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1. INTRODUCTION

This paper is concerned with the following question and its

ramifications. The goal is to compute some or all of the eigenvalues

of a square matrix B which is not symmetric. There is on hand an approx-

imate column eigenvector x, an approximate row eigenvector y , and a

number y. In addition someone has computed the norms of their residual

vectors, Or and 1s*, where

r Bx-xy, s* = y*B-yy*

-6
It turns out thatlrA/QxO < 10 DBO and Ns*R/Uy*D < 10 UB. How good

is y as an approximate eigenvalue of B?
/

The experts know that nothing very useful can be said. A priori

bounds on IX-y) are known (see Section 2), where X is some eignenvalue

of B. Moreover these bounds are best possible, in the sense that equality

can be achieved, but either they involve auxiliary terms, such as the

matrix which transforms B into its Jordan canonical form, and consequently

are virtually impossible to compute,or else they are hopelessly

pessimistic in the majority of cases.

This is in sad contrast to the synmetric case where various well

known error bounds enjoy three remarkable properties:

(a) they are best possible inferences from the information,

(s) they are computable,

(y) they are not asymptotic.

By (y) we mean that the error bounds are not based on perturbation theory

where the neglect of certain complicated terms is justified only when

the error is "small enough." No, the bounds to which we refer are

valid however bad the best approximations may be.
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When approximations to several different eigenvectors are known then,

again in the symmetric case, the Rayleigh-Ritz procedure tells us how to

make the best approximations to eigenvalues and tells us what residuals

to compute in order to have error bounds for these approximations.

This theory is too useful to be abandoned and indeed the Ritz

procedure is readily generalized as the Galerkin approximation. What is

not discussed (to our knowledge) is whether the Galerkin approximations

are optimal in any useful sense.

It seems that the only way to extend the optimality properties is

by making a radical change in the notion of error. Experience shows that

the first time readers are exposed to this viewpoint they often feel

that it dodges real difficulties. It does. Rather than scale the

vertical face of a mountain some people prefer to take an easier indirect

route round the back which quite often leads to the peak.

In the context of the problem addressed at the outset the idea is

as follows.

Ask not for the value of jX-yj but instead ask for IB-BII where

B' is the closest matrix to B for which y is an eigenvalue and

x and y* are its eigenvectors.

This idea has been used with great success by J. H. Wilkinson in a

variety of matrix problems and is often called a "backward" error analysis

because it casts the errors back as an equivalent change to the original

data. If B is not known exactly it sometimes happens that B' is

indistinguishable from B and then y is as good an answer as the data

warrants.

Once this change has been made it is not very difficult to see in

what way the approximations are optimal but, to the best of our
of Rayleigh-Ritz

knowledge, the full extension/has not been made. A possible reason for
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this omission is the fact that only recently have there been serious

efforts to compute some eigenvalues of large (n>lO00) nonnormal matrices. t

It was our desire to find a good stopping criterion for the unsymmetric

Lanczos process which prompted this work. All expressions must be

computable. Our goal (with apologies to Richard Hamming) is numbers, not

insight.

Last but not least the error expressions of § 4 can be combined with

computable condition numbers to give (exactly) the first term in the

perturbation series for IX-yI in powers of IB-B'I.

In §2 we sketch the theory we want to generalize and exhibit some

traditional error bounds for the nonnormal case. In §3 we collect important

preliminary facts. In §4 comes the main result, and in §5 the application

to the Lanczos method. We follow Householder conventions in notation:

capital letters for matrices, lower case roman letters for column vectors,

and lower case greek letters for scalars. However x* (not xH ) denotes

the conjugate transpose of x, and Xi(B) denotes the ith eigenvalue of B

for any given ordering. The norms we use are defined in Section 3. One

idiosyncracy is to use symmetric letters (A,H,M,...) for symmetric (or

Hermitian) matrices.

2. SOME ERROR BOUNDS

Symmetric case

Theorem 1. For any nonzero vector x and any scalar y there is a

an eigenvalue of A such that

IX-yI < [Ax-xyl/lxl.

tFor small matrices there are alternative techniques based on skillfully

chosen Gersgorin disks, [Wilkinson, 1965].
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Theorem 2. For any nonzero vector x and : x*Ax/x*x,

IAx-x: = min IlAx-xyll
Y

Theorem 3. (Rayleigh-Ritz). Given any nxk Z satisfying Z*Z = Ik

the best set of k approximate eigenvalues of A that can be derived from

A is the spectrum of Z*AZ. The choice H = Z*AZ uniquely minimizes, over

all kxk matrices H the residual norm

IlAZ-Z HII

If G is the eigenvector matrix of Z*AZ then the columns of ZG are the

2
best set of approximate eigenvectors. IC!IF t race (C*C).

Theorem 4. (Error Bounds). There are k eigenvalues of A, call

them X '""'k' which can be put into one-one correspondence with the

k eigenvalues el,...,9k of any symmetric kxk matrix H so that, given Z,

max X ie " < RAZ-ZHII,

k 2<2eTk -i)2 < 1IAZ-ZHII 2

il - F

Discussion of these classical results, and proofs, can be found in

[Parlett, 1980 Chaps. 4 and 11]. More refined results than these are

known and some of them may be found in [Kato, 1966] and [Parlett, 1980].

We list an important residual bound which gives considerable insight

but is not readily computable.

Theorem 5. If X is the eigenvalues of A closest to p(x) (- x* Ax/x*x)

and j is the separation of c from the next closest eigenvalue then

'X-p. < (lAx-xog/lx!l) 2/5

If X is simple and z is its eigenvector then

Isin L 'x,z)' < 1Ax-xp1 (!Ix' 3)



The General Case

We begin with an example which shows that the residual norms of the

trio (y,x,y*) with respect to B can be tiny despite a large gap

separating y from the spectrum of B.

B = (b )n , bij f'

lBgF n/IV, B's eigenvalues are all 0.

*-,.n-2 ,n-3 2'' n-lx* = (2'22 ' , . . 2 , 1 , 1) , 11xA 2  (4n-+2)/3

y* = ( 1 , 1 , 2 ,..., 2n-3, 2n2), ll =x

Bx-x.l =(0,...,O,-l)*, yBl.y* =... y Bl~y*= (l ,O.. .,O)

Thus IIBx-x.lI/IxU = lly*B-l.y*g/ly*l : /2

yet minlA-y/B :/IIBF = z v-/n.

The reader is invited to concoct a similar, but somewhat more

complicated example in which the eigenvalues are evenly spaced. Indeed

it is not the fact that B above has a Jordan block of order n which

causes the phenomenon, rather it is B's excessive departure from

normality which is responsible. (A matrix is normal if BB* = B*B.)

Sometimes, but not always, departure from normality is explained by

proximity (in matrix space) to a matrix with large Jordan blocks.

With one exception we have found no computable error bounds for the

eigenvalues of nonnormal matrices which explicitly involve residual

norms. Furthermore, in [Householder, 1972] we read "To the best of my

knowledge no one has obtained inclusion theorems that apply to a matrix

having nonlinear elementary divisors." An inclusion theorem describes

a region of the complex plane guaranteed to contain an eigenvalue (but

not all the eigenvalues). So this quotation makes our quest for

computable inclusion theorems look hopeless.
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Faced with this impasse we give some results on spectral variation

and these point up the difficulties. Actually residual norms can be

linked to changes in the matrix to good advantage, as is done in Section 4.

Theorem 6 [Ostrowski, 1957]
n n

Let C = B-E with p = max{Ibij ,lcijl} , 6 = I leij./1±. Then
i,j i=l j=l

1. To each YO(C) there is a X (B) such that j~i(C)-Xj(B)f < (n+2)p6 1/n

2. The eigenvalues of B and C can be paired so that 1Xi(B)-Xi(C)j

< 2(n+l) 21P61/n, i = 1,...,n.

Remark. The nth root of 6 must be there but it does dampen one's

enthusiasm for a priori error bounds, especially when n > 100.

Theorem 7. [Bauer and Fike, 1960]

If C (=B-E) is diagonalizable (= semi-simple), i.e., C = F AF -1 ,

then to each Xi(B) there is a Xj(C) such that
Ixi(B)-x (C)l < IFEF'II < HF IF1I HEl,

using any matrix norm for which HAI = max I~ix.

i

Remark. If C is normal then IFIi = IF'IU =1 and the bound is as

good as in the symmetric case.

Next we give an extension of the Bauer-Fike Theorem to the general

case.

Theorem 8. Let C = B-E and let J = FBF 1 be B's Jordan form. To

any eigenvalue i of C there corresponds an eigenvalue x of B such that

(l+Ix-i) m  -

where m is the order of the largest Jordan block to which X belongs. The

spectral (or the Frobenius) norm must be used here.
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Since this bound is not computable we have relegated the proof to

an appendix. It is included because, to the best of our knowledge, it

has not appeared before.

m ml1
COROLLARY. Let w(m,e) be the nonnegative solution to & -e +1)

- 0 and let k be the order of the largest Jordan block for B then there

is a pairing of the eigenvalues of C and B such that, for i = 1,...,n,
1Xi(C)-Xi(B)j < 2(n+l) w(k,HFEF'I1I1).

Theorem 9. [Henrici 1962]

12nA"= IIBB*-B*BII F and let y(n) denote the

nonnegative solution of +2 +...+ n : n. For any complex number p and

any unit vector x there is an eigenvalue X of B such that

Xk-jj S A(B)/y(A(B)/HBx-x A).

Remark. This is our only example of a computable residual bound.

It also seems to be a counter-example to Householder's remark quoted

above. As A(B) - 0 the standard residual bound for normal matrices is

recovered. At the other extreme the bound shows that small residuals

do not imply accurate eigenvalue approximations for very abnormal

matrices. This confirms our numerical example.

Two valuable references for more recent work on perturbations are

[Stewart, 1973] and [Chatelin, 1981]. The former concerns bounds on

approximate eigenvectors and invariant subspaces, the latter uses

residual norms,but their results are more for insight than computation

since they involve quantities which are not readily computable.
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3. ALTERNATIVE FORMULATIONS

To each eigenvalue X of a complex (or real) nxn matrix B there

corresponds at least one column eigenvector x and at least one row

eigenvector y* satisfying

Bx = xA, y*B = Xy* (3.1)

We call the set (X,x,y*) an eigentriple or eigenelement of B.

Associated with B is its conjugate transpose B*. Abstractly B* can

be characterized as the adjoint of B on (or in) Euclidean n-space En

with inner product (.,.). In other words B* is the unique matrix which

satisfies

(u,B*v) = (Bu,v) for all u, v in En.

The spectrum of B* is the conjugate of the spectrum of B and we could

rewrite (3.1) as

Bx = x, B*y = y. (3.2)

We have put down these elementary facts because every author discus-

sing thp aigenvalue problem must, for coherence, choose and stick to

one of Lwo equivalent formulations, illustrated in (3.1) and (3.2):

n n
(I) one operator and two (dual) spaces; B, En , E*,

(II) two (adjoint) operators and one space; B, B*, En

Our choice is (I); En is the Euclidean space of column vectors and En

is the (dual) space of row vectors. Although En and E, are isomorphic

in a trivial way it helps to regard them as distinct in this essay.

Formulation I lends itself to concrete matrix notation and we shall use

the familiar forms:
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n n

a,b E En  (a,b) = b*a - i i Ilai 11 -- a~
i=l *

n n

c*,d* En,(c*,d*) =- d*c -= iyi,  lc*l - V' ,
• i=l

The reward for having this inner product structure is that it makes

sense to compare vectors in norm or speak of the angle between a and

b (or between c* and d*). Consequently adjectives like small and large

can be used legitimately and that is essential for work in matrix

computations.

There is more than one matrix norm compatible with Euclidean space.

We shall confine ourselves to the two extreme unitarily invariant matrix

norms. The spectral (or bound) norm is defined by

IIBII =  max IlBuUh/Ilull =/Xmax(B*B) , (3.3)
u O

and the Frobenius (or Hilbert Schmidt) norm is

IIBIIF - ( l ibij) ' = Vtrace (B*B) (3.4)
1 3

The latter is easy to compute but yields lIIF = /n for the identity matrix

instead of 1. For any B

F < /rank(B) IIBII < v'- IBII (3.5)

In particular, for any square rank one matrix uv*,

Iuv*l F = lluv*ll = HullIlv*Il . (3.6)

The matrix norms are needed so that we can speak of the matrix

C being close to B in the sense that IIC-BII/IIBII (or IIC-BIIF/RBIIF)

is small compared to 1.
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In the symmetric case (B=A) a key role is played by Rayleigh's

quotient, which is defined for all nonzero x by

p(x) = p(x;A) = x*Ax/x*x

The natural extension to the general case is defined for all pairs x,y*

such that y*x 0 by

p(x,y*) = p(x,y*;B) E y*Bx/y*x (3.7)

Many authors call this the generalized Rayleigh quotient but the adjective

is superfluous and we will drop it. What matters is that certain crucial

properties do carry over from the nice symmetric case, namely

(1) p is homogeneous of degree 0, i.e., p(cx,y*)=p(x,y*)

(2) p is stationary at, and only at, the nondegenerate eigenvalues

of B.

The gradients of p are

SxP(X,y*) = y*[B-p(x,y*)I]I/y*x ,

vy*p(x,y*) = [B-p(x,y*)I]x/y*x ,

and the left hand sides vanish simultaneously only when (X,x,y*) is an

eigenelement of B and then p(x,y*) = X. This condition precludes X

from belonging to Jordan blocks because the eigenvectors x and y* for

such x satisfy y*x = 0. This anomaly tells us to reformulate the

Rayleigh Quotient. If X belongs to a single Jordan block of order k

there are (many) nxk matrices X and Y such that the columns of X and

the rows of Y* span X's invariant subspaces in En and En and, moreover,

Y*X = Ik . It turns out that the kxk matrix
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p(X,Y*) Y*BX (3.8)

is similar to X's Jordan block. In general, for any nxk matrices X, Y

satisfying Y*X = Ik we say that (3.8) defines the Rayleigh quotient

of X and Y*.

In the definition (3.7) x and y* are independent variables and

this freedom entails that there is no upper bound on lp(x,y*)l in

terms of B. However we do have

Iy*BxI < 1IBIKtIxKly*l (3.9)

4. OPTIMAL APPROXIMATIONS FROM ROW AND COLUMN SUBSPACES

We are almost ready to exhibit the closest matrix B-E to B for which

eigenelement approximations become exact. When the closest matrix is

close enough then it can be regarded as a perturbation of B. On the

other hand we can just as well regard B as a perturbation of B-E. To

be specific let y be any scalar and let q and p* be any vectors satisfying

p*q = 1 (4.1)

We want

(B-E)q = qy, p*(B-E) = yp* (4.2)

so that y is a simple eigenvalue of B-E. Standard perturbation theory

[Wilkinson, 1965] says that there is an eigenvalue X of B such that

Ix-yf = cond(y)IIEII + O(REH2) (4.3)

as REl - 0. Moreover the condition number of y is computable,

cond(y) =- 1qg.lp*1 = lqll.Ilp*l (4.4)
p*q
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Cond(y) is the secant of the acute angle between p and q. It is also

the spectral norm of the spectral projector qp* belonging to y. Equations

(4.3) and (4.4) provide strong incentive for knowing HEII.

We begin with a special case of the main theorem given below. Define

residuals

r Bx -xy , s* = *B - yy (4.5)

where

y= y/ly , x = x/x1, and y*x = I

COROLLARY 1. The distance to the closest matrix B-E for which

(y,x,y*) is an eigentriple is 1EIIF and

lER 2 = r 2  + lls*1 2  _ (yy*Bx ]2

F HxHh.IIy*I

Note that r and s* depend on y.

This result shows that the Rayleigh quotient p(x,y*) is not

necessarily the best approximate eigenvalue in the sense of minimizing

IIEF. Since EII2 is a quadratic in y a little algebra yields the best

value I,

p(x,x*)+p(y,y*)-o(x,y*)/Ily*N 2NxI2  (4.6)

2 - l/1y*lI2Nx1 2

For practical purposes it is worth noting that when both 1r and

Is*N are small then the best value of y is close to p(q,p*) and it is

not worth going to the trouble of finding the best value.

We now give the analogue of the familiar Rayleigh-Ritz approximations

from a subspace.

Let Q and P be any n by m matrices (m<n) satisfying P*Q - Im. The

columns of Q constitute a basis for the subspace span Q in En and the
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rows of P* constitute a basis for the subspace span P* in E*. In a

sense made precise below the best set of m approximate eigenelements

for a matrix B from span Q and span P* are given by the eigenelements

of the m by m matrix p(Q,P*) - P*BQ in the usual way. Specifically to

each bi-orthonormal pair of eigenvectors u,v* of p(Q,P*) satisfying

P*BQu = uO, v*P*BQ = ev*, a = v*P*BQu,

there corresponds the approximate eigenelement of B

(O,Qu,v*P*) (4.7)

In the symmetric case (with P = Q) the word optimal is justified

by the fact that IBQ-QrHF is minimized by, and only by, the choice

r = P*BQ.

In the general case the word optimal is justified by the fact that

all m approximate eigenelements from p(Q,P*) are exact eigenelements

of that matrix closest to B which satisfies the three natural conditions

given in the main theorem.

MAIN THEOREM. B is an n by n complex matrix, Q and P are n by m (m<n)

satisfying P*Q = Im* To each m by m F there is a unique closest matrix

B-E, using 11F such that

(i) (B-E)Q = Qr , [span Q invariant, F gives spectrum],

(ii) P*(B-E) = rP* , [span P* invariant, r gives spectrum].

Only the choice r = J - p(Q,P*) ensures that

(iii) P*(B-E)Q = J, [preservation of p(Q,P*)].

Define residual matrices

R = R(r) (BQ-Qr)(Q*Q)/ 2  (4.8)

S* = S*(r) (P*P)'I/ 2(p*B-Fp*)

This minimal change E to B is given in (4.15) and

-14-
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NI2URI 2 +N*2 F1I (4.9)
F URF F FI* 51

where Z is defined in (4.12). Note also that when r = J then Z = 0 and

NEI = max{IRI,9S*l} (4.10)

It is convenient to use orthonormal bases for span Q and span P* so

we define

= Q(Q*Q)-I/ 2 , = p(p*p)-I/ 2 , (4.11)

noting that the square root of a positive definite matrix M is uniquely

defined as the symmetric positive definite matrix H satisfying H2 = M.

Proof. Define the auxiliary matrix Z by

P*R = (P*P)-1/ 2 (J-p)(Q*Q)-I/ 2 = 2Z , (4.12)

or

S*Q = (P*P)-1/ 2 (jr)(Q*Q)-I/ 2 = 2Z . (4.13)

Conditions (i) and (ii) can be rewritten as

EO = R, P*E = S*. (4.14)

Now use (4.12), (4.13) to verify that one solution of (4.14) is

E = (R-PZ)O*+ P(S*-ZQ*) . (4.15)

By linearity of the equations (4.14) all other solutions are E+G with

G satisfying

G = 0 , P*G = 0 , (4.16)

We abbreviate trace by tr and observe that for any nxn G
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tr[(E+G)*(E+G)] - tr(E*E) + 2tr(E*G) + tr(G*G) (4.17)

Equations (4.15) and (4.16) imply that

E*G = O(R-PX)*G + (S-OZ*)P*

= QR*G - 0 + 0 ,

Now use tr[KL] = tr[LK] and (4.16) to find

tr[E*G] = trieR*G] = tr[R*GQ] = triO] = 0 . (4.18)

Thus from (4.17)

IGQ2 =PI2 +I 2 >I 2 (4.19)
6 IE+GIF =EIF F -II ~EF

and so B-E is the closest matrix satisfying (i) and (ii) and using 1' F .

It remains to compute PERIF using (4.12), (4.13), (4.15);

E*E = O(R*R-Z*P*R-R*PZ+Z *Z)Q*

+ SS* - QZ*P* - PZQ* + Oz*ZO*

= (R*R-4Z*Z) * + SS*

Using tr(KL) = tr(LK) yields

tr(E*E) = tr(R*R+S*S-4Z*Z) (4.20)

Consider now condition (iii). It forces

P*EQ - 0 . (4.21)

Use (4.15) and (4.12), (4.13) to see that

P*EO =2ZaO .

In other words, r - J. In this case E RO* + PS*,
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and

E*E = QR*Q* + SS*

= OR*RQ* + g(S*S)S*

= (0,S) diag(R*R,S*S)(Q, )* (4.22)

By (4.13) the matrix (, ) is orthonormal and the 2m positive eigenvalues

of E*E are those of R*R and S*S. This yields (4.10).

The factor 4Z*Z in (4.20) shows that, in general, the choice

r = P*BQ does not lead to the minimum IIER F such that span Q and span P*

are invariant. Nor should it when P* and Q are chosen perversely. The

simplest way to see what happens is to consider the inadmissable case

when span Q and span P* are each invariant but associated with disjoint

parts of B's spectrum. Since P*Q = 0 the Rayleigh quotient is not

defined and yet a good choice for r is the set of eigenvalues associated

with either Q*BQ or P*BP. Then the approximate eigenvalues are exact

and either R or S* is the zero matrix.

When P*Q = Im then the matrix QP* is the spectral projector of B-E

associated with p(Q,P*). Specifically PQ* is one term in a partition

of unity

in= Qi P i
1

with the special property

B-E - ! QiP iPi' Pi = P(B-E)Qi

This decomposition is useful if the QiPi F are not too large; moreover

IQP*IF< IQIFIP*I F  .
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Whenever IIQIIFIIPIIF is very large it should be taken as a hint that more

columns should be added to P and Q.

5. Application to the Lanczos Algorithm

Simple subspaces from which approximations are sought to eigen-

elements of an nxn matrix B are Krylov subspaces. Given a pair of

starting vectors q, and p* satisfying p~ql = 1 the Lanczos algorithm, by

step j, produces two bi-orthonormal nxj matrices Qj and P. which satisfy

in exact arithmetic,

PQj Ij , (5.1)

BQj-Q.jj = (,,,..,_,qj+l ~j+l
)  (5.2)

P j- (5.3)
Yj+1 Pj+l

and Jj is a j by j tridiagonal matrix

Ol" 2 0

jj - a2 '3 (5.4)

0 " "Lo
Theoretically Q and PI! can be thought of as the result of bi-orthonor-al-

ing, via Gram-Schmidt, the t'o Krylov sequences

iql' BqI  B2ql" " B J'1q1 }

2* * *j-}

The algorithm comes to a halt as soon as 3i-fi = 0, for some i, but we

will assume that such good luck has not occurred by step j.



Section 4 showed that there is good reason to seek approximate

eigentriples from the projection of B along span Qj and span P., namely
dr1

J. = PjBQ. (5.5)

Let us examine a typical eigenvalue e; say

J z = ze, w*J = w*, w*z = 1 (5.6)

We suppress the dependence of 6, z, and w* on j. Now multiply (5.2) and

(5.3) by z and w*, and introduce two important quantities c and wj, the

last elements of z and w*, to find that

B(Qjz) - (Qjz)6 = qj+iBj+lj 9 (5.7)

(w*P*)B - e(w*Pj) = Wjyj+iP+l (5.8)

The approximate eigenvectors are x = Q z,y* = w*P and, by applying the

main theorem with m = 1 to (5.7) and (5.8) we obtain a computable

expression for the error.

COROLLARY. The closest matrix to B with (e,x,y*) as an eigenelementis

B-E and

IS mjx r -, II y -+Iq.i1  I I l I p + 1
E = maxf Lily* (5.9)

From (4.15) E is the rank two matrix

E (+L1 J)qj+1 x* + )yp

ly'

The object of interest, ,X-eI, is unknown but when 1E1 is small

enough then (4.3) applies,
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2I
JX-e= cond(O)IIE3i + O(EtI 2 ) (5.10)

and, by (4.4),

cond(9) = 1xl ly*11 (5.11)

Consequently the Lanczos algorithm should be continued until both 11E11

is small and cond(e)-11EI is below the given threshold for accuracy.

For j << n (say j = 10 V) thecomputation of eigenvalues of the

tridiagonal J. is modest compared with the cost of a Lanczos step. In

principle x and y* are computable but this would require the use of

the matrices Q. and Pj;that cost is 2jn operations and probably exceeds

the cost of a Lanczos step. However it is advisable to keep in the

fast store the quantities IQj112 : 1 iand F1P*5 2 jp~i12, which are

11 F j2 an hI*1i=l iIleasy to update. A computable bound on cond(e) is then

cond(S) = lxilhly*3 < IQ iPJIIF Izl lw*ll (5.12)

A way to use the error estimates in practice is described at the end

of the section. The error (5.9) continues to hold in practice, apart from

roundoff terms, because no use was made of (5.1) which fails completely

in finite precision.

Persistance of Ritz Values

The eigenvalues of the tridiagonal Jk are, in general, distinct

from those of Jk-l (In the symmetric case the two sets interlace each

other.) Nevertheless for largeenough k some of these Ritz values change

by negligible amounts when k increases. Which ones? Certainly among

them are the Ritz values which have already stabilized at eigenvalues

of B. This fact is a straightforward extension of the symmetric version

by C. C. Paige. The key observation is that the corresponding eigenvectors

do not change much as k increases.
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We shall need some extra notation. For any vector v let denote

the vector (v) where 0 elements are appended to v to make v have the

appropriate dimension for the context in which itis used.

COROLLARY OF MAIN THEOREM.

Let (O,z,w*) be an eigentriple of the tridiagonal matrix J. of

(5.4) with w*z = 1. Then, for all k > j, (ezw*) is an eigentriple of

Jk-Gk and

Gk 2 (+ I j)- j* + J 2 )w ..
11zl- j+l IIw*11

Moreover

G 1 m fIaj+1I I  'j+1wj I } G 92 -'j+~j iYj+lji 2

k maxL IIz  ' w*l k F - z2 + ew*112

and both values are independent of k.

Proof. The residual vectors for z with respect to Jk is readily verified

to be

h (zI k z J (~=J) (o)

where

= : j+(ejz) : j+l j

and il z 1 il. Similarly for s The corollary results from using these

expressions for the residuals in the main theorem in Section 4. U

The application is immediate and remarkable. When .II and 1w I

have dwindled sufficiently so that cond(O) IGji < tol then e is a

stabilization (or condensation) point for the Lanczos process. There is
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a matrix within tol of Jk which has 0 in its spectrum for all k > j.

Use of Error Estimates

At the jth step of the Lanczos process there is freedom in the

choice of 6j+l and yj+l although the quantities Bj+Yyj+l, IBj+ l l qj + l l ,

-yj+illlpj+lil are all determined. In the corollary given above we may

pretend that and y are scaled so that

iIGk! : max{ (J+l J I  lyj+Iwjl

1/2
I z J J (5.13)

With respect to J. the condition number of e is

cond(O;Jj) = 1iz11 1lw*lI (5.14)

Moreover, for all k > j,

cond(6;Jk-Gk) = l11lI iiw* = cond(B;Jj)

Here is an economical way to test for termination when seeking

an eigenvalue to within tol*IlB.

1. Advance the Lanczos process, computing appropriate eigenvalues of

J at each step, until the one (or ones) of interest stabilizes to the

required accuracy. Call it ) and let the step number be j.

2. If cond(e;Jj) is too big then abandon the assumption that 0 approximates

a simple eigenvalue of B. Find a cluster of eigenvalues of J. and

associated eigenvector matrices Z = (Zlz 2 ,..) and W = (WIW 2,...) so

that W*Z = I and IZ1lF 1iW*i F is acceptable. Then use the more general

estimates of the main theorem with Q.Z in place of Q and P.W in place

of P, W*J.Z in place of J.
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3. If cond(9;J.) is acceptable (?) then test the statement

3. y. ;- lizilw*l < (tol Q 1j2) (5.20)
j+l'j+l j j

The left side is cond(a,Jk-Gk) IGkl, for k > j.

4. If (5.20) fails then continue the Lanczos process, otherwise test

cond(9;B-E).IEl using (5.9), (5.11), (5.12), namely test

jlJ'jl * ;y A * il l.!z l}

max!I3 I q I IP I iw* YII Z , If 11 Ilj zlma{ j+lji Ij l F Ij+Ij j+ r

<tol Q jjI F  (5.21)

5. If (5.21) fails then continue the Lanczos process, otherwise compute

X = Q z, y* = w*P*, and deliver max{Ij+l;jI ilqj+ 1l 1ly*Il, I-{j+ljl

11pt+I 1xl} as the error estimate for 3.

Conmments

(i) We do not know what numerical values should be used to

discriminate between simple eigenvalues and perturbations of multiple

ones. Please consult [Golub and Wilkinson, 1976], [A. Ruhe, 1970],

[Varah, 1970].

(ii) The costly formation of x and y* is not made until -. is

acceptable.

(iii) These tests may be used in finite precision. The failure of

PtQj = Ii means that J. is not the optimal projection of B. Nevertheless

it is still a good approximation.
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APPENDIX

Proof of Theorem 8. B = FJF- I , C : B-E.

We begin by immitating the proof of the Bauer-Fike theorem. By

definition of 1j, B-E- tI is singular. If p. is an eigenvalue of B the

bound holds trivially. So we consider the contrary case when the matrix

D - J-'Il

is invertible. We know that

F(DF-I EF)F -

is singular. It follows that ID- 1 F-1 EFII > 1 for any norm in which 11111 1.

Thus

1/IID- 1 I1 < 11 F- 1 EFII < 11F" 1 III FII I Ell

It remains to estimate llD-ll. We focus on the spectral norm and recall

that D is a direct sum of Jordan blocks and so I/IID-ll is the smallest

singular value among all the blocks. For a typical block the smallest

singular value a satisfies o= 2 (T) = min(T) for a tridiagonal matrix

1+62 6

I+62  6

T= 6

I+62 6

6 62

Here 5 = IX-pl, for some eigenvalue X of B and T is diagonally similar

to LL* where L is a typical block of D. T is positive
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definite, but only just so. An asymptotically correct lower bound on

its smallest eigenvalue can be obtained quite simply from the observation

LLI Ide LI2 52mthat det T = Idet LL I Idet L 2 = . By Gersgorin's Theorem all T's

1 2 + 5=(~)2eigenvalues satisfy Xi < 1 + 2 + 26 = (1+6)2 . Thus

X : =Xl"-Xm/(X2"" M)

= det T/(X 2. m)

> 2m/1(l+6)2m-2

It follows that l/lD-1 11 is greater than the smallest of the expressions

m /(1+6)m-l over all the blocks. So for some ,and its associated largest

block size m,

m m < 1 < IIFEF-1II
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