ΩC ; Th) play an important role.
We establish the lower bound exploiting properties of local bubble functions: Two different types of bubble

functions λT and λF defined on T are used. We set

λT := 256
4∏

l=1

λl;T , λF := 27
3∏

l=1

λFl;T ,

where λl;T , 1 ≤ l ≤ 4 are the barycentric coordinates of T associated with the vertices pl. The face F is spanned
by the vertices pFl

, 1 ≤ l ≤ 3 of T . We set out from the following norm equivalences∥∥∥λ1/2
T φh

∥∥∥
L2(T )

≤ ‖φh‖L2(T ) ≤ C
∥∥∥λ1/2

T φh

∥∥∥
L2(T )

∀φh ∈ Pk(T )∥∥∥λ1/2
F φh

∥∥∥
L2(F )

≤ ‖φh‖L2(F ) ≤ C
∥∥∥λ1/2

F φh

∥∥∥
L2(F )

∀φh ∈ Pk(F ).
(24)

The independence of the constants of the elements and faces can be seen by an affine equivalence argument. The
two local components of the error estimator are estimated separately. In a first step, we consider the element
oriented contribution and show local upper bounds for ηT

0 . Using (24), an inverse inequality and taking into
account that λT = 0 on the boundary of T , we find

(ηT
0 )2

h2
T

=
∥∥∥div

√
βũh

∥∥∥2

L2(T )
≤ C

∫
T

1
β

(div βũh)2λT dx

≤ −C
∫
T

β 〈ũh,grad(λT div ũh)〉 dx = C r(λT div ũh)

≤ −C
(
βe0,grad(λT div ũh)

)
L2(T )

≤ C
∥∥∥√βe0

∥∥∥
L2(T )

∥∥∥grad(λT div
√
βũh)

∥∥∥
L2(T )

≤ C

hT

∥∥∥√βe0
∥∥∥

L2(T )

∥∥∥div
√
βũh

∥∥∥
L2(T )

.

Local upper bounds for ηF
0 are obtained in a similar fashion. The basic tools to establish the bounds are (24),

Green’s formula and an inverse estimate. Let T1 and T2 be the elements such that ∂T1 ∩ ∂T2 = F . Then we
can transform the L2-norm on F into an integral on T1 and T2:

(ηF
0 )2

hF
=

∥∥∥∥ 1√
βA

[〈n, βũh〉]J
∥∥∥∥2

L2(F )

≤ C

∫
F

1
βA

[〈n, βũh〉]2J λF dσ

≤ C

βA

2∑
i=1

∫
Ti

(
β
〈
ũh,grad([〈n, βũh〉]J;Ti

λF )
〉

+ div βũh [〈n, βũh〉]J;Ti
λF

)
dx.

Here, the function [〈n, βũh〉]J on F is extended by a continuous piecewise polynomial function [〈n, βũh〉]J;Ti
to

T1 ∪ T2 such that ∥∥∥[〈n, βũh〉]J;Ti

∥∥∥
L2(Ti)

≤ Ch
1/2
Ti

‖[〈n, βũh〉]J‖L2(F ) .
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Now, we are in a position to give an upper bound for ηF
0 by means of ηT

0 and e0

(ηF
0 )2

hF
≤ C

2∑
i=1

(
h
−1/2
Ti

∥∥∥√βe0
∥∥∥

L2(Ti)
+ h

1/2
Ti

∥∥∥div
√
βũh

∥∥∥
L2(Ti)

)
ηF
0

h
1/2
F

·

Using the upper bound for ηT
0 , we finally obtain an upper bound for ηF

0 in terms of
∥∥√βe0

∥∥
L2(T1∪T2)

, and thus

ηT
0 +

∑
F⊂∂T

ηF
0 ≤ C

∥∥∥√βe0
∥∥∥

L2(ΩT )
,

where ΩT is the union of all elements T ′ sharing at least one face with T . Keep in mind that C > 0 does not
depend on the meshsize. This is the desired local lower bound for the curl-free part of the error.

5. Estimation of the β-weakly solenoidal part of the error

To establish upper bounds for the “β-weakly solenoidal” part e⊥ of the error, we basically follow the same
ideas as before. Now, we have to apply Green’s formula for the curl-operator. Furthermore, the scalar locally
defined quasi-interpolation operator P k

h will be replaced by a vector-valued counterpart Pk
h. Again, nodal

interpolation is not suitable, since the degrees of freedom located on edges cannot be extended to continuous
functionals on H1(Ω) [6].

Lemma 5. For T ∈ Th, F ∈ F int
h and E ∈ E int

h , let D1
T , D1

F , and DE be given by

DE := ∪{T ∈ Th , E ∈ Eh(T )} ,
D1

T := ∪{DE , E ∈ Eh(T )} ,
D1

F := ∪{DE , E ∈ Eh(F )} .

There exists a linear projection Pk
h : H1(Ω) ∩H0(curl; Ω) 7→ NDk,0(Ω; Th) such that for all q ∈ H1(Ω)∥∥Pk

hq
∥∥

L2(T )
≤ d1 ‖q‖H1(D1

T ) , (25)∥∥curlPk
hq
∥∥

L2(T )
≤ d2 |q|H1(D1

F ) , (26)∥∥q−Pk
hq
∥∥

L2(T )
≤ d3hT |q|H1(D1

T ) , (27)∥∥q−Pk
hq
∥∥

L2(F )
≤ d4

√
hF |q|H1(D1

F ) , (28)

where the constants d1, d2, d3, d4 > 0 do neither depend on q nor on T , but only on the shape regularity of the
mesh Th.

Proof. Details will only be given for the lowest order case k = 1, where the degrees of freedom are plain path
integrals along the edges of the elements. We adopt the notation wE , E ∈ Eh, for the canonical basis function
of ND1(Ω; Th) attached to edge E.

Pick any F ∈ Fh with vertices {a1,a2,a3} and edges {E1, E2, E3} = Eh(F ). With ei, i = 1, 2, 3, we abbreviate
the length of the edge Ei and set s2 := e21 + e22 + e23. Then define A := (aij) ∈ R

3,3 by

A = 6

3/4s2 − e21 1/4s2 − e23 1/4s2 − e22
1/4s2 − e23 3/4s2 − e22 1/4s2 − e21
1/4s2 − e22 1/4s2 − e21 3/4s2 − e23

−1e−1
1 0 0
0 e−1

2 0
0 0 e−1

3

 (29)
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and set

φF
j (x) := ±

3∑
k=1

akj(x− ak) , x ∈ T . (30)

The sign takes into account the orientation of the edges, which will be irrelevant for our considerations. Straight-
forward computations show

∫
F

〈
wEi(·)× n,φF

j (·)
〉

dσ = δij , i, j = 1, 2, 3 . (31)

Following this procedure, for each face F we construct three functions φF
E , E ∈ Eh(F ), indexed by the edges of

the face, so that they satisfy relations like (31).
Next, to each E ∈ Eh we assign one of its adjacent faces and call it FE ∈ Fh. We have to comply with the

restriction that for E ∈ EΓ
h also FE ∈ FΓ

h . Then we can define

Pk
h(q) :=

∑
E∈Eh

∫
FE

〈
q(·)× n,φF

E(·)
〉

dσ ·wE . (32)

By virtue of (31) this defines a projection. Obviously, boundary conditions are respected.
From the formulas (29) and (30) we conclude that

∥∥∥φF
E

∥∥∥
L∞(F )

≤ Ch−2
F ⇒

∥∥∥φF
E

∥∥∥
L2(F )

≤ Ch−1
F .

Here C > 0 represents a generic constant that depends on the angles of the face only. Thanks to shape
regularity of Th, this means that the constants can be chosen independently of F . As all φF

E , E ∈ Eh(F ), are
linear polynomials, the inverse estimate

∥∥∥φF
E

∥∥∥
H− 1

2 (F )
≤ Ch

−1/2
F

∥∥∥φF
E

∥∥∥
L2(F )

, E ∈ Eh(F ) , (33)

follows from shape regularity. It yields for all E ∈ Eh(F ), F ∈ Fh,

∫
F

〈
q(·) × n,φF

E(·)
〉

dσ ≤ ‖q‖
H

1
2 (F )

∥∥∥φF
E

∥∥∥
H− 1

2 (F )

≤ Ch
−1/2
F ‖q‖

H
1
2 (F )

≤ Ch−1/2 ‖q‖H1(D1
F ) .

Now, consider T ∈ Th and recall that, again as a consequence of shape regularity, for vh ∈ ND1(Ω; Th) we have
(cf. [39])

‖vh‖2
L2(T ) ≤ ChT

∑
E∈Eh(T )

∣∣∣∣∫
E

〈vh, tE〉 ds
∣∣∣∣2 .
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Combining this with estimate (33) and the definition (32) we end up with the estimate (25):

‖Phq‖2
L2(T ) ≤ ChT

∑
E∈Eh(T )

∣∣∣∣∣∣
∫

FE

〈
q(·)× n,φF

E(·)
〉

dσ

∣∣∣∣∣∣
2

≤ ChT

∑
E∈Eh(T )

h−1
FE

‖q‖2
H1(D1

F )

≤ C ‖q‖2
H1(D1

T ) .

The final estimate is possible, as shape regularity ensures that the number of elements sharing an edge is
uniformly bounded.

To get the remaining estimates (26)–(28), we have to resort to affine equivalence techniques, mapping T to a
reference simplex, where a Bramble-Hilbert argument (cf. [27]) is available. We will skip the technicalities and
refer to [52] for an application of those tricks to edge elements.

When we compare the properties of P k
h and Pk

h, we see that both operators are stable and possess the same
approximation properties. The variational problem (11) yields an expression for the energy norm of e⊥:∥∥e⊥∥∥2

E;Ω
= r(e⊥) = r(e⊥ −Pk

he
⊥) + r(Pk

he
⊥).

We apply Green’s formula on the first term on the right side and find

r(e⊥ −Pk
he
⊥) =

∑
T∈Th

(
f − βũh − curl(χ curl ũh), e⊥ −Pk

he
⊥)

L2(T )

−
∑

F∈F int
h

(
[n× χ curl ũh]J , e

⊥ −Pk
he
⊥)

L2(F )
.

By means of the approximation properties (27), (28) of Pk
h, it is easy to obtain upper bounds for r(e⊥−Pk

he
⊥)

r(e⊥ −Pk
he
⊥) ≤ C

(∑
T∈Th

∥∥∥∥ hT√
χ

(f − βũh − curl(χ curl ũh))
∥∥∥∥2

L2(T )

)1/2 ∣∣√χe⊥∣∣
H1(Ω)

+ C

 ∑
F∈F

R
int

h

‖[n× χ curl ũh]J‖
2
L2(F )


1/2 ∣∣√χe⊥∣∣

H1(Ω)
.

Due to the Galerkin orthogonality, the second part r(Pk
he
⊥) is equal to zero, if the iteration error is zero. The

estimate for this term involves the stability (25), (26) of the operator Pk
h

r(Pk
he
⊥) =

(
β(uh − ũh),Pk

he
⊥)

L2(Ω)
+
(
χ curl(uh − ũh), curlPk

he
⊥)

L2(Ω)

≤ ‖uh − ũh‖E;Ω

∥∥Pk
he
⊥∥∥

E;Ω
≤ C ‖uh − ũh‖E;Ω

∥∥e⊥∥∥
H1(Ω)

.

At this point we have to resort to the regularity Assumption 2 to switch from H1(Ω)-norms back to the relevant
energy norm. Taking Assumption 2 for granted we can combine the upper estimates for r(e⊥−Pk

he
⊥), r(Pk

he
⊥).

Thus, an upper bound for
∥∥e⊥∥∥

E;Ω
is provided by the sum of η(1)

1 , η2 and η(1)
it .

To obtain a lower bound for
∥∥e⊥∥∥

E;Ω
, we consider the local contributions of η(1)

1 separately. The global error
is localized by means of the bubble functions λT and λF introduced in Section 4. We start with an upper bound
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for ηT
1;1 and set jh := πhf − βũh − curl(χ curl ũh)

χ|T (ηT
1;1)

2

h2
T

= ‖πhf − βũh − curl(χ curl ũh)‖2
L2(T )

≤ C

∫
T

〈πhf − βũh − curl(χ curl ũh), jhλT 〉 dx .

Observing that (λT jh)|∂T
= 0 and applying Green’s formula yields

χ|T (ηT
1;1)

2

h2
T

≤ C

(
r(λT jh)−

∫
T

〈f − πhf , λT jh〉 dx
)

≤ C
(
‖e‖E;T ‖λT jh‖E;T + ‖f − πhf‖L2(T ) ‖λT jh‖L2(T )

)
≤ C

(
h−1

T ‖e‖E;T +
1

√
χ|T

‖f − πhf‖L2(T )

)
‖√χjh‖L2(T ) ,

and we get

ηT
1;1 ≤ C

(
‖e‖E;T + ηT

1;2

)
.

We remark, that in general λT jh is not an element of H⊥
0 (curl; Ω). As a consequence, the upper bound for ηT

1;1

involves not only the solenoidal part of the error e⊥ but the total error e. The estimate for an upper bound
for ηF

1 follows the same lines. Here, we use the bubble function λF . The face contribution ηF
1 involves the

two adjacent elements T1 and T2, ∂T1 ∩ ∂T2. We extend the jump [n× χ curl ũh]J defined on the face F to a
polynomial function defined on T1 and T2 such that for 1 ≤ i ≤ 2∥∥∥[n× χ curl ũh]J;Ti

∥∥∥
L2(Ti)

≤ Ch
1/2
Ti

‖[n× χ curl ũh]J‖L2(F )
.

Setting jh|Ti
:= [n× χ curl ũh]J;Ti

and using the norm equivalence (24), we find

χA(ηF
1 )2

hF
= ‖[n× χ curl ũh]J‖

2
L2(F )

≤ C

∫
F

〈[n× χ curl ũh]J , jhλF 〉 dσ . (34)

Green’s formula applied on (34) yields

cχA(ηF
1 )2

hF
≤

∫
T1∪T2

(〈− curlχ curl ũh, jhλF 〉+ 〈χ curl ũh, curl(λF jh)〉 ) dx

= −r(λF jh) + (f − βũh − curl(χ curl ũh, λF jh)L2(T1∪T2)

≤ C ‖e‖E;T1∪T2
‖λT jh‖E;T1∪T2

+ C ‖√χλT jh‖L2(T1∪T2)

(
h−1

T1
(ηT1

1;1 + ηT1
1;2) + h−1

T2
(ηT2

1;1 + ηT2
1;2)
)

≤ C
(
h−1

T1
(‖e‖E;T1

+ ηT1
1;1 + ηT1

1;2) + h−1
T2

((‖e‖E;T2
+ ηT2

1;1 + ηT2
1;2)
)
χAη

F
1 .

Combining the bound for ηT
1;1 with the last inequality provides an upper bound for ηF

1 in terms of the local
energy norm of the total error and ηT1

1;2, η
T2
1;2

ηF
1 ≤ C

(
‖e‖E;T1

+ ‖e‖E;T2
+ ηT1

1;2 + ηT2
1;2

)
.
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6. Numerical experiments

In order to demonstrate the performance of the proposed error estimator for a variety of settings, we provide
several numerical examples. Throughout we use lowest order edge elements on an unstructured tetrahedral grid.
The stiffness matrix and load vector corresponding to (6) are computed using Gaussian quadrature of order 5.
Interpolation of boundary values is of the same order. The linear systems of equations are approximately solved
by means of a multigrid preconditioned conjugate gradient method [14,15]. The iterations are terminated, when
the Euclidean norm of the algebraic residual for the current iterate is less than 10−10 times the Euclidean norm
of the vector on the right-hand side. Thus, the truncation error ηit can be neglected.

In all cases the local error estimator (17) in the form of (18) was used to provide the local and global error
estimates. Most of the examples were chosen so that the exact solution and, hence, the energy norm ηT of the
true error were available for each element T .

To gauge the quality of the error estimator in particular settings we evaluate different functionals:
• The effectivity index ε := η̂/η, which gives the ratio between the estimated and the true discretization

error. Here, η := ‖e‖E;Ω and η̂2 :=
∑

T η̂
2
T . This quantity merely reflects the quality of the global estimate.

For a good error estimator, the effectivity index is to approach a constant rapidly as refinement proceeds.
We point out that, since we can only expect equivalence of the estimated energy of the error and its true
energy, the effectivity index may be far off the ideal value 1.

• The proportion µ(1) of “incorrect decisions”, measuring how much refinement controlled by the actual
estimator differs from refinement based upon an “ideal” estimator. Consider the set of elements marked
for refinement by the error estimator

Â :=

{
T ∈ Th : η̂2

T > σ
1
nT

∑
T∈Th

η̂2
T

}
, (35)

where σ = 0.95 and nT = #Th, and the set of elements that should have been marked

A :=

{
T ∈ Th : η2

T > σ
1
nT

∑
T∈Th

η2
T

}
·

Then we define

µ(1) :=
1
nT

#
{
(A ∩ CÂ) ∪ (CA ∩ Â)

}
·

If the estimator performs satisfactorily, we expect µ(1) to stay bounded well below 1 as refinement proceeds.
• A measure µ(2) for the “severity of incorrect decisions”, which gives crude information how much smaller

the discretization error might have been, if an “ideal” estimator had steered local refinement. Since lowest
order edge elements provide a first order approximation in the energy norm, we expect a reduction of
the error on a single element by local refinement roughly like η2

T → 1
4η

2
T . Thus the total error on the

adaptively refined mesh can be expressed as

η2
new =

1
4

∑
T∈Â

η2
T +

∑
T∈CÂ

η2
T .

If A is substituted for Â, a case we regard as “optimal” local refinement, we end up with an error η2
opt.

µ(2) :=
|η2

new − η2
opt|

η2
opt

·
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Table 1. Quality measures for the residual based error estimator on the unit cube (Exp. 1).

Level 0 1 2 3 4 5

Effectivity index ε

β = 10−4 4.05 8.05 8.18 8.24 8.27 8.29
β = 10−2 4.05 8.05 8.17 8.23 8.27 8.29
β = 1.0 3.01 7.64 7.78 7.84 7.87 7.89
β = 102 2.29 4.27 4.70 4.95 5.20 5.26
β = 104 2.33 4.23 4.66 4.86 4.95 5.00

µ(1)

β = 10−4 0.33 0.17 0.12 0.1 0.1 0.085
β = 10−2 0.33 0.17 0.12 0.1 0.1 0.086
β = 1.0 0.33 0.25 0.18 0.14 0.13 0.13
β = 102 0 0.42 0.088 0.14 0.15 0.16
β = 104 0 0.44 0.11 0.15 0.16 0.16

µ(2)

β = 10−4 0.28 0.41 0.057 0.033 0.014 0.0062
β = 10−2 0.28 0.41 0.056 0.033 0.014 0.0062
β = 1.0 0.29 0.056 0.0039 0.013 0.034 0.038
β = 102 0 0.091 0.014 0.0085 0.0039 0.0034
β = 104 0 0.26 0.078 0.074 0.065 0.047

µ(3)

β = 10−4 0.2 0.078 0.026 0.0079 0.0026 0.00089
β = 10−2 0.2 0.078 0.026 0.0079 0.0026 0.00089
β = 1.0 0.2 0.084 0.025 0.0077 0.0026 0.00089
β = 102 0.22 0.081 0.024 0.0086 0.0032 0.0012
β = 104 0.21 0.08 0.024 0.0082 0.0029 0.0011

If µ(2) stays neatly bounded, the error estimator performs satisfactorily.
• To be able to zero in on singularities, the error estimator must detect local errors. We define the quantity
µ(3) by

µ(3) :=

√√√√ ∑
T∈TH

(
|ΩT |

(
η̂2

T

‖η̂2‖L1
− η2

T

‖η2‖L1

))2

.

with

‖η2‖L1 =
∑

T∈TH

η2
T |ΩT | , ‖η̂2‖L1 =

∑
T∈TH

η̂2
T |ΩT | .

This quantity will be big, if the estimator fails to tell the approximate spatial distribution of the dis-
cretization error.

• The gain from adaptive refinement is illustrated by plotting the discretization error versus the total number
of degrees of freedom both for uniform and adaptive refinement.

All numerical experiments are conducted on uniformly refined meshes, some of them also on meshes generated
by adaptive refinement. The latter relies on an averaging strategy, which singles out the elements in the set Â
from (35) for refinement. When we do so, we also monitor the decrease of the true error against the degrees of
freedom for both uniform and adaptive cases in order to assess the gain of adaptivity.
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Table 2. Measures for quality of residual based error estimator for Exp. 2.

Level 0 1 2 3 4 5

Effectivity index ε

β = 10−4 5.26 5.94 7.07 7.51 7.72 7.84
β = 10−2 5.25 6.23 7.08 7.50 7.71 7.84
β = 1.0 3.82 6.08 6.92 7.34 7.55 7.66
β = 102 1.86 3.14 3.99 4.46 4.96 5.09
β = 104 1.70 3.17 3.98 4.34 4.49 4.57

µ(1)

β = 10−4 0.33 0.19 0.13 0.1 0.1 0.1
β = 10−2 0.33 0.15 0.13 0.1 0.1 0.1
β = 1.0 0.5 0.17 0.14 0.1 0.1 0.1
β = 102 0.83 0.42 0.25 0.17 0.17 0.17
β = 104 0.83 0.4 0.25 0.16 0.13 0.12

µ(2)

β = 10−4 0.31 0.043 0.054 0.037 0.041 0.044
β = 10−2 0.31 0.062 0.059 0.036 0.041 0.044
β = 1.0 0.055 0.084 0.048 0.029 0.039 0.042
β = 102 0.74 0.39 0.11 0.068 0.015 0.01
β = 104 0.9 0.36 0.18 0.1 0.069 0.057

µ(3)

β = 10−4 0.1 0.06 0.033 0.013 0.0044 0.0015
β = 10−2 0.1 0.065 0.033 0.013 0.0044 0.0015
β = 1.0 0.12 0.065 0.032 0.012 0.0043 0.0015
β = 102 0.32 0.11 0.037 0.01 0.0032 0.001
β = 104 0.35 0.12 0.04 0.011 0.0034 0.001

The numerical experiments 1 to 5 are carried out on the unit cube Ω := ]0, 1[3. Dirichlet boundary conditions
are applied on ∂Ω. In order to be able to evaluate the true discretization errors, we choose boundary data and
right-hand sides such that an analytical expressions for the solutions of the continuous problems are available.
In each case we start with a coarse grid (level 0) consisting of 6 tetrahedrons, which is refined uniformly up to
level 5.

In our first experiment the coefficients α and β are kept constant all over the domain; χ is always set to 1.
In this situation the regularity Assumption 2 is fulfilled. Different values for β are taken into account, because
in the case of implicit timestepping β will be scaled by the size of the timestep. Therefore, it is essential that
the error estimator is robust with respect to the relative scaling of χ and β. The solution is rather smooth and
is given by u = (0, 0, sin(πx1)). Consequently there are no particular local features to be detected.

The results are reported in Table 1 and bear out a decent performance of the estimator for this benign setting.
We also observe that the error estimator is not severely affected by different values for β.

For our second experiment boundary data and right-hand sides are chosen such that the solenoidal solution
u = curl(sin(πx2x3), cos(πx1x3), sin(πx1x2)) is generated. We included this experiment to study how the error
estimator responds to a smooth divergence-free solution.

We refer to Table 2 for the results. Little difference compared to the previous experiment can be seen.
In the third experiment we generate a smooth irrotational solution u = grad(xyz). The coefficients χ and β

are chosen like in the previous experiments. In this case the irrotational part of the error is the only remaining
component.
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Table 3. Measures for the quality of the residual based error estimator on the unit cube (Exp. 3).

Level 0 1 2 3 4 5

Effectivity index ε

β = 10−4 4.21 4.70 4.90 4.98 5.01 5.03
β = 10−2 4.21 4.70 4.90 4.98 5.01 5.03
β = 1.0 4.21 4.70 4.89 4.98 5.01 5.03
β = 102 4.22 4.68 4.87 4.96 5.01 5.03
β = 104 4.22 4.66 4.84 4.92 4.96 4.99

µ(1)

β = 10−4 0.5 0.042 0.13 0.14 0.14 0.14
β = 10−2 0.5 0.042 0.13 0.14 0.14 0.14
β = 1.0 0.5 0.042 0.13 0.14 0.14 0.14
β = 102 0.33 0.1 0.13 0.14 0.14 0.14
β = 104 0.33 0.12 0.14 0.13 0.14 0.14

µ(2)

β = 10−4 0.46 0.054 0.042 0.037 0.034 0.023
β = 10−2 0.46 0.054 0.042 0.037 0.034 0.023
β = 1.0 0.46 0.054 0.047 0.037 0.034 0.023
β = 102 0.32 0.057 0.04 0.036 0.032 0.023
β = 104 0.32 0.083 0.051 0.026 0.019 0.016

µ(3)

β = 10−4 0.24 0.095 0.032 0.01 0.0034 0.0011
β = 10−2 0.24 0.095 0.032 0.01 0.0034 0.0011
β = 1.0 0.24 0.095 0.032 0.01 0.0034 0.0011
β = 102 0.24 0.082 0.03 0.0098 0.0033 0.0011
β = 104 0.24 0.077 0.028 0.0088 0.003 0.001

Values for the different quality measures are given in Table 3. They show that the error estimator is insensitive
to irrotational solutions.

Our fourth experiment deals with constant β = 1, whereas the other coefficient is varying on the domain:
χ(x) = 1.5+sin(2πx1) sin(2πx2) sin(2πx3). We choose the smooth solution ξ = (0, 0, sin(πx1)). In this case the
energy norm features a certain anisotropy, but the coefficients are still smooth.

How the error estimator behaves can be seen from Table 4. All the observations made in the previous
experiments remain true.

Table 4. Measures for the quality of the residual based error estimator on the unit cube (Exp. 4).

Level 0 1 2 3 4 5

ε 5.59 9.80 11.20 11.46 11.57 11.61

µ(1) 0.67 0.31 0.21 0.2 0.19 0.19

µ(2) 0.32 0.28 0.072 0.1 0.11 0.11

µ(3) 0.26 0.077 0.028 0.0095 0.0033 0.0011

The fifth experiment exchanges the roles of the coefficients. Now χ is set to 1 throughout the domain and β
is given by β(x) = 1.5 + sin(2πx1) sin(2πx2) sin(2πx3). Again the solution is u = (0, 0, sin(πx1)).

See Table 5 for information about the performance of the error estimator. We remark that the performance
remains satisfactory.
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Table 5. Measures for the quality of the residual based error estimator on the unit cube (Exp. 5).

Level 0 1 2 3 4 5

ε 2.92 7.83 8.18 8.97 11.47 18.37

µ(1) 0.33 0.35 0.19 0.18 0.17 0.18

µ(2) 0.29 0.071 0.0027 0.025 0.083 0.15

µ(3) 0.22 0.085 0.025 0.0082 0.0032 0.0014

Our sixth experiment is again carried out on the unit cube Ω := ]0, 1[3 with χ ≡ 1, but we enforce a vanishing
zero–order term on part of the domain. Thus we depart from the situation where the regularity assumption
holds. As far as the coefficients are concerned, this experiment comes fairly close to the arrangements in realistic
eddy current computations.

In particular, we choose β as follows:

β(x) =
{

1 : max {|x1 − 0.5|, |x2 − 0.5|, |x3 − 0.5|} ≤ 0.25
0 : elsewhere.

Boundary data and right-hand side are again adjusted to produce the smooth solution u = (0, 0, sin(πx1)). Of
course, in this respect we fail to capture the usual singular behavior of the electric field at the edges of the
conductor.

The results of the computations are recorded in Table 6. All measures for the quality of the error estimator
reveal a flawless performance.

Table 6. Measures for the quality of the residual based error estimator on the unit cube (Exp. 6).

Level 0 1 2 3 4

ε 5.18 7.22 7.46 7.52 7.53

µ(1) 0.17 0.081 0.066 0.051 0.047

µ(2) 0.099 0.027 0.011 0.0026 0.0031

µ(3) 0.12 0.05 0.017 0.0058 0.0021

Owing to the smooth solution adaptive refinement does not really pay off in this situation (cf. Fig 2).
Nevertheless, we report the quality measures in Table 7 to show that non-uniform meshes do not make a
difference.

Table 7. Measures for the quality of the residual based error estimator on the unit cube in
the adaptive case (Exp. 6).

Level 0 1 2 3 4 5 6

ε 5.18 7.29 7.89 7.89 7.81 7.73 7.88

µ(1) 0.17 0.11 0.15 0.17 0.14 0.11 0.17

µ(2) 0.099 0.083 0.024 0.1 0.11 0.039 0.076

µ(3) 0.12 0.048 0.032 0.014 0.0054 0.0036 0.0022

For the seventh experiment we employ the domain and coefficients of the previous one. But now we enforce
homogeneous Dirichlet boundary conditions u×n = 0 on the boundary and a smooth right hand side f = (1, 1, 1).



178 R. BECK ET AL.

0.05

0.5

tr
ue

 e
rr

or

degrees of freedom

 

uniform
adaptive

102 103 104 105 106

Figure 2. True error for uniform and adaptive mesh refinement on the unit cube (Exp. 6).

Table 8. Measures for the quality of the residual based error estimator on the unit cube (Exp. 7).

Level 0 1 2 3

ε 15.19 10.70 9.89 10.34

µ(1) 0.1 0.094 0.093 0.1

µ(2) 0.24 0.016 0.051 0.079

µ(3) 0.076 0.046 0.021 0.0083

Table 9. Measures for the quality of the residual based error estimator on the unit cube in
the adaptive case (Exp. 7).

Level 0 1 2 3 4 5

ε 15.15 11.03 10.41 10.81 10.52 11.86

µ(1) 0.1 0.29 0.22 0.12 0.18 0.14

µ(2) 0.24 0.046 0.23 0.072 0.079 0.14

µ(3) 0.076 0.04 0.024 0.015 0.0075 0.0041

Thus the vector field will be non-smooth and cannot be described analytically. Now, all the features of an actual
eddy current problem are present.

To estimate the true errors, we carried out two refinement steps more than reported in Tables 8 and 9,
respectively, and compare the discrete solutions to those obtained on the finest levels. The results are collected
in Table 8 for uniform refinement and in Table 9 for adaptive refinement. Evidently, the additional singularities
in the solution hardly affect the error estimator in either case.
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Table 10. Measures for the quality of the residual based error estimator on the L-shaped
domain (Exp. 8).

Level 0 1 2 3 4

ε 3.39 3.73 3.85 3.94 3.99

µ(1) 0.27 0.1 0.047 0.029 0.019

µ(2) 0.17 0.079 0.07 0.018 0.013

µ(3) 0.11 0.07 0.047 0.032 0.022

Table 11. Measures for the quality of the residual based error estimator on the L-shaped
domain in the adaptive case (Exp. 8).

Level 0 1 2 3 4 5 6

ε 3.39 3.67 3.82 4.05 4.18 4.28 4.37

µ(1) 0.27 0.18 0.12 0.12 0.11 0.096 0.088

µ(2) 0.17 0.11 0.08 0.018 0.012 0.021 0.025

µ(3) 0.11 0.065 0.11 0.037 0.02 0.0056 0.0027
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Figure 3. True error for uniform and adaptive mesh refinement on the unit cube (Exp. 7).

Surprisingly, the singularities do hardly reward adaptive refinement, as can be seen from Figure 3. However,
as the right tails of the curves indicate, adaptivity might pay off on higher levels. But due to lacking computer
resources we could not proceed with grid refinement in our experiment.

The eighth experiment deals with an edge singularity of the field. We use a non–convex “L-shaped” domain
Ω :=]− 1, 1[3 \ [0, 1]2 × [−1, 1]. The coarsest grid comprises 52 tetrahedra.
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Figure 4. True error for uniform and adaptive mesh refinement on the L-shaped domain (Exp. 8).

Figure 5. The L-shaped domain of Exp. 8. On the left-hand side the initial triangulation is
shown; the other figure displays a cross section of the grid after five adaptive refinement steps.

We set χ and β to 1 and employ such boundary conditions and right-hand side that the solution is given (in
polar coordinates) by u = grad(r

2
3 sin(2

3φ). The gradient field u is both irrotational and divergence–free and
does not even belong to H1(Ω).

How this affects the error estimator is conveyed by Table 10 for the case of uniform refinement and Table 11
for local grid adaptation. The numbers illustrate that the error estimator can be relied upon even under these
extreme circumstances.
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Now that the vectorfield is singular along the concave edge of the L-shaped domain, local mesh refinement
should provide favourable grids. Indeed, Fig. 4 reveals a clearly superior performance in the adaptive case.
Figure 5 gives a view of both the initial and an adaptively refined triangulation; observe how the grid adaption
concentrates on the concave edge of the domain.

7. Conclusion

In the present paper we have designed a local a posteriori error estimator for H(curl; Ω)–elliptic problems
by taking into account the dual norm of the residual. We could show that this estimator is efficient, i.e. apart
from scaling it provides a local lower bound for the energy norm of the error. Under additional assumptions we
could establish that it is also reliable in the sense that we can also obtain a global upper bound. However, the
assumptions are hardly ever met in realistic settings. Nevertheless, the numerical results offer strong evidence
that the error estimator performs excellently beyond the scope of the theoretical analysis. Hence, it would be
desirable to extend the rigorous treatment to the case of discontinuous coefficients.
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