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RESIDUAL-BASED BLOCK BOOTSTRAP FOR UNIT ROOT TESTING

By Efstathios Paparoditis and Dimitris N. Politis
1

A nonparametric, residual-based block bootstrap procedure is proposed in the context
of testing for integrated (unit root) time series. The resampling procedure is based on weak
assumptions on the dependence structure of the stationary process driving the random
walk and successfully generates unit root integrated pseudo-series retaining the important
characteristics of the data. It is more general than previous bootstrap approaches to the
unit root problem in that it allows for a very wide class of weakly dependent processes
and it is not based on any parametric assumption on the process generating the data. As a
consequence the procedure can accurately capture the distribution of many unit root test
statistics proposed in the literature. Large sample theory is developed and the asymptotic
validity of the block bootstrap-based unit root testing is shown via a bootstrap functional
limit theorem. Applications to some particular test statistics of the unit root hypothesis,
i.e., least squares and Dickey-Fuller type statistics are given. The power properties of our
procedure are investigated and compared to those of alternative bootstrap approaches to
carry out the unit root test. Some simulations examine the finite sample performance of
our procedure.

Keywords: Autocorrelation, hypothesis testing, integrated series, nonstationary
series, random walk, resampling.

1� introduction

Consider time series data of the form X1�X2� � � � �Xn, where �Xt� t =
1�2� � � � � is a sequence of random variables. Following the seminal work of
Dickey and Fuller (1979), statistical methods for detecting the possible presence
of a unit root in the time series �Xt� have attracted considerable attention over
the last two decades. In particular, the assumption of interest is that the time
series �Xt� is either stationary around a (possibly nonzero) mean, or I�1�, i.e.,
integrated of order one; as usual, the I�1� condition means that �Xt� is not sta-
tionary, but its first difference series �Yt� is stationary (with a possibly nonzero
mean), where Yt �=Xt−Xt−1. The hypothesis test setup can then be stated as:

H0 � �Xt� is I�1� versus

H1 � �Xt� is stationary.

1 This is a revised version of a paper circulated under the title “Unit Root Testing via the
Continuous-path Block Bootstrap,” which is now available as Discussion Paper 2001-06 from the
Dept. of Economics, University of California, San Diego. We are very grateful to a co-editor for his
detailed and insightful suggestions leading to an improved presentation of our results, as well as to the
two referees for their most helpful comments. Many thanks are also due to Karim Abadir, Graham
Elliot, Cameron Parker, Joe Romano, Hal White, and Mike Wolf for their helpful and encouraging
remarks; special thanks are due to Stefano Fachin for posing some challenging questions early on,
and to Mike Wolf for his generous help with some of the numerical work.
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Throughout the paper we use the term ‘stationary’ as short-hand for ‘strictly
stationary.’
A first step in carrying out this hypothesis test is to choose a parameter 	 with

the property that 	= 1 is equivalent to H0, whereas 	 �= 1 is equivalent to H1. A
detailed discussion on different choices for the parameter 	 is given in the next
section. After deciding on a particular choice for the 	 parameter, consider the
new series �Ut� defined by the equation:

Ut �=Xt−
−	Xt−1(1.1)

for t = 1�2� � � � where the constant 
 is defined by 
 = E�Xt − 	Xt−1�, i.e.,
E�Ut�= 0. Equation (1.1) should be strictly considered as defining the new series
�Ut�, and it is not to be thought of as the “model” generating the series �Xt�. In
this paper, we do not assume a “model” for the �Xt� series; the necessary tech-
nical assumptions placed on �Xt� are stated in detail in Section 2. Nonetheless,
definition (1.1) is very useful as the new series �Ut� is easily seen to be stationary
always: under H0 and/or under H1.
Numerous alternative procedures have been developed over the past three

decades for testing the hypothesis that �Xt� is integrated of order one (i.e.,
	 = 1) against the alternative that it is integrated of order zero (i.e., 	 �= 1);
cf. Hamilton (l994) and Stock (1994) for an overview. The majority of these
procedures employ certain estimators of the parameter 	 under different spec-
ifications of the estimated equation and use limiting distributions to obtain the
rejection regions; cf. Fuller (1996) or Hamilton (1994). Nevertheless, the analysis
is considerably complicated due to the stochastic behavior of the random quan-
tities involved. For instance, it is well-known that the limiting distribution of the
least squares (LS) estimator of the regression of Xt on Xt−1 is nonstandard even
in the simplest case of a random walk with i.i.d. residuals; this asymptotic distri-
bution is shown to depend on the particular model fitted to the series, leading
to different results for different specifications of a deterministic term. Moreover,
allowing for serial correlation in the stationary process �Ut� affects the limiting
distribution by means of nuisance (and hard to estimate) parameters like the
spectral density of the process at zero.
In situations like the above, where the limiting distribution of a statistic

depends on difficult-to-estimate parameters, resampling methods have often in
the past offered an alternative and potentially more powerful way to estimate the
sampling behavior of a statistic of interest. However, none of the existing non-
parametric bootstrap methods is directly applicable to the unit root nonstationary
case considered here; this is true, for instance, for the block bootstrap (Künsch
(1989), Liu and Singh (1992)) and the stationary bootstrap (Politis and Romano
(1994)) since they are both designed for stationary weakly dependent processes.
In the paper at hand, a nonparametric block bootstrap testing procedure is

introduced that is able to approximate the distribution under the null of various
test statistics of the unit root hypothesis. By its construction, the testing proce-
dure generates unit root time series by randomly selecting blocks of an appropri-
ately defined residual process based on an empirical version of (1.1). It manages
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to automatically (and nonparametrically) replicate the important weak depen-
dence characteristics of the data, e.g., the dependence structure of the stationary
process �Ut� and at the same time to mimic correctly the distribution of a partic-
ular test statistic under the null. This residual-based block bootstrap (RBB, for
short) procedure is based on the block bootstrap of Künsch (1989) and Liu and
Singh (1992); it constitutes a modification of the continuous-path block bootstrap
algorithm introduced recently by Paparoditis and Politis (2001).
Different attempts to approach the unit root testing problem via bootstrap

methods have been undertaken in the past where the theory developed has been
based on restrictive assumptions on the parametric structure of the model gen-
erating the data; cf. Li and Maddala (1996) for an overview of some of the
approaches proposed. Assuming a first order autoregressive process with i.i.d.
errors, i.e., equation (1.1) in connection to an i.i.d. sequence �Ut�, Basawa et al.
(1991), Bertail (1994), and Datta (1996) investigated the properties of a para-
metric autoregressive bootstrap based on i.i.d. resampling of model residuals.
Ferretti and Romo (1996) extend this idea for the case where the error process
is not i.i.d. but follows an autoregressive process the order of which is assumed
to be finite and known. The case of an autoregressive process with finite (and
known) order is also considered in a subsampling framework by Romano and
Wolf (2001), and also in Park (2000) where second order size properties of an
autoregressive parametric bootstrap test were investigated. Compared to these
attempts our block bootstrap procedure is more general in that it is based on very
weak assumptions on the dependence structure of the stationary process �Ut�,
and it is not designed assuming any particular parametric structure of the pro-
cess generating the data. Because of its generality, our RBB bootstrap approach
can be applied to approximate the distribution of several unit root test statistics
proposed in the literature; some important and popular examples are discussed
in the sequel.
Note further that in designing a nonparametric bootstrap procedure for test-

ing purposes, an additional aspect must be taken into account that is important
for good power performance. For such purposes, the bootstrap procedure should
be able to reproduce the sampling distribution of the test statistic under the null
hypothesis (e.g., unit root integration) whether the observed series obeys the null
hypothesis or not. For a successful unit root bootstrap test procedure it is not suf-
ficient to be able to generate unit root pseudo-data, given unit root true data;
the successful procedure must be able to generate unit root pseudo-data (with
the correct dependence structure for the residuals) even if the true data happen
to be stationary. This point has not been appropriately taken into account in the
literature where bootstrap approaches are applied to the differenced observations
and/or the theory of bootstrap validity is often derived under the assumption that
the observed process is unit root integrated; cf. for example the bootstrap proce-
dures proposed by Basawa et al. (1991), Park (2000), and Chang and Park (2001)
or assumption 
 = 1 in Theorem 2.1 and 3.1 in Ferretti and Romo (1996). We
show in this paper that the residual-based block bootstrap proposal has desirable
global and local power properties. Furthermore, applying the block bootstrap to
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the differenced series fails if the null hypothesis is wrong, i.e., the corresponding
bootstrap statistic diverges to minus infinity, leading to a loss of power.
The paper is organized as follows. Section 2 describes in detail the RBB test-

ing procedure and states its main characteristics. A bootstrap functional limit
theorem for partial sum processes based on randomly selected blocks of the
residual process is established in Section 3; consequently, the asymptotic validity
of the RBB bootstrap procedure in approximating the distribution of some com-
monly used test statistics is shown in Section 4. The global and local power prop-
erties of our procedure are investigated in Section 5 and a comparison with an
alternative block bootstrap procedure based on differences is made. Section 6 dis-
cusses some practical implementation issues and examines the small sample per-
formance of the RBB resampling method. Some comparisons to nonparametric
as well as parametric bootstrap alternatives are given. Section 7 summarizes our
findings while all technical proofs are deferred to Section 8.

2� residual-based block bootstrap unit root testing

As stated in the Introduction, we assume throughout the paper that the time
series �Xt� is either stationary (hypothesis H1), or it is not stationary but its
first difference series �Yt� is stationary (hypothesis H0), where Yt =Xt −Xt−1.
For technical reasons, we strengthen the above set-up by requiring that the weak
dependence structure of �Ut� satisfy one of two sets of conditions. The first
one assumes linearity, i.e., an MA(�) representation with respect to some i.i.d.
sequence ��t� while the second condition replaces linearity by a strong mixing
assumption.

Condition A: �Xt� satisfies one (and only one) of the following two condi-
tions:

(i) (Case 	= 1). Xt =
+Xt−1+Ut where the process �Ut� is generated by Ut =∑�
j=0�j�t−j with �0 = 1,

∑�
j=1 j��j �<�, C =∑�

j=0�j �= 0 and ��t� a sequence of
independent, identically distributed (i.i.d.) random variables with mean zero, positive
variance �2

� , and E��
4
t � <�.

(ii) (Case 	 �= 1). �Xt� is stationary and satisfies Xt = a0 +
∑�

j=0�j�t−j where
a0 = 
/�1−	� and the coefficients �j and the sequence ��t� satisfy the same con-
ditions as above.

Condition A simply states that the process �Xt� is either a stationary linear
process �	 �= 1� or it is generated by integrating such a linear process �	 = 1�.
Note that in both cases the process �Ut� defined by Ut =Xt−
−	Xt−1 is always
linear and stationary. For 	= 1 this is so by assumption while for 	 �= 1 we have,
since 
= E�Xt−	Xt−1�= �1−	�a0, that

Ut =−
+ �1−	L�Xt =+�L��t

where +�L� = �1− 	L��L� = ∑�
j=0�

+
j L

j , �L� = ∑�
j=0�jL

j and L is the
shift operator defined by LkXt �=Xt−k for k ∈ �. Clearly,

∑�
j=0 j��+

j � <� and∑�
j=0�

+
j �= 0.
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Apart from the linear class of stochastic processes, the RBB procedure can
also be applied to approximate the distribution of interest in case the depen-
dence structure of the stationary process driving the random walk is nonlinear
but obeys a mixing condition. As usual, this is defined by means of the strong
mixing coefficients; see e.g. Rosenblatt (1985). In particular, we say that the pro-
cess �Xt� is strong mixing if ��k�→ 0 as k→ � where the mixing coefficient
��k� is defined by

��k�= sup
A∈�0−��B∈��

k

�P�A∩B�−P�A�P�B���

Here �l+m
l denotes the �-algebra generated by the set of random variables

�Xl�Xl+1� � � � �Xl+m�. As an alternative to Condition A, we may impose the fol-
lowing condition on the process �Xt�.

Condition B: For each value of 	, the series �Ut� is strong mixing and satis-
fies the following conditions: E�Ut� = 0�E�Ut�� < � for some � > 2, fU �0� > 0,
where fU denotes the spectral density of �Ut�, i.e., fU ���=

∑�
h=−� �U�h�exp�i�h�

and �U�h�=E�UtUt+h�. Furthermore,
∑�

k=1��k�
1−2/� <�, where ��·� denotes the

strong mixing coefficient of �Ut�.

If �Xt� is unit root integrated, then the above condition implies that the differ-
enced process Xt−Xt−1 is strong mixing. On the other hand, if �Xt� is stationary
�	 �= 1�, then �Xt� is itself a strong mixing process satisfying the conditions stated
above. Note that Condition B does not imply A; see Withers (1981) or Andrews
(1984).
The RBB testing algorithm is now defined in the following four steps below.

As before, the algorithm is carried out conditionally on the original data
�X1�X2� � � � �Xn�, and implicitly defines a bootstrap probability mechanism
denoted by P ∗ that is capable of generating bootstrap pseudo-series of the type
�X∗

t � t = 1�2� � � � �. In the sequel, we denote quantities (expectation, variance,
etc.) taken with respect to P ∗ with an asterisk ∗.

The RBB Testing Algorithm:

1. First calculate the centered residuals

Ût = �Xt− 	̃nXt−1�−
1

n−1

n∑
�=2

�X� − 	̃nX�−1�(2.1)

for t = 2�3� � � � � n where 	̃n = 	̃n�X1�X2� � � � �Xn� is a consistent estimator of 	
based on the observed data �X1�X2� � � � �Xn�; see Remarks 2.1 and 2.3 below.
2. Choose a positive integer b�< n�, and let i0� i1� � � � � ik−1 be drawn i.i.d. with

distribution uniform on the set �1�2� � � � � n− b�; here we take k = ��n− 1�/b�,
where �·� denotes the integer part, although different choices for k are also
possible. The procedure constructs a bootstrap pseudo-series X∗

1 � � � � �X
∗
l , where

l = kb+1, as follows:

X∗
t =

{
X1 for t = 1�

̂+X∗

t−1+ Ûim+s for t = 2�3� � � � � l�
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where m = ��t− 2�/b�� s = t−mb− 1, and 
̂ is a drift parameter that is either
set equal to zero �
̂ ≡ 0�, or 
̂ = 
̃ where 
̃ is a

√
n-consistent estimator of 
;

see Remark 2.2 below.
3. Let 	̂n be the estimator used to perform the unit root test. Compute the

pseudo-statistic 	̂∗, which is nothing other than the statistic 	̂l based on the
pseudo-data �X∗

1 � � � � �X
∗
l �.

4. Repeating steps 2–3 a great number of times (B times, say), we obtain
the collection of pseudo-statistics 	̂∗

1� � � � � 	̂
∗
B. As will be shown shortly, an

empirical distribution based on the pseudo-statistics 	̂∗
1� � � � � 	̂

∗
B provides a consis-

tent approximation of the distribution of 	̂n�X1� � � � �Xn� under the null hypoth-
esis H0 � 	 = 1. The �-quantile of the bootstrap distribution in turn yields a
consistent approximation to the �-quantile of the true distribution (under H0),
which is required in order to perform an �-level test of H0.

Remark 2.1: The block bootstrap is a central part in the RBB procedure;
note however, that the block bootstrap is not applied to the �Xt� data directly,
neither to its first differences; rather, the pseudo-series X∗

1 �X
∗
2 � � � � �X

∗
l is

obtained by integrating randomly selected blocks of centered residuals Ût . The
reason for this centering is that although the series Ut =Xt −
−	Xt−1 has a
zero mean both under the null and under the alternative, the estimated innova-
tions Ũt =Xt− 
̃− 	̃nXt−1 will likely have nonzero (sample) mean; this discrep-
ancy has an important effect on the bootstrap distribution effectively leading to a
random walk with drift in the bootstrap world. Note that Ût defined in (2.1) is a
centered version of Ũt as defined in eq. (2.1), i.e., Ût = Ũt− �1/�n−1��

∑n
�=2 Ũ� ,

since the factor 
̃ cancels out.

Remark 2.2: 
̂ denotes the drift parameter in the RBB resampling scheme,
which can be set equal to 
̃, the latter being the estimator of the intercept term
in the particular equation fitted to the series in order to obtain 	̃n; see the discus-
sion below. Note that there are cases where it is appropriate to set 
̃≡ 0 in the
second step of the RBB algorithm. This is, for instance, true if we are interested
in generating a unit root process without drift in order to approximate the distri-
bution of the estimator 	̂n under this assumption. It is well known (see Hamilton
(1994)) that the distribution of a particular estimator 	̂n used to test the unit
root hypothesis is not only affected by the question whether the true series is
generated by a model with an intercept term or not but also by the specification
of the deterministic term in the model fitted to the observed series.

Remark 2.3: The quantity 	̃n appearing in equation (2.1) is an appro-
priately chosen consistent estimator of the parameter 	 based on the data
�X1�X2� � � � �Xn�. In particular, for the validity of the RBB testing procedure
we require that 	̃n satisfy the following conditions: If 	= 1 then

	̃n = 	+OP

(
n−�2+��
��/2)(2.2)
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where ��
�= 1 if 
 �= 0 and ��
�= 0 if 
= 0. If 	 �= 1, then

	̃n = 	+oP�1�(2.3)

for every 
 ∈ �. Conditions (2.2) and (2.3) are satisfied by many estimators; we
elaborate with two specific examples.

Example 2.1: Assume for simplicity that 
= 0 and let the parameter 	 have
the meaning of the asymptotic lag-1 autocorrelation of series �Xt�, i.e., let

	= lim
t→�

EXtXt+1

EX2
t

�

Note that under H1 the series �Xt� is stationary, and therefore the limit is unnec-
essary. Nevertheless, the limiting operation is required under H0 (i.e., if the
series �Xt� is I�1��, in which case we can easily calculate that EXtXt+1/EX

2
t =

1+O�1/t�, under the sole assumption that the series �Ut� possesses a spectral
density (which is guaranteed by either Condition A or B).
Thus, if the series �Xt� is I�1�, then 	 = 1. To show that H0 is essentially

equivalent to 	 = 1 in this case note that if 	 = 1, then either �Xt� is I�1�, or
it is the trivial stationary process with constant sample-paths (by the Cauchy-
Schwarz inequality); but even this latter case can be put in the I�1� framework:
Xt = 
+Xt−1+Ut where �Ut� is stationary but with var�Ut�= 0.
Let 
̃= 
̂ and 	̃n = 	̂LS�C be the (ordinary) LS estimators of 
 and 	 obtained

by fitting

Xt = 
+	Xt−1+et(2.4)

to the observed series. It is well known that the LS estimator 	̂LS�C of 	 in the
above regression equation satisfies conditions (2.2) and (2.3); see Brockwell and
Davis (1991) for the stationary case, Phillips (1987a) for the integrated case with

= 0, and West (1988) for 
 �= 0.

To introduce the next example we modify Condition A by restricting the class
of linear processes considered to those possessing an infinite order autoregressive
representation.

Condition A
′
: The process �Xt� satisfies Condition A and the power series

�z�= 1+∑�
j=1�jz

j is bounded, and bounded away from zero for �z� ≤ 1.

Condition �z� �= 0 for �z� ≤ 1 implies the existence of an infinite order autore-
gressive representation for �Ut� if 	 = 1. In particular, in this case we have
that Ut = Xt −
−Xt−1 has the representation Ut = −∑�

j=1�jUt−j + �t where
��z�= 1+∑�

j=1�jz
j = 1/�z�. Note that, still in the 	= 1 case, the integrated

process �Xt� can be also expressed as �1−L��1+∑�
j=1�jL

j�Xt =��1�
+�t , i.e.,
the power series �̃�z�= �1−z���z� has a unit root. If 	 �= 1, then Condition A′
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implies that Xt = ��1�a0 −
∑�

j=1�jXt−j +�t since in this case Xt =
∑�

j=0�j�t−j
and the power series �z� has no zeros for �z� ≤ 1. Therefore, Condition A′

states that either �Xt� is a stationary process possessing an infinite order autore-
gressive representation �	 �= 1� or �Xt� is obtained by integrating such a process
�	= 1�.
If the process �Xt� satisfies Condition A′, then the following representation is

very useful. It generalizes the one given in Fuller (1996) for finite order autore-
gressive processes.

Lemma 2.1: If �Xt� satisfies Condition A′, then

Xt = c+	Xt−1+
�∑
j=1

aj�Xt−j −Xt−j−1�+�t(2.5)

where
∑�

j=1 �aj �<� and the coefficients �aj� are defined as follows: If �Xt� is unit
root integrated, then c = ��1�
, 	= 1, and aj = �j for j = 1�2� � � � , while if �Xt�
is stationary, then c = ��1�a0,

	=−
�∑
j=1

�j� and aj =
�∑

s=j+1

�s for j = 1�2� � � � �

In the unit root integrated case, representation (2.5) is obviously valid for 	= 1
and aj = �j , since in this case Xt = 
+Xt−1 +Ut and Ut = −∑�

j=1�jUt−j + �t
by assumption. On the other hand, if �Xt� is stationary, then the infinite order
autoregressive representation of �Xt� can be written as

Xt = ��1�a0−
�∑
j=1

�jXt−1+
�∑
j=2

�j�Xt−1−Xt−2�

+
�∑
j=3

�j�Xt−2−Xt−3�+· · ·+�t

from which the postulated representation follows by the choice of 	 and aj stated
in the lemma. Since for 	 �= 1 the process �Xt� is stationary and

∑�
j=1 j��j �<�,

we get by simple algebra that

�∑
j=1

�aj � =
�∑
j=1

∣∣∣∣ �∑
s=j+1

�j

∣∣∣∣≤ �∑
j=1

j��j �<��

Thus if the process �Xt� is generated by a stationary infinite order autoregressive
process, then the parameter 	 appearing in definition (1.1) and equation (2.5)
is given by 	=−∑�

j=1�j . Furthermore, this parameter always satisfies 	≤ 1. To
see this, note that the condition ��z� �= 0 for �z� < 1 implies (by the continuity
of the power series ��z� and the fact that ��0� = 1) that ��z� > 0 for �z� < 1.
By continuity again we get limz→1��z�= 1+∑�

j=1�j ≥ 0 which is just 	≤ 1. We
are now ready to introduce our next example for the choice of the estimator 	̃n.
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Example 2.2: Assume that the underlying process satisfies Condition A′ and
let 
̃= 
̂ and 	̃n = 	̂DF�C be the so-called augmented Dickey-Fuller (DF) estima-
tor of 	 obtained by fitting a truncated version of (2.5) to the observed series,
i.e., by fitting the model

Xt = 
+	Xt−1+
p∑
i=1

ai�Xt−i−Xt−i−1�+�t�(2.6)

Consistency of 	̂DF�C requires that the order p = p�n� in the above equation
increase to infinity at some appropriate rate as the sample size n increases; see
Said and Dickey (1984). For fixed p, equation (2.6) is the set-up considered by
Dickey and Fuller (1979) for finite order autoregressive processes with known
order.
From the discussion following Condition A′ it is clear that 	= 1 is equivalent to

the null hypothesis of unit root integration. Under some assumptions on the rate
with which p increases, Said and Dickey (1984) showed that in the unit root case
and if 
= 0, 	̂DF�C = 1+OP�n

−1�. An extension of the arguments presented there
shows that for 
 �= 0, 	̂DF�C = 1+OP�n

−3/2�; cf. Hamilton (1994, p. 539–540) for
the finite order autoregressive case. In Section 8 we consider the case where �Xt�
is a stationary process having the representation (2.5). We show that under some
conditions on the rate at which p increases to infinity 	̂DF� c = 	+OP�n

−1/2c−1/2
n �

where 	=−∑�
j=1�j and where cn is a sequence approaching zero as n→� but

such that n1/2c1/2n →�; cf. Lemma 8.3. Therefore, the estimator 	̂DF�C considered
in this example obeys the stochastic behavior (2.2) and (2.3).
In concluding the discussion of this example, note that for the choice of 	 dis-

cussed here the value of 	 under the alternative is not necessarily in the interval
[−1, 1]; although 	 ≤ 1 always, it may be the case that 	 < −1. For instance,
if Xt = �t − ��t−1 with ��� < 1, � �= 0, then Xt has an autoregressive represen-
tation with �j = �j , i.e., 	 = −∑�

j=1�j = −�/�1− ��, which is less than −1 for
� ∈ �1/2�1�. Furthermore, Condition A′ does not necessarily imply that the sta-
tionary process �Ut� has an AR(�) representation with absolutely summable
coefficients in the case that the original process �Xt� is stationary and possesses
such a representation. To see this recall that for 	 �= 1, Condition A′ implies that
Xt = ��1�a0 −

∑�
j=1�jXt−j + �t . Now, if Ut =

∑�
j=1 cjUt−j + �t holds true, then

using the definition Ut =Xt −
−	Xt−1 and rearranging terms, it follows that
c0 = 1 and cj = �j +	cj−1 for j = 1�2� � � � , which implies that �cj � �→ 0 if 	≤−1.

What is apparent from the two examples discussed so far, is that there are
different possibilities for the meaning we attach to the parameter 	 figuring in
equation (1.1). Whereas 	= 1 is equivalent to an integrated (unit root) series in
both examples considered, the meaning of 	= c (where c �= 1 is some constant)
is different; this is a most important point in order to understand how our testing
procedure behaves when the �Xt� data are actually stationary.

Remark 2.4: In the above examples, the parameter estimator 	̃n used to cal-
culate the residuals Ût in (2.1) is obtained by fitting the corresponding regression
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equations including an intercept term 
 despite the fact that the true value of 

may be equal to zero. In particular, if the practitioner wishes to apply the ordi-
nary LS statistic to test the null hypothesis of unit root integration, then the esti-
mator 	̃n used should be the one obtained by fitting the LS regression (2.4) to
the observed series. Similarly, if the practitioner wishes to apply the augmented
DF type statistic for the same purpose, then the estimator 	̃n should be the one
obtained by fitting the regression (2.6). The reason why an intercept term is
always included is that the estimator 	̃n so obtained automatically satisfies condi-
tions (2.2) and (2.3), i.e., the practitioner does not have to worry about the true
value of the parameter 
 in (1.1). Note that the estimator 	̃n used to perform
the unit root test can be based on a different specification of the deterministic
term than the one used in obtaining the estimator 	̃n; see Section 4.

3� a functional limit theorem for the bootstrap

partial sum process

The asymptotic properties of the RBB testing procedure are largely based on
the stochastic behavior of the standardized partial sum process �S∗

l �r��0≤ r ≤ 1�
defined by

S∗
l �r�=

1√
l

j−1∑
t=1

U ∗
t /�

∗ for
�j−1�

l
≤ r <

j

l
�j = 2� � � � � l�(3.1)

and

S∗
l �1�=

1√
l

l∑
t=1

U ∗
t /�

∗�(3.2)

where U ∗
1 ≡ X1�U

∗
t = X∗

t − 
̂−X∗
t−1 for t = 2�3� � � � � l, and �∗2 = var∗�l−1/2×∑l

j=1U
∗
j �. Note that S∗

l �r� is a random element in the function space D[0�1],
i.e., the space of all real valued functions on the interval [0�1] that are right
continuous at each point and have finite left limits.
The following theorem shows that under a general set of assumptions on the

process �Xt�, and conditionally on the observed series X1�X2� � � � �Xn, the boot-
strap partial sum process defined by (3.1) and (3.2) converges weakly to the stan-
dard Wiener process on [0�1]. This process is denoted in the following by W . To
clarify some terminology used here and elsewhere in the paper, we note that if
T ∗
n = T ∗

n �X
∗
1 �X

∗
2 � � � � �X

∗
n� is a random sequence based on the bootstrap sample

X∗
1 �X

∗
2 � � � � �X

∗
n and G is a random measure, then the notation T ∗

n ⇒G in prob-
ability means that the distance between the law of T ∗

n and the law of G tends to
zero in probability for any distance metrizing weak convergence.

Theorem 3.1: Let �Xt� be a stochastic process, assume that the process �Ut�
defined by Ut =Xt−
−	Xt−1 satisfies Condition A or Condition B, and let 	̃n be
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an estimator of 	 such that equation (2.2) and (2.3) are satisfied. If b→� such
that b/

√
n→ 0 as n→�, then

S∗
l ⇒W in probability�

This basic result together with a bootstrap version of the continuous mapping
theorem enables us to apply the block bootstrap proposal of this paper in order to
approximate the null distribution of a variety of different test statistics proposed
in the literature that correspond to different choices of the parameter 	 and the
estimators 	̃n and 	̂n, provided the following two conditions are fulfilled: (a) The
choice of the parameter 	 is such that 	= 1 is equivalent to the null hypothesis
of unit root integration, while 	 �= 1 is equivalent to the alternative of a stationary
process, and (b) the estimator 	̃n of 	 used to calculate the residual series Ût in
(2.1) satisfies (2.2) and (2.3).

4� applications to unit root testing

In the first application we show consistency of the RBB procedure in approx-
imating the distribution of the LS estimator obtained by regressing Xt on Xt−1,
i.e., our Example 2.1. Interest in the corresponding test statistic that has been
investigated by Dickey and Fuller (1979), Phillips (1987a), Phillips and Perron
(1988), Abadir (1993), and Fuller (1996), occurs mainly because of its simplicity
and the fact that it allows for testing the unit root integrated hypothesis without
parameterizing the weak dependence structure of the process.
In the second application, validity of the RBB testing procedure in approxi-

mating the null distribution of the so-called augmented DF test statistic based
on the regression (4.2) is shown; cf. Fuller (1996), Said and Dickey (1984), and
our Example 2.2. For simplicity of exposition, we discuss in more detail the case
where the generated process has no intercept, i.e., 
 = 0; the case where 
 �= 0
with a possible linear trend is briefly addressed in Section 4.3.

4�1� Statistics Based on the Lag-1 Autocorrelation

Assume that 
 = 0 and consider the LS estimator of the parameter 	 in the
regression

Xt = 	Xt−1+et�(4.1)

It is well known that, under the null hypothesis where �Xt� is unit root inte-
grated, the asymptotic distribution of this estimator is affected if a constant term
is included in the regression (4.1) or not. Both cases can be handled by our boot-
strap algorithm.
Let 	̂LS denote the LS estimator of 	 in (4.1) and 	̂LS�C that in (2.4); 	̂LS�C

includes an intercept in the regression while 	̂LS does not. To approximate the
distribution of 	̂LS we apply the RBB algorithm given in Section 2 by using the
estimator 	̃n = 	̂LS�C in order to calculate the centered residuals Ût in the first
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step. Furthermore, we set 
̂≡ 0 in the second step while the pseudo-statistic 	̂∗

computed in step 4 is given by the LS estimator of the parameter ofX∗
t−1 obtained

by regressing X∗
t on X∗

t−1 without intercept, i.e., equation (4.1). We denote this
estimator by 	̂∗

LS. Similarly, in order to approximate the distribution of 	̂LS�C we
use the same bootstrap variables as above but we include a constant term in
the regression of X∗

t on X∗
t−1. The estimator of the coefficient of X∗

t−1 in this
regression is denoted by 	̂∗

LS�C . Note that since we are interested in approximating
the null distribution of n�	̂LS− 1� or of n�	̂LS�C − 1� under the assumption that

 = 0, for both cases the generated pseudo-series X∗

1 �X
∗
2 � � � � �X

∗
l is unit root

integrated without drift. The following theorem summarizes the behavior or our
bootstrap proposal.

Theorem 4.1: Assume that the process �Xt� satisfies Condition A or Condi-
tion B with 
= 0. If b→� but b/

√
n→ 0 as n→�, then:

�i� sup
x∈�

�P ∗�l�	̂∗
LS−1�≤ x �X1�X2� � � � �Xn�−P0�n�	̂LS−1�≤ x�� → 0

in probability and

�ii� sup
x∈�

�P ∗�l�	̂∗
LS�C −1�≤ x �X1�X2� � � � �Xn�−P0�n�	̂LS�C −1�≤ x�� → 0

in probability, where P0 denotes the probability measure corresponding to the case
where the statistics 	̂LS and 	̂LS�C are computed from a stretch of size n from the
unit root process obtained by integrating �Ut�.

4�2� Dickey-Fuller Type Statistics

Assume that �Xt� satisfies Condition A′ with 
= 0 and consider the problem
of approximating the distribution of the augmented DF type estimator 	̂DF under
the null hypothesis, where 	̂DF denotes here the LS estimator obtained by fitting
the regression equation

Xt = 	Xt−1+
p∑
i=1

ai�Xt−i−Xt−i−1�+�t(4.2)

to the observed series X1�X2� � � � �Xn. To do this, define first the centered
differences

Dt =Xt−Xt−1−
1

n−1

n∑
t=2

�X� −X�−1��

t= 2�3� � � � � n. To estimate the distribution of 	̂DF we apply the RBB algorithm as
follows: An estimator 	̃n of 	 in (2.5) that satisfies (2.2) and (2.3) is used to calcu-
late the centered residuals Ût in the first step of the algorithm. Such an estimator
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is, for instance, 	̂DF�C obtained from (2.6). The pseudo-series X∗
1 �X

∗
2 � � � � �X

∗
l is

then generated following steps 2 to 4 where 
̂≡ 0 in the second step. Addition-
ally to the bootstrap series X∗

t , we also generate a pseudo-series of l centered
differences denoted by D∗

1�D
∗
2� � � � �D

∗
l as follows: For the first block of b+ 1

observations we set D∗
1 = 0 and

D∗
j =Di0+j−1

for j = 2�3� � � � � b+1. For the �m+1�th block, m= 1� � � � � k−1 we define

D∗
mb+1+j =Dim+j �

where j = 1�2� � � � � b. We then calculate the regression of X∗
t on X∗

t−1 and on
D∗

t−1�D
∗
t−2� � � � �D

∗
t−p. The least squares estimator of the coefficient of X∗

t−1 in
this regression, denoted by 	̂∗

DF , is used to approximate the distribution of the
estimator 	̂DF under the null hypothesis.
To approximate the distribution of 	̂DF�C , i.e., of the least squares estimator

of 	 in (2.6), we just include a constant term in the corresponding regression fit-
ted to the pseudo-series �X∗

t �D
∗
t � t = 1�2� � � � � l�. The so obtained least squares

estimator of the coefficient of X∗
t−1 is denoted in the following by 	̂∗

DF�C .
To motivate the above use of the RBB algorithm to approximate the distri-

bution of 	̂DF and 	̂DF�C , consider for instance the estimator 	̂DF and recall our
target regression (4.2), which relates Xt on Xt−1 and on the lagged differences
Xt−j −Xt−j−1� j = 1�2� � � � �p. Now, in the bootstrap world X∗

t−j −X∗
t−j−1 =U ∗

t−j ,
which for large n behaves like the random variable Ut−j , i.e., the bootstrap
differences X∗

t−j −X∗
t−j−1 behave asymptotically like Xt−j − 	Xt−j−1 and not

like Xt−j −Xt−j−1. Thus regressing X∗
t on X∗

t−1 and on the lagged differences
X∗

t−j −X∗
t−j−1, j = 1�2� � � � �p, will mimic the regression of Xt on Xt−1 and on

Ut−j � j = 1�2� � � � �p. This, however, coincides with our target regression (4.2)
only if 	= 1, i.e., only if the observed series is indeed unit root integrated. Fur-
thermore, as we have seen in Example 2.2, such an infinite order autoregressive
representation for the process �Ut� may not exist if 	 �= 1.

Now, to understand from where the definition of the new bootstrap variables
D∗

t comes, consider the bootstrap observations in the �m+ 1�th block given by
X∗

mb+1+s where s ∈ �1�2� � � � � b�. Here we have X∗
mb+1+s =X∗

mb+s+ Ûim+s+1; note
that, for large n, Ûim+s+1 behaves like Uim+s+1, which by (2.5) depends on the
lagged differences Xim+s+1−j−Xim+s−j , j = 1�2� � � � . Thus the bootstrap analogue
of (4.2) will be to regress X∗

mb+1+s on X∗
mb+s and on Xim+s+1−j −Xim+s−j , j =

1�2� � � � �p. Note that Dim+1+s−j is just a centered version of Xim+s+1−j −Xim+s−j .

Theorem 4.2: Assume that the process �Xt� satisfies Condition A′ with 
= 0.
Assume further that p → � as n → � such that p3/

√
n → 0 and

√
n
∑�

j=p+1

�aj � → 0. If b→� such that b/
√
n→ 0 as n→�, then

�i� sup
x∈�

�P ∗��l−p��	̂∗
DF −1�≤ x �X1�X2� � � � �Xn�

−P0��n−p��	̂DF −1�≤ x�� → 0
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in probability and

�ii� sup
x∈�

�P ∗��l−p��	̂∗
DF�C −1�≤ x �X1�X2� � � � �Xn�

−P0��n−p��	̂DF�C −1�≤ x�� → 0

in probability.
Here P0 denotes the probability measure corresponding to the case where the statis-

tics 	̂DF and 	̂DF�C are computed from a stretch of size n from the unit root process
obtained by integrating �Ut�.

We stress here the fact that in both cases discussed here the pseudo-series
X∗

1 �X
∗
2 � � � � �X

∗
n is generated in a nonparametric way, i.e., using the RBB boot-

strap procedure and not the parametric form given in (4.2). Because of this we
expect the bootstrap to be able to mimic also correctly the ‘truncation effect’
on the distribution of 	̂DF and 	̂DF�C . This truncation effect is due to the fact
that a model with a finite lag p is fitted to the series at hand whereas an infi-
nite order is ideally required because of the infinite order representation (2.5).
In other words, we expect the results based on the RBB testing procedure to be
less sensitive with respect to the choice of the parameter p. Section 6.2 presents
numerical illustrations of this behavior.

4�3� The Case of Nonzero Mean

In order to cover the usual four cases of interest (see e.g. Chapter 17 of
Hamilton (1994)), we now show that the RBB bootstrap algorithm can also be
used to approximate the null distribution of our test statistics when the true pro-
cess has an intercept term, i.e., that 
 �= 0, and that the equation fitted to the
observed series includes a constant or even a linear time trend component. We
may, for instance, be interested in approximating the distribution of the LS esti-
mator of the coefficient of Xt−1 under the null hypothesis that 	 = 1, if either
the model (2.4) or the model

Xt = 
+
1t+	Xt−1+et(4.3)

is fitted to the observed series X1�X2� � � � �Xn. Similarly, the statistic of interest
may be the LS estimator of 	 in (2.6) or in

Xt = 
+
1t+	Xt−1+
p∑
i=1

ai�Xt−i−Xt−i−1�+�t�(4.4)

The theory developed in this paper can be easily applied to establish asymptotic
validity of the RBB algorithm in this setting too. For instance, denote by 	̂LS�T
the LS estimator of 	 in (4.3) and by 	̂∗

LS�T the corresponding estimator using
the bootstrap series X∗

1 �X
∗
2 � � � � �X

∗
n. The bootstrap pseudo-series is generated
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here using the RBB bootstrap algorithm with 	̃ = 	̂LS�C in (2.1) and 
̂ = 
̃ in
the second step, where 
̃ denotes the estimator of 
 in (2.4). This is in contrast
to the situation in Section 4.1 and 4.2 where we set 
̂ ≡ 0 in the second step
of the RBB algorithm. The following theorem summarizes the behavior of our
bootstrap proposal in approximating the distribution of n�	̂LS�T − 1� under the
null hypothesis that 	= 1 and 
1 = 0. An analogous result for approximating the
distribution of the Dickey-Fuller statistic �n−p��	̂DF�T −1� under the same null
hypothesis is easily established.

Theorem 4.3: Assume that the process �Xt� satisfies Condition B. If b → �
but b/

√
n→ 0 as n→�, then

sup
x∈�

∣∣∣P ∗(l(	̂∗
LS�T −1�≤ x �X1�X2� � � � �Xn

)−P0

(
n
(
	̂LS�T −1�≤ x

)∣∣∣→ 0

in probability, where P0 denotes the probability measure corresponding to the case
where the statistic 	̂LS�T is computed from a stretch of size n from the unit root
process obtained by integrating the process �
+Ut�.

5� power considerations

In this section the power properties of the RBB testing procedure are investi-
gated and compared to those of an alternative block bootstrap scheme based on
differences of the observed series. We restrict in the following our considerations
to statistics based on the lag-1 autocorrelation and the corresponding ordinary
least squares estimator 	̂LS.

5�1� Global and Local Power Properties of the RBB Procedure

Consider first the case where the observed process is stationary and the param-
eter of interest 	 is the lag-1 autocorrelation with a (fixed) value in the interval
(−1�1]. For � ∈ �0�1� let C∗

� be the �-quantile of the distribution of l�	̂∗
LS−1�,

i.e., C∗
� = inf�C � P ∗�l�	̂∗

LS−1�≤ C�≥ ��; because the discontinuities of P ∗ van-
ish asymptotically, we may write P ∗�l�	̂∗

LS − 1� ≤ C∗
�� � �. Theorem 4.1 implies

that as n→�, C∗
� →C� in probability, where C� is the �-quantile of the asymp-

totic null distribution of n�	̂LS−1�, i.e., the �-quantile of the distribution of the
random variable

V� �= (
W 2�1�−�2

U/�
2)/(2 ∫ 1

0
W�r�2 dr

)
�(5.1)

where �2
U = var�Ut���

2 = 2�fU�0�, and fU denotes the spectral density of �Ut�.
Recall that Ut is defined by Ut =Xt−	Xt−1 and that Ut is the differenced process
only if the null hypothesis is true.
Let �2 = �c2�2 − 2	c1�2 + 	2c1�1�/�

2�0�, where ci+1� j+1 = ∑�
l=−� cov�X0Xi,

XlXl+j � and ��0�= var�Xt�. Let further Fn�·�= P�
√
n�	̂LS−	�/� ≤ ·� and note
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that if the underlying process �Xt� is stationary and satisfies Condition A or B,
then supx∈� �Fn�x�−��x�� → 0, where ��·� denotes the distribution function of
the standard normal; cf. Romano and Thombs (1996). Let 
RBB�n�	��� be the
power function of the �-level RBB test, i.e.,


RBB�n�	���= P
(
n
(
	̂LS−1

)≤ C∗
� � 	 ∈ �−1�1�

)
�

We now have the following corollary, which shows consistency of the RBB based
unit root test.

Corollary 5.1: Under the assumptions of Theorem 4.1, we have


RBB�n�	���
P−→ 1 for all 	 ∈ �−1�1� and


RRB�n�1���
P−→ � as n→��

The proof of the corollary is immediate considering that


RBB�n�	���= Fn

(
C∗
�√
n�

−
√
n�	−1�
�

)
(5.2)

= Fn
(−�P

(
n−1/2)+�

(
n1/2)) P−→��+��= 1�

in the above, � is used to denote exact order of magnitude. In other words,
for positive quantities An and Bn�An =��Bn� if An =O�Bn� and Bn =O�An�;
similarly, we will write An =�P�Bn� if An =OP�Bn� and Bn =OP�An�.

Consider next the asymptotic power behavior of the RRB based unit root
test for sequences of local alternatives converging to the null at the rate n−1.
To be more specific, assume that the underlying process satisfies the following
condition.

Condition B
′
: Xt = 	nXt−1+Ut� t= 1�2� � � � , where 	n = 1+c/n� c < 0, and

the stationary process �Ut� satisfies: E�Ut�= 0�E�Ut�� <� for some � > 2� fU �0� >
0 and

∑�
k=1��k�

1−2/� <�, where ��·� denotes the strong mixing coefficient of �Ut�.

Taking into account the asymptotic theory of the regression statistic n�	̂LS−1�
for near integrated processes (cf. Phillips (1987b)), the following theorem about
the asymptotic local power behavior of the RBB based test can be established.

Theorem 5.1: Let �Xt� satisfy Condition B′. If b → � as n→ � such that
b/

√
n→ 0, then


RBB�n�	n���→ P�J ≤ C�−c��

in probability, where C� is the � quantile of the distribution of �W 2�1�−�2
U/�

2�/

�2
∫ 1
0 W

2�r�dr�� J is a random variable having distribution �
∫ 1
0 Jc�r�dW�r�+ �1−

�2
U/�

2�/2�/�
∫ 1
0 Jc�r�

2 dr� and Jc�r� =
∫ 1
0 exp��r − s�c�dW�s� is the Ornstein-

Uhlenbeck process generated by the stochastic differential equation dJc�r� =
cJc�r�dr+dW�r� with initial condition Jc�0�= 0.
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Thus, the above theorem confirms the good asymptotic performance of the
RBB; even for alternatives contiguous to the null hypothesis, the RBB manages
to achieve nontrivial power. Notice that like the case of fixed alternatives, also in
the case of local alternatives considered here, a test based on n�	̂LS−1� has an
asymptotic null distribution that depends on nuisance parameters. A modification
of this statistic leading to a distribution under the null that is free of nuisance
parameters has been proposed by Phillips and Perron (1988). We stress here the
fact that our bootstrap procedure can be successfully applied to approximate the
null distribution of such a modified test statistic too.

5�2� Comparison with a Block Bootstrap Based on Differences

An alternative approach to implement the block bootstrap for unit root testing
is to apply the block resampling scheme to the series of centered differences:

Lt = �Xt−Xt−1�−
1

n−1

n∑
j=2

�Xj −Xj−1� �t = 2�3� � � � � n��(5.3)

instead of applying it to the series of the centered residuals Ût given in (2.1).
The motivation for such an approach is to impose the null hypothesis of unit root
integration to the observed series prior to applying the bootstrap. As mentioned
in the Introduction, under more restrictive (e.g., parametric) assumptions on the
underlying process, such a bootstrap approach based on differences has been
widely used in the literature; cf. among others Nankervis and Savin (1996), Park
(2000), Chang and Park (2001), and Psaradakis (2001).
A difference-based block bootstrap (DBB) procedure for unit root testing will

generate pseudo series, say, X+
1 �X

+
2 � � � � �X

+
l , by following exactly the same

steps as those of the RBB algorithm described in Section 2 with the only
difference that the series of centered residuals Ût used in the first step will
be replaced by the series Lt of centered differences given in (5.3). Now let
	̂+
LS =

∑l
t=2X

+
t X

+
t−1/

∑l
t=2X

+2
t−1 be the least squares estimator of 	� 	̂+

LS is the ana-
logue of 	̂LS in the DBB world. The distribution of the DBB statistic l�	̂+

LS−1�
is then used to approximate the distribution of the statistic n�	̂LS−1� under the
null hypothesis of unit root integration.
To compare the above difference-based block-bootstrap procedure with our

residual-based proposal, the following theorem is important. It deals with the
asymptotic properties of the DBB estimator 	̂+

LS.

Theorem 5.2: Assume that the process �Xt� satisfies Condition A or B with

= 0. Let b→� as n→� such that b/

√
n→ 0.

(i) If 	= 1, then

�
(
l
(
	̂+
LS−1

)�X1�X2� � � � �Xn

)⇒ (
W 2�1�−�2

U/�
2)/(2 ∫ 1

0
W�r�2 dr

)
�

in probability.
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(ii) If 	 ∈ �−1�1� then

�
(
k
(
	̂+
LS−1

)�X1�X2� � � � �Xn

)
⇒−(1− corr�XtXt+1�

)/(
2
∫ 1

0
W�r�2 dr

)
< 0�

in probability.

Recall that the limiting distribution in part (i) of the above theorem is indeed
the limiting distribution of n�	̂LS − 1� if �Xt� is unit root integrated. However,
part (ii) of the same theorem shows that, under the alternative, the DBB esti-
mator 	̂+

LS behaves totally differently as compared to the RBB estimator 	̂∗
LS. In

particular, the DBB estimator converges to a different limit than the RBB esti-
mator; in addition, this convergence occurs at the slower rate k as opposed to l
for the RBB. As a careful reading of the proof of this theorem shows, the reason
for the slow k-convergence of the DBB estimator 	̂+

LS under the alternative lies
in the fact that, if the observed process is stationary, then integrating random
blocks of differenced observations effects a cancelation of the differences found
within each block. The result of this cancelation is that the partial sum process
based on the increments X+

t −X+
t−1 of the DBB pseudoseries X+

1 �X
+
2 � � � � �X

+
l

behaves essentially like a partial sum process of only k independent increments
given by Xim+b−Xim

� m= 0�1� � � � � k−1; see Lemma 8.5.
There are some important implications of the above theorem for the behavior

of the block bootstrap unit root testing based on differences. In particular, under
the alternative, i.e., if the underlying process is stationary, then using the DBB
bootstrap statistic l�	̂+

LS − 1� to approximate the null distribution of n�	̂LS − 1�
fails. This is so because by part (ii) of Theorem 5.2 and the slower convergence
rate of 	̂+

LS, we get for every � ∈ �0�1� that
lim
n→�P

(
l
(
	̂+
LS−1

)≤−b�)= 1�

since lb−1�	̂+
LS − 1� converges (in probability) to a negative random limit. Since

−b� →−�, it follows that the DBB statistic l�	̂+
LS−1� diverges to −� under the

alternative!
Apart from this undesirable behavior, it might be interesting to investigate

how the above failure of the DBB procedure affects the power properties of the
corresponding unit root test. For this let 
DBB�n�	��� be the power function of
the DBB based test, i.e.,


DBB�n�	���= P
(
n�	̂LS−1�≤ C+

� � 	 ∈ �−1�1�
)
�

where C+
� denotes the �-quantile of the distribution of the DBB statistic l�	̂+

LS−
1�. Note that by part (ii) of Theorem 5.2 we have that C+

� is negative and that
−C+

� =�P�b�. Thus for 	 ∈ �−1�1�,


DBB�n�	���= Fn

(
C+
�√
n�

−
√
n�	−1�
�

)
(5.4)

= Fn�−�P�bn
−1/2�+��n1/2���
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Now, since ��n1/2� is the dominant term, it still follows that 
DBB�n�	���
P→ 1

as n→ � provided b/n→ 0 and 	 ∈ �−1�1�. However, a comparison of (5.4)
with (5.2) shows that the difference between the power functions of the two
block bootstrap tests (RBB and DBB) is due to the terms C+

� /
√
n and C∗

�/
√
n

respectively. Notice that both of those terms are negative while −√
n�	−1� > 0

under the alternative. Furthermore, as n→�, −√
n�	− 1�→+��C+

� /
√
n ↑ 0

and C∗
�/
√
n ↑ 0. These facts imply that the slower the negative terms C∗

�/
√
n and

C+
� /

√
n approach 0, the lower the power of the corresponding test will be. Now,

because −C+
� /

√
n = �P�bn

−1/2� while −C∗
�/
√
n = �P�n

−1/2�, the term C∗
�/
√
n

converges to zero faster, confirming that the RBB test is asymptotically more
powerful than the DBB test. The loss of power is essentially due to the slower
convergence rate of the DBB statistic 	̂+

LS−1. The previous discussion is summa-
rized in the following corollary.

Corollary 5.2: Under the assumptions of Theorem 4.1, and for all 	 ∈
�−1�1�, we have


DBB�n�	���≤ 
RBB�n�	���

with probability tending to one as n→�.

We mention here that apart from the above differences in the convergence
rate of the two test statistics considered, and as expressions (5.2) and (5.4) show,
we expect the power of the DBB test to decrease when the block size b increases.
This is because large values of b inflate the term C+

� which reduces the power of
the DBB test.
In concluding this comparison we deal with the question of whether the DBB

based test has power against sequences of 1/n local alternatives satisfying Con-
dition B′. The next theorem states that regarding this class of local alternatives,
the DBB based test has the same asymptotic behavior as the RBB based test.
The reason for this is that in contrast to the case of fixed alternatives, 1/n local
stationarity recovers

√
l-convergence of the bootstrap partial sum process based

on differences; cf. Lemma 8.7.

Theorem 5.3: Let �Xt� satisfy Condition B′. If b → � as n→ � such that
b/

√
n→ 0, then


DBB�n�	n���→ P�J ≤ C�−c��

in probability, where C� and J are defined as in Theorem 5.1.

The theoretical findings of this section are illustrated in Section 6.2 by means
of some numerical examples.
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6� implementation issues and small sample performance

6�1� Choosing the Block Size in Practice

Recall that our asymptotic results hold true for any block size b satisfying

b→� but b/
√
n→ 0�(6.1)

here of course the understanding is that b is a function of n, i.e., b = b�n�.
Nevertheless, there are many choices of b that satisfy (6.1), and it is natural to
ask whether there is an ‘optimal’ one. This is a familiar problem with all blocking
methods, the practical implementation and performance of which is well known
to be quite influenced by the actual block size used. The Residual-based Block
Bootstrap is no exception, and it would be desirable to build a methodology
towards ‘optimal’ block size choice.
To talk about an ‘optimal’ block size choice it is required to set a criterion

that is to be optimized. In the usual application of block resampling or subsam-
pling methods to stationary data, the criteria most often used are: (a) accuracy
(e.g., mean squared error) in variance estimation; (b) accuracy in estimation of
a distribution function; and (c) accuracy in achieving the nominal coverage of a
confidence interval.
Typically, a higher-order expansion is developed involving one of the above

accuracy measures. The expansion is then optimized with respect to b yielding
an expression of the type

bopt = Cn�(6.2)

for the optimal block size. Ideally, � is known but usually the constant C depends
on unknown characteristics of the probability structure associated with the data
series.
To fix ideas, consider the quite relevant example of performing a block boot-

strap on the residuals �Ut� with the objective of (accurate) estimation of the
variance of the sample mean �Un = n−1∑n

t=1Ut . Recall that, under regularity con-
ditions, var�

√
n�Un�→�2 �= 2�fU�0�, where fU is the spectral density of the series

�Ut�. Thus, estimation of var�
√
n�Un� is tantamount to estimation of fU �0�. To

achieve most accurate (in terms of mean squared error) estimation of var�
√
n�Un�

via the block bootstrap, it is well known that we must take � = 1/3; see e.g.
Künsch (1989). The constant C is however unknown as it depends—among other
things—on the unknown function f and its smoothness near the origin.
In such a case when an expression of the type (6.2) is available with �

known but C unknown, there are two general approaches in the literature of
block/bandwidth choice:

(i) Plug-in methods. Here the dependence of C on a few unknown features is
exploited; the features (e.g., the spectral density function and its first one or two
derivatives) are explicitly estimated, yielding an estimator Ĉ of C to be used in
(6.2). For the method to work well, accurate estimation of C is required. In the
particular problem of variance estimation for the sample mean this approach was
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considered in Politis and White (2000) where estimation of C was based on fast-
converging, infinite-order smoothing kernels; see Politis (2001) for more details.
(ii) Cross-validation. Although cross-validation is a general nonparametric

technique, its particular application to choosing a block size was suggested by
Hall, Horowitz, and Jing (1995); this is a very useful and easily implementable
methodology that employs the notion of subsampling to effectively by-pass
explicit estimation of C, while still yielding an estimator of bopt.
In the problem at hand, a natural optimization criterion is to improve the speed

of convergence of our RBB approximations. For example, part (i) of Theorem 4.1
can be restated as:

P ∗(l(	̂∗
LS−1

) ≤ x�X1�X2� � � � �Xn

)−P0

(
n
(
	̂LS−1

)≤ x
)

(6.3)

=OP��b�n�� with �b�n = o�1��

as b → � but b/
√
n → 0; here �b�n is a deterministic quantity that does not

depend on x but does depend on b�n and the probabilistic structure of �Xt�.
Although intractable at the moment, it is hoped that with further future work the
quantity �b�n will be identified; minimization of �b�n with respect to the design
parameter b would then yield an expression of the type (6.2), and consequently
both aforementioned methods, plug-in and cross-validation, may be available for
practical block size choice.
Until the quantity �b�n is pinpointed and a recommendation of the type (6.2)

becomes available, the following heuristic ideas may be helpful. Recall that both
distributions appearing in equation (6.3) converge to the distribution of the
random variable V� defined in (5.1). An immediate implication of part (i) of
Theorem 4.1 is

P ∗�l�	̂∗
LS−1�≤ x�X1�X2� � � � �Xn�−PW�V� ≤ x�= oP�1��(6.4)

where PW is the probability law associated with the Wiener process W . Conse-
quently, we may try to choose b with the objective of minimizing the right-hand-
side of (6.4) instead. To do this, recall that the distribution PW�V� ≤ x� was seen
to depend on two parameters, namely �2

U = var�Ut� and �2 = 2�fU�0�. There-
fore, for the approximation (6.4) to hold it must be true that the RBB procedure
achieves an implicit estimaton of those two parameters. Recall, however, that
estimating �2 is tantamount to estimating the variance of the sample mean �Un.
Thus, taking into account the RBB step of block bootstrapping the estimated
residuals, it is intuitive that this implicit estimation of �2 by the RBB is achieved
by a mechanism that is quite close to the block bootstrap estimator of the vari-
ance of �Un; it follows that a block size given by equation (6.2) with � = 1/3 may
be a good choice, in which case both aforementioned methods, plug-in and cross-
validation, are directly applicable, as the problem has been effectively reduced
to optimizing the block bootstrap variance estimator for the series �Ût�.

Nevertheless, the above recommendation is a heuristic one. In addition, our
heuristic has the simpler objective of minimizing the right-hand side of (6.4)
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instead of the right-hand side of (6.3), which is more challenging. Last, but not
least, note that there exist alternative philosophies for block size choice; impor-
tant such examples are the calibration method and the minimum volatility method,
both of which are described in detail in Politis, Romano, and Wolf (1999, Ch. 9.4)
in connection with subsampling. In particular, the minimum volatility method
seems to be easily applicable/extendible to the RBB set-up; it amounts to com-
puting critical values for the RBB test using a range of different block sizes, and
choosing b in a region where those critical values exhibit smallest volatility—see
Politis, Romano, and Wolf (1999, pp. 201–202). More work is required in order
to give analytical and/or empirical substantiation to the aforementioned prelimi-
nary block size choice ideas.

6�2� Numerical Examples

A small simulation study was conducted to evaluate the finite-sample per-
formance of the RBB bootstrap testing procedure and to compare its perfor-
mance with that of some other bootstrap procedures. For this purpose the simple
ARMA(1,1) model,

Xt−�Xt−1 = Zt+�Zt−1�

was used to generate the observed series �Xt� based on the i.i.d. Gaussian series
�Zt� ∼ N�0�1�. The case � = 1 is the unit root case, whereas � = 0�85 corre-
sponds to a stationary series �Xt�. Regarding the MA parameter �, the values
−0�8�0�0�5, and 0.8 were chosen; � = 0�5 and � = 0�8 correspond to a positive
dependence; � = 0 corresponds to either a random walk with i.i.d. errors, or a
stationary AR(1) model (according to whether � = 1 or � = 0�85). Finally, the
case of negative correlation � =−0�8 has attracted some attention in the litera-
ture because the moving average polynomial has a root close to unity which, in
combination with the unity autoregressive root, yields series that can easily be
mistaken for i.i.d., especially when the sample size is not too big.
The simulations were performed by generating a number of M = 2000 true

�Xt� series each of length n+ 100 where the first 100 observations were dis-
carded; we chose n= 50 and n= 100. From each generated data series the RBB
bootstrap was called to perform an �-level test of the unit root hypothesis H0.
The test statistics used were based on the LS estimator in equation (2.4), i.e.,
the statistic n�	̂LS�C −1� and on the augmented DF estimator in equation (2.6),
i.e., the statistic �n−p��	̂DF�C − 1�. We denote the corresponding RBB-based
tests by Z∗�	̂LS�C� and ADF ∗�	̂DF�C� respectively. Note that the RBB bootstrap
procedure was conducted by generating B = 1000 bootstrap series (for each true
series) in order to perform the required Monte Carlo approximations.
The empirical performance of the RBB test—denoted by Z∗�	̂LS�C� in the

tables—is compared with that of some other well-known tests. In particular,
we consider the unit-root test proposed by Phillips and Perron (1988) that is
obtained by correcting the statistic n�	̂LS�C − 1� for nuisance parameters; the
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Phillips-Perron test is denoted in the following by Z�	̂LS�C�. Furthermore, we
compare the performance of the RBB test with that of the DBB procedure based
on differences, which was discussed in Section 5.2; we denote the DBB test by
Z+�	̂LS�C�. Similarly, the ADF ∗�	̂DF�C� test is compared with the Dickey-Fuller
regression t test for a unit root in the autoregression (2.6); the latter is denoted
in the following by ADF t�	̂DF�C�. Note that Said and Dickey (1984) do not
suggest a statistic based on the coefficient 	̂DF�C since the limit distribution of
�n−p��	̂DF�C −1) depends on nuisance parameters. Thus, there is no analogue
of our ADF ∗�	̂DF�C� in Said and Dickey (1984). The ADF ∗�	̂DF�C� test is also
compared with a test based on a ‘sieve bootstrap’ approach (cf. Chang and Park
(2001), Psaradakis (2001)) which is denoted by ADF SIEVE�	̂DF�C�.
Finally, we compare the RBB test with a test based on subsampling the

Dickey-Fuller statistic; this test will be denoted by ADF SUB�	̂DF�C�. The valid-
ity of subsampling in this framework was recently shown in Romano and Wolf
(2001) under an AR�p� assumption; see also Chapter 12 in Politis, Romano, and
Wolf (1999) where more details on this computer-intensive methodology may be
found. Note that typically subsampling has the objective of forming confidence
intervals for parameters of interest; nevertheless, the subsampling confidence
intervals can be immediately inverted to yield tests of a point hypothesis such as
our H0.
Table I and Table II report the empirical rejection probabilities of the different

unit root tests discussed above with nominal level � = 0�05 and under different
settings of the parameters � and �, different sample sizes n, different choices of
the block size b, the autoregressive order p, and the subsampling block size B.

TABLE I

Results of Monte Carlo Experiments for the Lag-1 Autocorrelation
a

�= 1�0 �= 0�85

� = 0�0 � = 0�5 � = 0�8 � =−0�8 � = 0�0 � = 0�5 � = 0�8

n= 50 Z�	̂LS�C� l = 3 0.052 0.013 0.010 0.989 0.345 0.112 0.090
l = 5 0.048 0.007 0.005 0.994 0.314 0.061 0.044

Z∗�	̂LS�C� b = 3 0.056 0.022 0.019 0.982 0.355 0.144 0.120
b = 5 0.065 0.018 0.018 0.989 0.356 0.145 0.124

Z+�	̂LS�C� b = 3 0.030 0.014 0.013 0.907 0.200 0.109 0.099
b = 5 0.015 0.012 0.012 0.742 0.125 0.076 0.071

n= 100 Z�	̂LS�C� l = 4 0.049 0.035 0.032 0.991 0.803 0.497 0.457
l = 6 0.048 0.023 0.021 0.994 0.813 0.442 0.391

Z∗�	̂LS�C� b = 4 0.067 0.041 0.040 0.981 0.808 0.515 0.469
b = 6 0.068 0.036 0.035 0.987 0.817 0.523 0.477

Z+�	̂LS�C� b = 4 0.047 0.036 0.035 0.893 0.613 0.442 0.418
b = 6 0.032 0.026 0.029 0.784 0.532 0.402 0.378

aEmpirical rejection probabilities of unit root tests with nominal level �= 0�05 under different settings of the ARMA parameters �
and �. The test statistic used here is n�	̂LS�C −1� with asymptotic �Z�	̂LS�C ��, RBB-based �Z∗�	̂LS�C �� and DBB-based �Z+�	̂LS�C ��
critical values; l denotes the truncation parameter used in the test statistic proposed by Phillips and Perron (1988) and b the bootstrap
block size.
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TABLE II

Results of Monte Carlo Experiments for the Dickey-Fuller Type Statistic
a

�= 1�0 �= 0�85

� = 0�0 � = 0�5 � = 0�8 � =−0�8 � = 0�0 � = 0�5 � = 0�8

n= 50 ADF t�	̂DF�C� p = 2 0.059 0.055 0.045 0.504 0.182 0.128 0.085
p = 4 0.072 0.077 0.064 0.228 0.154 0.137 0.096

ADF ∗�	̂DF�C� b = 4, p = 2 0.068 0.038 0.026 0.824 0.343 0.207 0.158
p = 4 0.079 0.058 0.036 0.698 0.352 0.248 0.186

b = 5, p = 2 0.071 0.039 0.029 0.792 0.345 0.213 0.161
p = 4 0.078 0.051 0.037 0.651 0.358 0.245 0.185

ADF SIEVE�	̂DF�C� p = 2 0.041 0.026 0.015 0.568 0.187 0.112 0.071
p = 4 0.030 0.028 0.019 0.234 0.142 0.113 0.077

ADF SUB�	̂DF�C� B = 4, p = 2 0.117 0.076 0.077 0.938 0.435 0.357 0.373
B = 5, p = 2 0.152 0.113 0.110 0.954 0.526 0.446 0.468
B = 10, p = 4 0.078 0.056 0.059 0.528 0.297 0.235 0.217

n= 100 ADF t�	̂DF�C� p = 2 0.057 0.045 0.033 0.672 0.524 0.386 0.268
p = 4 0.061 0.048 0.042 0.331 0.416 0.374 0.292
p = 6 0.064 0.060 0.053 0.174 0.364 0.340 0.270

ADF ∗�	̂DF�C� b = 6, p = 2 0.071 0.045 0.040 0.859 0.760 0.595 0.518
p = 4 0.073 0.052 0.036 0.704 0.731 0.611 0.505
p = 6 0.079 0.057 0.044 0.616 0.712 0.592 0.502

b = 8, p = 2 0.068 0.038 0.032 0.861 0.782 0.576 0.495
p = 4 0.069 0.053 0.038 0.714 0.740 0.584 0.486
p = 6 0.071 0.055 0.042 0.610 0.710 0.591 0.488

ADF SIEVE�	̂DF�C� p = 2 0.035 0.019 0.010 0.724 0.611 0.458 0.336
p = 4 0.046 0.035 0.027 0.360 0.487 0.426 0.328
p = 6 0.039 0.036 0.030 0.197 0.364 0.331 0.275

ADF SUB�	̂DF�C� B = 6, p = 2 0.128 0.096 0.101 0.961 0.893 0.841 0.843
p = 4 0.008 0.003 0.003 0.473 0.221 0.109 0.105

B = 8, p = 2 0.132 0.106 0.106 0.951 0.885 0.848 0.851
p = 4 0.037 0.022 0.017 0.601 0.499 0.337 0.339

B = 10, p = 4 0.057 0.036 0.029 0.606 0.574 0.484 0.461
B = 20, p = 6 0.073 0.062 0.062 0.345 0.565 0.479 0.488

aEmpirical rejection probabilities of unit root tests with nominal level �= 0�05 under different settings of the ARMA parameters �
and �. The test statistic used here is the augmented Dickey Fuller t-test with asymptotic critical values, the statistic �n−p��	̂DF�C −1�
with RBB-based critical values �ADF ∗�	̂DF�C �� and with sieve bootstrap based critical values �ADF SIEVE�	̂DF�C ��. ADF SUB�	̂DF�C �
denotes the test based on inverting the appropriate one-sided subsampling confidence interval. Finally, b denotes the block bootstrap
size, B the subsampling block size, and p the order of the autoregression fitted.

Although the simulation study is limited, the results suggest several interest-
ing conclusions. First the empirical sizes of the RBB-based tests are close to the
nominal level of 5% with the only exception being the case where � =−0�8. For
this particular case of strong negative correlation, it seems that using a nonpara-
metric block bootstrap approach does not solve the poor size problems of the
unit root tests considered. Note that similar problems occur more or less for all
other alternative bootstrap methods considered here, with the sieve bootstrap
procedure being somewhat better although far from satisfactory.



unit root testing 837

Regarding the DF-type test, an additional aspect to the above appears in
the case � = −0�8. It is well known that the augmented DF t-test, i.e., the
ADF t�	̂LS�C� statistic, also suffers size distortions for � =−0�8, which are atten-
uated as the lag length of the autoregression fitted increases; cf. Phillips and
Perron (1988). For instance, the empirical rejection rate of the null hypothesis
for n = 50� � = 1�0, and � = −0�8 equals 0.802 for p = 1�0�504 for p = 2�0�341
for p = 3, and 0.220 for p = 4, making evident that the size “correction” for
� =−0�8 is achieved by increasing the lag length p. The price paid for this, how-
ever, is a drop in power; cf. also Ng and Perron (1995). Now, since the RBB-
based ADF ∗�	̂DF�C� test seems to be less sensitive to the choice of lag length
p, the size distortions for � = −0�8 are only gradually corrected as p increases,
leading to the high rejection rates reported in the table.
Nevertheless, the case � = −0�8 is a well-known problematic situation in

which—as discussed above—a practical ‘cancelation’ of the autoregressive unit
root with the moving average ‘almost’ unit root occurs, yielding series with sam-
ple paths closely resembling a white noise. As a matter of fact, many authors
argue that in such a case the stationary model obtained after the ‘cancelation’
may provide a more parsimonious description of the data, and that consequently
(false) rejections of H0 are not necessarily a bad thing; see Campbell and Perron
(1991), and Hamilton (1994) for a discussion.
A second conclusion of our simulation study is that using the RBB leads to

improvements in terms of power that are in some cases substantial; we refer
here to the results in Table I and Table II for � = 0�85 and � ∈ �0�0�0�5�0�8�.
In particular, the power of the Z∗�	̂LS�C� based test is always bigger than that of
the corresponding Z�	̂LS�C� asymptotic test with more clear improvements in the
case of small n and positive error correlation (�= 0�5� �= 0�8). Furthermore, the
numerical results confirm our theoretical analysis concerning the power behavior
of the block bootstrap test based on differencing. The power of the DBB-based
test Z+�	̂LS�C� is much lower than that of the RBB-based test Z∗�	̂LS�C�, and in
most cases even lower than the power of the test based on asymptotic critical
values. Note that the power of the Z+�	̂LS�C� test is affected negatively by the
block size b, i.e., increasing b leads to a loss of power; see Section 5.2 for an
explanation of this behavior.
For the augmented DF test the gain in power from using our RBB procedure

is considerable. The power of the ADF ∗�	̂DF�C� test is not only always bigger
than that of the ADF t�	̂DF�C� test, but for � = 0�5 and � = 0�8, the power of the
RBB-based test is in some cases almost one and a half to two times that of
the augmented DF t-test. Furthermore, as was intuitively expected, the power of
the RBB-based augmented DF statistic ADF ∗�	̂DF�C� seems to be less sensitive
with respect to the choice of the lag length p. This interesting property is due to
the particular way we implemented the block bootstrap procedure for the ADF
test; see Section 4.2.
According to Table II, even in the case of linear ARMA alternatives, the RBB-

based test ADF ∗�	̂DF�C� seems to be more powerful than the sieve bootstrap
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based test ADF SIEVE�	̂DF�C�. This striking result is mainly due to two reasons:
As for the DBB-based test Z+�	̂LS�C�, the ADF SIEVE�	̂DF�C� test is based on
differencing the observed series. If the alternative is true, such differencing leads
to a considerable loss of power; the rationale is similar to the discussion of the
DBB in Section 5.2. A second source of problems for the ADF SIEVE�	̂DF�C� test
is the sensitivity of its power on the value of the autoregressive order p. Since
the sieve bootstrap series is generated by integrating a finite order autoregressive
process, it shares the same problems regarding this sensitivity as the ordinary
ADF test ADF t�	̂DF�C�: Increasing p leads to a ‘correction’ of the size problems
in the problematic case � =−0�8 but also to a drop of power.
The comparison of the RBB with the subsampling-based test is not so straight-

forward. From Table II it is apparent that the empirical results related to sub-
sampling are quite sensitive to the choice of the subsampling size B, as well as
to the order of the autoregression p. The test based on subsampling has been
calculated for several values of B; however, for the sake of brevity, we present
here only those values for which this method performs best, as well as those
where the subsampling size B is comparable to the block size b of the RBB. The
subsampling-based test seems to have difficulties in capturing the correct size
of the test, making the need of a calibration quite apparent; see the discussion
at the end of Section 6.1. Increasing p does not necessarily solve the problem,
especially since p has to be chosen small with respect to the subsampling size B,
whereas B must be chosen small with respect to n.
Nevertheless, we can compare the power of two tests only as long as the two

tests have the same (or at least similar) size; a comparison of power between
tests of different sizes is meaningless. Note that the high power values reported
in Table II for ADF SUB�	̂DF�C� in the cases where n = 50 and B = 4 or 5, or in
the cases where n = 100�B = 6, and p = 2, or B = 8 and p = 2, are seriously
inflated because of the size problems of the subsampling test in these particular
cases. Thus, we must focus on the cases where the subsampling method achieves
a reasonable size behavior, for instance, in the case where n = 50�B = 10, and
p= 4, or in the cases where n= 100�B = 8 or 10, and p= 4, or n= 100�B = 20,
and p = 6; in all those cases, the RBB-based test appears to be more powerful.

7� conclusions

In the paper at hand we have proposed a block resampling procedure that gen-
erates unit root integrated pseudoseries that retain the weak dependence struc-
ture of the observed series. The procedure is based on very weak assumptions on
the dependence structure of the stationary process driving the random walk and,
as a consequence, it can be successfully applied to capture the distribution of
many unit root test statistics commonly used in econometrics. Although we have
restricted our consideration to two such popular test statistics, the theory devel-
oped is general enough in that it allows the application of the new resampling
methodology to other test statistics too. In fact our procedure can be applied to
any test statistic of the unit root hypothesis provided the parameter 	 and the
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estimator 	̃n used to calculate the stationary residuals satisfy conditions (2.2) and
(2.3).
Finite sample performance of the method was examined through some simula-

tions and some comparisons to other bootstrap approaches have been given. The
numerical findings are very encouraging. Although applying the RBB bootstrap
method does not solve the size distortion problems of the unit root tests in the
case of strong negative correlation, the numerical results show that a considerable
improvement in terms of power can be achieved by using the RBB method. Such
gains in power are quite substantial for the augmented DF statistic in particular.
Our theoretical results, as well as the limited empirical evidence presented in

this paper, largely support the conclusion that the RBB testing procedure is a
useful alternative to asymptotic distributions commonly used in the econometric
analysis of nonstationary time series.

8� auxiliary results and proofs

Proof of Theorem 3.1: First note that for our asymptotic results we may,
without loss of generality, assume that X0 = 0. Now for 0 ≤ r ≤ 1, and by con-
struction of the RBB series, we have

S∗
l �r�=

1√
l
X1/�

∗ + 1√
l

Mr∑
m=0

B∑
s=1

Ûim+s/�
∗

where Mr = ���lr�−2�/b� and B =min�b� �lr�−mb−1�. By Lemma 8.1 we have
that �∗2 → �2 in probability where �2 = 2�fU�0� and fU denotes the spectral
density of �Ut�. Because of this, the fact that

S∗
l �r�=

1√
l

Mr∑
m=0

b∑
s=1

Ûim+s/�
∗ − 1√

l

b∑
s=B+1

ÛiMr
+s/�

∗ +OP�l
−1/2�(8.1)

and sup0≤r≤1 ��1/
√
l�
∑b

s=B+1 ÛiMr
+s/�∗� =OP�k

−1/2� we consider in the following
only the first term on the right-hand side of (8.1). We first show that uniformly
in r , ∣∣∣∣∣ 1√

l

Mr∑
m=0

b∑
s=1

Ûim+s−
1√
l

Mr∑
m=0

b∑
s=1

(
Uim+s−E∗Uim+s

)∣∣∣∣∣→ 0(8.2)

in probability. To establish (8.2) verify using the definitions of Ût in (2.1) and of
Ut in (1.1) that

1√
l

Mr∑
m=0

b∑
s=1

Ûim+s =
1√
l

Mr∑
m=0

b∑
s=1

(
Uim+s−

1
n−1

n∑
�=2

U�

)

− �	̃−	�
1√
l

Mr∑
m=0

b∑
s=1

(
Xim+s−1−

1
n−1

n∑
�=2

X�−1

)
�
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Now if 	 �= 1, then by condition (2.2) and (2.3) we have 	̃− 	 = oP�1� and,
therefore, by the stationarity of �Xt� we get that, uniformly in r

�	̃−	�
1√
l

Mr∑
m=0

b∑
s=1

(
Xim+s−1−

1
n−1

n∑
�=2

X�−1

)
→ 0(8.3)

in probability.
To deal with the case where 	 = 1 let X̃t =

∑t
j=1Uj and recall that by (1.1),

Xt = t
+ X̃t . We then have

E∗
[

b∑
s=1

(
Xim+s−1−

1
n−1

n∑
�=2

X�−1

)]
(8.4)

=
b∑
s=1

(
1

n−b

n−b∑
t=1

Xt+s−1−
1

n−1

n∑
�=2

X�−1

)

= 


[
1

n−b

b∑
s=1

n−b∑
t=1

�t+ s−1�− b

n−1

n−1∑
�=1

�

]

+
b∑
s=1

[
1

n−b

n−b∑
t=1

X̃t+s−1−
1

n−1

n∑
�=2

X̃�−1

]
= T1�n+T2�n

with an obvious notation for T1�n and T2�n. It is easily seen by straightforward
calculations that T1�n =OP�b

2� and that

T2�n =
1

�n−b��n−1�

×
[

b∑
s=1

�n−1�

(
s−1∑
t=1

X̃t+
n−1∑

t=n−b+s
X̃t

)
+b�b−1�

n∑
�=2

X̃�−1

]
=OP�b

2n1/2�n−b�−1��

Similarly,

E∗
(

b∑
s=1

(
Xim+s−1−

1
n−1

n∑
�=2

X�−1

))2

= 1
n−b

n−b∑
t=1

[
b∑
s=1

(
Xt+s−1−

1
n−1

n−1∑
�=2

X�−1

)]2

≤ 2
2

n−b

n−b∑
t=1

[
b∑
s=1

�t+ s−1�− b

n−1

n−1∑
�=1

�

]2
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+ 2
n−b

n−b∑
t=1

[
b∑
s=1

(
X̃t+s−1−

1
n−1

n∑
�=2

X̃�−1

)]2

= C1�n+C2�n�

Now, simple algebra shows that C1�n =OP�b
2�n−b�2� while as for the term T2�n

we get C2�n =OP�b
2�n−b��. Let

T ∗
n �=

1√
l

Mr∑
m=0

b∑
s=1

(
Xim+s−1−

1
n−1

n∑
�=2

X�−1

)
�

We have that if 
= 0, then E∗�T ∗
n �

2 =OP�b
2k�+Op�kb

3�n−b�−1�, while if 
 �= 0,
E∗�T ∗

n �
2 =OP�b�n−b�2�. Using (2.2) and (2.3) we conclude that for 	= 1

�	̂−	�
1√
l

Mr∑
m=0

b∑
s=1

(
Xim+s−1−

1
n−1

n∑
�=2

X�−1

)
=OP∗�b1/2n−1/2��(8.5)

From (8.3) and (8.5) it follows that uniformly in r ,∣∣∣∣∣ 1√
l

Mr∑
m=0

b∑
s=1

Ûim+s−
1√
l

Mr∑
m=0

b∑
s=1

(
Uim+s−

1
n−1

n∑
�=2

U�

)∣∣∣∣∣→ 0(8.6)

in probability. From (8.6) and because it is straightforward to show that, uni-
formly in r ,

l−1/2
Mr∑
m=0

b∑
s=1

(
1

n−1

n∑
�=2

U� −E∗U ∗
im+s

)
→ 0

in probability, we get (8.2).
We next show the convergence of the centered bootstrap partial sum process

1
�∗

1√
l

Mr∑
m=0

b∑
s=1

(
Uim+s−E∗Uim+s

)
�(8.7)

to the Brownian motion W on [0�1]. For this note first that ��lr �/b� = �kr� and
that, therefore, we can consider instead of (8.7) the asymptotically equivalent
statistic

1
�∗

1√
l

�kr�∑
m=0

b∑
s=1

(
Uim+s−E∗Uim+s

)
�

The above statistic can be written in the form

1
�∗

1√
l�∗

�kr�∑
m=0

b∑
s=1

(
Uim+s−E∗Uim+s

)= 1√
k

�kr�∑
m=0

V ∗
m�(8.8)
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where the random variables V ∗
m = b−1/2∑b

s=1�Uim+s −E∗Uim+s� are independent
and have mean zero under the bootstrap distribution. By the definition of �∗2

and because var∗�b−1/2∑b
s=1Uim+s�→ 2�fU�0� in probability (cf. Lemma 8.1(ii)),

we have that

�var∗�V ∗
m�−�∗2 � → 0(8.9)

in probability. Consider now the partial sum

V ∗�r�=
�kr�∑
m=0

Ṽ ∗
m�

where �Ṽ ∗
m� m = 0�1�2� � � � � �kr�� forms an array of independent random vari-

ables and

Ṽ ∗
m = 1√

�kr�+1
√
var∗�V ∗

m�
V ∗
m�

Since by definition var∗�Ṽ ∗
m�= 1/��kr�+1� and∑�kr�

m=0E
∗∣∣Ṽ ∗

m

∣∣2+�
�var∗�

∑�kr�
m=0 Ṽ

∗
m��

�2+��/2

= 1
��kr�+1��2+��/2

�kr�∑
m=0

E∗
∣∣∣∣∣ V ∗

m√
var∗�V ∗

m�

∣∣∣∣∣
2+�

= �kr�+1
��kr�+1��2+��/2

1
�var∗�V ∗

m��
�2+��/2

× 1
n−b

n−b∑
t=1

(
1√
b

b∑
s=1

(
Ut+s−E∗Uim+s

))2+�

=OP

(
��kr�+1�−�/2

)→ 0�

we conclude by Liapunov’s Theorem (cf. Serfling (1980)) that

�kr�∑
m=0

Ṽ ∗
m ⇒N�0�1�(8.10)

in probability. Relations (8.10) and (8.9) imply then, since

1√
k�∗

�kr�∑
m=0

V ∗
m =

√
var∗�V ∗

m�

�∗2

√
�kr�+1

k
V ∗�r��(8.11)

that

1√
k�∗

�kr�∑
m=0

V ∗
m ⇒W�r�(8.12)
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in probability. Similarly, if r2 ≥ r1 we get �V ∗�r1��V ∗�r2�−V ∗�r1�� ⇒ �W�r1�,
W�r2�−W�r1�� in probability. This implies �V ∗�r1��V ∗�r2�� ⇒ �W�r1��W�r2��
in probability and an easy extension gives �V ∗�r1��V ∗�r2�� � � � �V ∗�rm�� ⇒
�W�r1��W�r2�� � � � �W�rm�� in probability, for any fixed set of points r1 < r2 <
· · ·< rm in [0, 1]. To conclude the proof of the theorem it remains to show tight-
ness of V ∗�r�. This, however, follows by a version of the functional limit theorem
for partial sums of triangular arrays of independent random variables given in
Billingsley (1999, p. 147), since

∑�kr�
m=0 Ṽ

∗
m is a sum of independent random vari-

ables with mean zero and

max
0≤m≤�kr�

var∗
(
Ṽ ∗
m

)= 1
�kr�+1

→ 0

as n→�. Thus V ∗ ⇒W in probability which, by (8.2), (8.8), and (8.11), implies
the assertion of the theorem. Q.E.D.

Lemma 8.1: Under the assumptions of Theorem 3.1 and if n→�, then:

�i� l−1
l∑

j=1

U ∗
j → 0�

�ii� �∗2 �= var∗
[
l−1/2

l∑
j=1

U ∗
j

]
→ �2 �= 2�fU�0�

and

�iii� �∗2
U �= l−1

l∑
j=1

U ∗2
j → �2

U �= E�U 2
t ��

in probability.

Proof: To prove (i) note that by (8.2) we have l−1∑l
j=1U

∗
j =

l−1∑k−1
m=0

∑b
s=1Uim+s +oP�1� and that the first term in the right-hand side of the

above expression is the sample mean of a block bootstrap series that converges
to E�Ut�= 0.

Since the proof of (ii) and (iii) are very similar we show only (ii). For this
recall that

var∗
[
l−1/2

l∑
j=1

U ∗
j

]
= E∗

[(
l−1/2

l∑
j=1

U ∗
j

)2]
−
(
E∗
[
l−1/2

l∑
j=1

U ∗
j

])2

�
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Now,

1√
l

l∑
j=1

U ∗
j = 1√

l

k−1∑
m=0

b∑
s=1

(
Uim+s−E∗Uim+s

)
+ 1√

l

k−1∑
m=0

b∑
s=1

(
E∗Uim+s−

1
n−1

n−1∑
t=2

U�

)

− �	̃−	�
1√
l

k−1∑
m=0

b∑
s=1

(
Xim+s−1−

1
n−1

n−1∑
t=2

X�−1

)
+o�l−1/2�

= 1√
l

k−1∑
m=0

b∑
s=1

(
Uim+s−E∗Uim+s

)+M̃∗
n + T̃ ∗

n +o�l−1/2��

with an obvious notation for M̃∗
n and T̃ ∗

n . Now using arguments similar to
those following the proof of Theorem 3.1, we get E∗�M̃∗

n� → 0�E∗�M̃∗
n�

2 →
0�E∗�T̃ ∗

n � → 0, and E∗�T̃ ∗
n �

2 → 0 in probability. Hence E∗�l−1/2∑l
j=1U

∗
j � → 0

and E∗�l−1/2∑l
j=1U

∗
j �

2 =E∗�l−1/2∑k−1
m=0

∑b
s=1�Uim+s−E∗Uim+s��2+oP�1�→ �2, in

probability, because the first term on the right-hand side of the last equality is
nothing other than the variance of

√
l times the bootstrap sample mean based

on a block bootstrap sample �Uim+s� m= 0�1� � � � � k−1 and s = 1�2� � � � � b�; cf.
Künsch (1989). Q.E.D.

By Theorem 3.1, Lemma 8.1, and the continuous mapping theorem, the fol-
lowing lemma can be easily proved using standard arguments; see Paparoditis
and Politis (2000) for details.

Lemma 8.2: Let the conditions of Theorem 4.1 be satisfied. If n→�, then:

�i� l−2
l∑

t=2

X∗2
t−1 ⇒ �2

∫ 1

0
W 2�r�dr�

�ii� l−1
l∑

t=2

X∗
t−1U

∗
t ⇒ 1

2
��2W 2�1�−�2

U ��

�iii� l−3/2
l∑

t=1

X∗
t−1 ⇒ �

∫ 1

0
W�r�dr�

�iv� l−1/2
l∑

t=1

U ∗
t ⇒ �W�1��

in probability, where joint weak convergence of the above limits also applies.
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Proof of Theorem 4.1: To prove the first assertion of the theorem we use
the expression for l�	̂∗

LS − 1� in terms of the bootstrap variables X∗
t and apply

Lemma 8.2(i) and (ii) as well as the �-method; cf. Serfling (1980). The second
part of the theorem follows using Lemma 8.2, the same arguments as for the first
part and the fact that

( √
l
̂∗

l
(
	̂∗
LS�C −1

)
)
=


1 l−3/2

l∑
t=2

X∗
t−1

l−3/2
l∑

t=2

X∗
t−1 l−2

l∑
t=2

X∗2
t−1


−1

×


l−1/2

l∑
t=2

U ∗
t

l−1
l∑

t=2

X∗
t−1U

∗
t

 � Q.E.D.

To introduce the next lemma we first fix some notation. Let �x� be the
Euclidean length of the vector x and �A� = sup��Ax���x� = 1� for a matrix
A. Let further ��p� = ��1�p� �2�p� � � � � �p�p�

′ be the coefficients of the orthog-
onal projection X̂t−1 of Xt−1 on the closed span �t−1� t−p = sp��Xt−i� i =
1�2� � � � �p� and �̃�p� be the p+1 dimensional vector �̃�p�= ��1−�1�p�� ��1�p−
�2�p�� � � � � ��p−1�p−�p�p�� �p�p�

′. Notice that ��̃�p��2 ≤E�Xt−1−X̂t−1�
2 and that

limp→�E�Xt−1− X̂t−1�
2 = 0 since Xt−1 ∈�t−1�−� = sp��Xt−i� i = 1�2� � � � �, i.e.,

��̃�p��→ 0 as p→�.

Lemma 8.3: Let the process �Xt� satisfy Condition A′ with 	 < 1 and let 	̂DF be
the least squares estimator of the coefficient of Xt−1 in the regression of Xt on Xt−1
and onXt−i−Xt−i−1� i= 1�2� � � � �p. If the choice of p is such that p=p�n�→�,

p11/2

n1/2��̃�p��2 → 0� and ��̃�p��−1√n
�∑

j=p+1

�aj � → 0�

as n→�, then

	̂DF −	=OP

(
1√

n��̃�p��

)
�

where 	=−∑�
j=1�j .

The proof of this lemma is given in Paparoditis and Politis (2002).
Notice that under the assumptions made

√
n��̃�p��→� as n→�, i.e., under

stationarity, 	̂DF is an asymptotically consistent estimator of 	. Since ��̃�p��→ 0
as p→�, the first condition implies that under stationarity, p has to increase to
infinity at a much lower rate than in the case where �Xt� is unit root integrated.
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To proceed with the proof of Theorem 4.2, let Dn be the diagonal matrix
Dn = ��l−p��

√
l−p� � � � �

√
l−p� of appropriate dimension, and let C∗�p� and

C̃∗�p� be the block diagonal matrices

C∗
D�p�=

(
c∗1�1 0′

0  ∗
p

)
and C̃∗

D�p�


c̃∗1�1 c̃

∗
1�2 0′

c̃∗2�1 c̃
∗
2�2 0′

0 0  ∗
p

 �

where 0 is a p× 1 zero vector, c∗1�1 = c̃∗2�2 = �l−p�−2∑l
t=p+2X

∗2
t−1, c̃

∗
2�1 = c̃∗1�2 =

�l−p�−1∑l
t=p+2X

∗
t−1, c̃

∗
1�1 = 1, and  ∗

p = �l−1∑l
t=p+2D

∗
t−iD

∗
t−j �i� j=1�2� � � � �p. Further-

more, let e′1 = �1�0�0� � � � �0�′ of appropriate dimension,

Y ∗
t−1�p�=

(
X∗

t−1�D
∗
t−1� � � � �D

∗
t−p
)′
�

Ỹ ∗
t−1�p�=

(
1�X∗

t−1�D
∗
t−1� � � � �D

∗
t−p
)′
�

C∗�p�=D−1
n

l∑
t=p+2

Y ∗
t−1�p�Y

∗′
t−1�p�D

−1
n � and

C̃∗�p�=D−1
n

l∑
t=p+2

Ỹ ∗
t−1�p�Ỹ

∗′
t−1�p�D

−1
n �

The following lemma can then be established.

Lemma 8.4: Let the assumptions of Theorem 4.2 be satisfied. If n→�, then

�i�
√
p+1�e′1�C∗−1

�p�−C∗−1

D �p���→ 0�

�ii�
√
p+1�e′1�C̃∗−1

�p�− C̃∗−1

D �p���→ 0�

�iii� �l−p�−1
l∑

t=p+2

X∗
t−1

(
U ∗
t −

p∑
j=1

a∗j D
∗
t−j

)
⇒ 1

2
�2
�C �W

2�1�−1��

and

�iv� �l−p�−1/2
l∑

t=p+2

(
U ∗
t −

p∑
j=1

a∗j D
∗
t−j

)
⇒ ��W�1��

in probability, where joint convergence of the limits in (iii) and (iv) applies.
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Proof: Consider (i). Verify using formulae for the inverse of partitioned
matrices that

e′1
(
C∗−1

�p�−C∗−1

D �p�
)=( c∗1�2 

∗−1

p c∗2�1
c∗1�1

(
c∗1�1−c∗1�2 ∗−1

p c∗2�1
) � c∗1�2 

∗−1

p

c∗1�1−c∗1�2 ∗−1
p c∗2�1

)
�(8.13)

Note that under the assumptions made, E∗��l−p�−3/2∑l
t=p+2X

∗
t−1D

∗
t−i�

2 ≤ �l−
p�−1C2 and therefore

�c∗1�2� =
∥∥∥∥∥
(
�l−p�−3/2

l∑
t=p+2

X∗
t−1D

∗
t−i� i = 1�2� � � � �p

)′∥∥∥∥∥(8.14)

=OP�p
1/2�l−p�−1/2��

Furthermore, since E∗��l − p�−1/2∑l
t=p+1D

∗
t−iD

∗
t−j − E�Xt−i −Xt−i−1��Xt−j −

Xt−j−1��
2 ≤ C, we have E∗� ∗

p −  p�2 ≤ Cp2�l − p�−1, where  p =
�E�Xt−i�Xt−j �i� j=1�2� � � � �p. Since for every p the matrix  p is positive definite,
� −1

p � is the reciprocal of the minimal eigenvalue of  p. The spectral density
of ��Xt� is given by f�Xt

��� = �1− e−i��2fXt
���, where fXt

denotes the spectral
density of �Xt�. For the minimal eigenvalue of  p we have

inf
�x�=1

p∑
j=1

p∑
k=1

xj cov��Xt−j ��Xt−k�xk

= inf
�x�=1

1
2�

∫ �

−�

∣∣∣∣∣
p∑
j=1

xje
ij�

∣∣∣∣∣
2

fXt
����1−e−i��2 d�

≥ inf
�∈ �0���

fXt
��� inf

�x�=1

1
2�

∫ �

−�

∣∣∣∣∣
p∑
j=1

xje
ij�

∣∣∣∣∣
2

�1−ei��2 d�

= inf
�∈ �0���

fXt
����̃min�

where �̃min denotes the minimal eigenvalue of the p×p covariance matrix of the
process with spectral density �2��−1�1− e−i��2 = �−1�1− cos����. Since this is a
tridiagonal matrix with 2 on the main diagonal and −1 on the diagonal above and
below the main diagonal, we have �̃k = 2�1−cos��k��/�p+1���� k= 1�2� � � � �p,
and therefore∥∥∥ −1

p

∥∥∥≤ 1
K
(
1− cos

(
�
p+1

)) �
Now, using � ∗−1

p � ≤ � −1
p �+ � ∗−1

p −  −1
p � and standard arguments (cf. Berk

(1974)), we get that∥∥∥ ∗−1

p

∥∥∥≤OP

(
1(

1− cos
(

�
p+1

)))+OP

(
p√

l−p
(
1− cos

(
�
p+1

))2
)
�(8.15)
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Using (8.14) and (8.15) we get c∗1�2 
∗−1

p c∗2�1 → 0 in probability, i.e., c∗1�1 −
c∗1�2 

∗−1

p c∗2�1 → �2
�C

2


∫ 1
0 W

2�r�dr . From (8.13), (8.14), and (8.15) it follows then
that √

p+1
∥∥e′1(C∗−1

�p�−C∗−1

D �p�
)∥∥=OP

(
p√

n
(
1− cos

(
�
p+1

)))�
which, taking into account that 1/�1− cos��/�p+ 1��� = O�p2�, concludes the
proof of assertion (i). Since assertion (ii) can be proved using the same argu-
ments, the details are omitted. To prove (iii) we use∣∣∣∣∣ 1

l−p

l∑
t=p+2

X∗
t−1

(
U ∗
t −

p∑
j=1

ajD
∗
t−j

)
(8.16)

− 1
l−p

k−1∑
m=0

b∑
s=1

X!
im+s−1

(
U!
im+s−

p∑
j=1

ajDim+s−1−j

)∣∣∣∣∣→ 0

in probability, where U!
t = �Xt−	Xt−1�− �n−1�−1∑n

�=2�X� −	X�−1� and X!
t is

the series obtained by replacing Ut by U!
t in the first step of the RBB bootstrap

algorithm.
We next show that

1
l−p

k−1∑
m=0

b∑
s=1

X!
im+s−1

(
U!
im+s−

p∑
j=1

ajDim+s−1−j

)
⇒ 1

2
�2
�C �W

2�1�−1��(8.17)

For this note that by (2.5) and the definition of Dt−j we have

1
l−p

k−1∑
m=0

b∑
s=1

X!
im+s−1

(
U!
im+s−

p∑
j=1

ajDim+s−1−j

)

= 1
l−p

k−1∑
m=0

b∑
s=1

X!
im+s−1

(
�im+s−

1
n−1

n∑
�=2

��

)

+ 1
l−p

k−1∑
m=0

b∑
s=1

p∑
j=1

ajX
!
im+s−1

×
(

1
n−1

n∑
�=2

(
X� −X�−1

)− 1
n−1

n−p∑
�=p+2

(
X�−j −X�−j−1

))

+ 1
l−p

k−1∑
m=0

b∑
s=1

�∑
j=p+1

ajX
!
im+s−1

×
(
�Xim+s−j −Xim+s−j−1�−

1
n−1

n−p∑
�=p+2

�X�−j −X�−j−1�

)
= T ∗

1�n+T ∗
2�n+T ∗

3�n
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with an obvious notation for T ∗
1�n� T

∗
2�n, and T ∗

3�n. The proof of assertion (iii) of
the lemma is then concluded because T ∗

1�n ⇒ �1/2��2
�C �W

2�1�− 1��T ∗
2�n → 0

and T ∗
3�n → 0, in probability. Details are given in Paparoditis and Politis (2000).

Assertion (iv) is proved along the same lines. Q.E.D.

Proof of Theorem 4.2: We give the proof of the first part of the theorem
since the proof of the second part is very similar.
Let � = �1� a1� � � � � ap�′ and note that

�l−p�
(
	̂∗
DF −1

)= e′1C
∗−1
�p�D−1

n

l∑
t=p+2

Y ∗
t−1�p�e

∗
t

where e∗t =X∗
t −�∗′Y ∗

t−1�p�= U ∗
t −

∑p
j=1 ajD

∗
t−j . Write

�l−p�
(
	̂∗
DF −1

)= e′1C
∗−1

D �p�D−1
n

l∑
t=p+2

Y ∗
t−1�p�e

∗
t

+e′1
(
C∗−1

�p�−C∗−1

D �p�
)
D−1

n

l∑
t=p+2

Y ∗
t−1�p�e

∗
t

and verify by straightforward calculations that∥∥∥∥∥D−1
n

l∑
t=p+2

Y ∗
t−1�p�e

∗
t

∥∥∥∥∥=OP∗
(√

p+1
)
�(8.18)

This together with Lemma 8.4(i) implies that∣∣∣∣∣e′1(C∗−1
�p�−C∗−1

D �p�
)
D−1

n

l∑
t=p+2

Y ∗
t−1�p�e

∗
t

∣∣∣∣∣→ 0(8.19)

in probability. Now, since C∗−1

D �p� is a block diagonal matrix, we get

e′1C
∗−1

D �p�D−1
n

l∑
t=p+2

Y ∗
t−1�p�e

∗
t =

(
�l−p�−2

l∑
t=p+2

X∗2
t−1

)−1

× 1
l−p

l∑
t=p+2

X∗
t−1e

∗
t �

Thus ∣∣∣∣∣�l−p�
(
	̂∗
DF −1

)−(�l−p�−2
l∑

t=p+2

X∗2
t−1

)−1
1

l−p

l∑
t=p+2

X∗
t−1e

∗
t

∣∣∣∣∣→ 0
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in probability. Because of this and the fact that(
�l−p�−2

l∑
t=p+2

X∗2
t−1� �l−p�−1

l∑
t=p+2

X∗
t−1e

∗
t

)

⇒ (
�2
�C

2


∫
W 2�r�dr� �1/2��2

�C �W
2�1�−1�

)
�

in probability (cf. Lemma 8.2(i) and Lemma 8.4 (iii)), we conclude that

�l−p�
(
	̂∗
DF −1

)⇒ 1
2C

�W 2�1�−1�
/∫

W 2�r�dr

in probability. Q.E.D.

Proof of Theorem 5.1: Note first that for 	n = 1+ c/n the LS estimator
	̂LS of 	n satisfies condition (2.2); cf. Theorem 1(a) of Phillips (1987b). As in the
proof of Theorem 3.1 and under the assumptions made, we get using Lemma 1
of Phillips (1987b) that

�
(
l
(
	̂∗
LS−1

)∣∣X1�X2� � � � �Xn

)⇒ (
W 2�1�−�2

U/�
2)/(2 ∫ 1

0
W 2�r�dr

)
�

where uniform convergence also applies. Therefore, C∗
� → C� in probability.

Hence,


RBB�n�	n���= P�n�	̂LS−1�≤ C∗
��

= P�n�	̂LS−	n�≤ C∗
�−c�→ P�J ≤ C�−c�� Q.E.D.

To prove Theorem 5.2 the following lemmas are needed.

Lemma 8.5: Let �Xt� be a stationary process satisfying Condition A(ii) or B
with 
= 0. If b→� such that b/

√
n→ 0 as n→�, then

k−1/2
�lr�∑
j=1

L+
j

/
�+ ⇒W�r�� r ∈ �0�1��

in probability, where L+
1 = X1�L

+
t = X+

t −X+
t−1 for t = 2�3� � � � � l, and �+2 =

var+�k−1/2∑l
j=1L

+
j �.

Proof: As in the proof of Theorem 3.1, it suffices to consider S+
k �r�= k−1/2∑Mr

m=0
∑B

s=1L
+
im+s/�

+, where Mr = ���lr�− 2�/b� and B = min�b� �lr�−mb− 1�.
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Verify first by straightforward calculations that

�+2 = 1
k

k−1∑
m=0

E+
(

b∑
s=1

Lim+s

)2

+oP�1�(8.20)

= 1
n−b

n−b∑
t=1

(
Xt+b−Xt

)2+oP�1�→ 2 var�Xt��

Furthermore,

1√
k

Mr∑
m=0

B∑
s=1

Lim+s =
1√
k

Mr∑
m=0

Yim
+oP�1��(8.21)

where the random variables Yim
= �Xim+b−Xim

�−E+�Xim+b−Xim
� are indepen-

dent, identically distributed, and the oP�1� term is mainly due to the fact that

1√
k

Mr∑
m=0

(
E+�Xim+b−Xim

�− b

n−1

n∑
j=2

(
Xj −Xj−1

))=OP�k
−1/2��

Now, the assertion of the lemma follows using (8.20), (8.21), and the version of
Donsker’s theorem for partial sums of triangular arrays of independent random
variables used in the proof of Theorem 3.1. Q.E.D.

Lemma 8.6: Under the assumptions of Lemma 8.5 and as n→�,

�i� l−1
l∑

t=2

X+
t−1�X

+
t −X+

t−1�⇒−�var�Xt�− cov�Xt�Xt−1���

�ii� �lk�−1
l∑

t=2

X+2

t−1 ⇒ 2 var�Xt�
∫ 1

0
W 2�r�dr�

in probability, where joint weak convergence of the above limits also applies.

Proof: Let S+�r� =∑j−1
t=1 L

+
t /�

+ for �j − 1�/l ≤ r ≤ j/l� j = 2�3� � � � � l, and
S+�1�=∑l

t=1L
+
t /�

+. Assertion (i) follows since

l−1
l∑

t=2

(
X+

t −X+
t−1

)
X+

t−1 = l−1
l∑

t=2

L+
t

(
t−1∑
j=1

L+
j

)

= �2l�−1
l∑

t=2

[(
t∑

j=1

L+
j

)2

−
(
t−1∑
j=1

L+
j

)2]

− �2l�−1
l∑

t=2

L+
t
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= �2b�−1�+2
[
S+2

k �1�−S+2

k �1/l�
]
− �2l�−1

l∑
t=2

L+2

t

→−1
2
E�Xt−Xt−1�

2

= −�var�Xt�− cov�Xt�Xt+1���

in probability. Assertion (ii) follows because

�lk�−1
l∑

t=2

X+2

t−1 = l−1
l∑

t=2

(
k−1/2

t−1∑
j=1

L+
j

)2

= �+2
l∑

t=2

∫ t/l

�t−1�/l

(
k−1/2S+��lr��

)2
dr

⇒ 2 var�Xt�
∫ 1

0
W 2�r�dr�

in probability, by the continuous mapping theorem and using �+2 → 2 var�Xt�,
in probability. Q.E.D.

Proof of Theorem 5.2: The case 	 = 1 follows essentially by the same
arguments as in the proof of the validity of the RBB procedure with the main
simplification that 	̃ = 1 in the proof of Theorem 3.1. The case 	 ∈ �−1�1� is
proved using Lemma 8.6 and the same arguments as in the proof of the first
assertion of Theorem 4.1. Q.E.D.

The following lemma is essential in establishing Theorem 5.3.

Lemma 8.7: Let �Xt� satisfy Condition B′. If b → � such that b/
√
n→ 0 as

n→�, then

l−1/2
�lr�∑
j=1

L+
j /�

+ ⇒W�r�� r ∈ �0�1��

in probability, where L+
1 = X1� L

+
t = X+

t −X+
t−1 for t = 2�3� � � � � l and �+2 =

var+�l−1/2∑l
j=1L

+
j �.

Proof: Since the arguments are very similar to those used in the proof
of Theorem 3.1 and Lemma 8.5, we stress only the essentials. Verify first by
straightforward calculations that �+2 → 2�fU�0�. As in the proof of Theorem 3.1,
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consider S+
l �r� = l−1/2∑Mr

m=0
∑b

s=1L
+
im+s/�

+, where Mr = ���lr�− 2�/b�. We then
have

1√
l

Mr∑
m=0

b∑
s=1

L+
im+s =

1√
k

Mr∑
m=0

Y +
m +R+

l �r��

where Y +
m = b−1/2∑b

s=1��Xim+s−Xim+s−1�−E+�Xim+s−Xim+s−1�� and

R+
l �r�=− 1√

l

Mr∑
m=0

b∑
s=1

[
1

n−b

n−b∑
t=1

�Xt+s−Xt+s−1�−
1

n−1

n∑
t=2

�Xt−Xt−1�

]
�

Using Xt −Xt−1 = n−1cXt−1 +Ut , we get by straightforward calculations that
uniformly in r , R+

l �r�=OP�b/
√
l�→ 0. Furthermore, because

Y +
m = 1√

b

b∑
s=1

�Uim+s−E+Uim+s�+
c

n
√
b

b∑
s=1

�Xim+s−E+Xim+s��

we get using Lemma 1 of Phillips (1987b) that

var+
(

c

n
√
b

b∑
s=1

�Xim+s−E+Xim+s�

)
=OP�b/n�→ 0�

Therefore, we have uniformly in r ,∣∣∣∣ 1√
l

Mr∑
m=0

b∑
s=1

L+
im+s−

1√
k

�kr�∑
m=0

V +
m

∣∣∣∣→ 0�

in probability, where V +
m = b−1/2∑b

s=1�Uim+s −E+Uim+s�. The remainder of the
proof follows the proof of Theorem 3.1. Q.E.D.

Proof of Theorem 5�3: Let
√
l�	̂+

LS−1� be the least squares statistic based
on the pseudoseries X+

1 �X
+
2 � � � � �X

+
l . By Lemma 8.7 and along the same lines

as in Lemma 8.6, we get

��l�	̂+
LS−1��X1�X2� � � � �Xn�⇒ �W 2�1�−�2

U/�
2�/

(
2
∫ 1

0
W 2�r�dr

)
in probability. The assertion of the theorem is then established using the same
arguments as in the proof of Theorem 5.1. Q.E.D.
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