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Abstract: High-energy synchrotron X-ray diffraction measurements of residual elastic strain
were carried out in a thin slice parted off from a plate of titanium alloy that had been subjected
to laser shock peening. The residual elastic strain varies with the distance from the laser shock
peened surface, with high near-surface compressive strain changing to tensile strain in the
middle of the sample, and then becoming compressive again on the opposite face. The
measured residual elastic strain distribution was modelled using a distribution of laser shock
induced eigenstrains near the surface, and the most likely eigenstrain profile was deduced
using a variational matching procedure. The mathematical framework for this approach is
presented and discussed, and the results of matching the predicted residual elastic strain
distribution to the measurement are shown.

Keywords: data analysis, elasticity theory, residual elastic strain, synchrotron X-ray,
monochromatic diffraction, energy-dispersive diffraction, strain mapping

1 INTRODUCTION equations, process models are often used primarily

to provide qualitative understanding of the relation-

A companion article on high-energy synchrotron ships between process conditions and physical

X-ray diffraction measurement and interpretation parameters. Quantitative predictions of sophisticated

of residual elastic strains in a laser shock-peened process models can only be used after extensive

plate [1] presented the data that serves as the input validation against experimental measurements.

for the present study. In this context, non-destructive experimental

Problems of evaluating the residual stress state residual strain analysis provides a very useful tool in

in specimens and components arise frequently in two important respects. Firstly, measurements of

connection with various engineering applications, residual strains (and/or stress/distortion) provide a

such as the requirement to assess and minimize highly sensitive measure of the model’s accuracy.

distortion occurring in manufacturing and process- Indeed, it is difficult to imagine a process model that

ing, or the need to assess the effect of surface treat- would match correctly the spatial distribution of the

ment on high cycle fatigue life (durability analysis). components of residual elastic strain tensor, yet be

significantly wrong in some other respect, e.g. thermalProcess modelling of the sample or component

deformation history offers one rational approach to history. Secondly, in carefully assessed situations,

measurements of residual elastic strains may providethe prediction of residual stress. However, in practice

difficulties invariably arise in establishing the precise an opportunity of introducing an intermediate

reference state that may serve as the starting pointprocessing parameters (e.g. temperature fields, forces

exerted by constraints) and in characterizing com- for subsequent simulations of deformation. For

example, if the state of residual strain is characterizedpletely the dependence on the process conditions

of the material properties (yield stress, hardening well for a component that has undergone surface

treatment by shot peening, then these data may servemodulus, thermal conductivity). As a consequence,

despite the complexity of the underlying constitutive as input for the model of subsequent non-linear
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196 A M Korsunsky

deformation under cyclic loading conditions for the or the use of fictitious temperature fields and

anisotropic thermal expansion tensors [4].purpose of fatigue life prediction. It is particularly
Whether analytical formulation or finite elementimportant to point out that suitable characterization

framework is used, the task of matching the pre-in this context means the use of intrinsic parameters
dicted elastic fields (i.e. the solution of the direct(such as plastic strain) rather than extrinsic para-
problem) to the observations remains paramount.meters (dependent on the boundary conditions)
The objective of the present article is to illustratesuch as stress.
how the characterization of a state of residual elasticCertain advantages of using plastic strain (or
strain ought to be carried out in terms of the per-eigenstrain) as the basis for residual stress analysis
manent plastic strain (or eigenstrain) by matchingcan be identified. By the very definition of elastic
model predictions to the measurements. Simpledeformation it cannot lead to the creation of residual
bending theory formulation is used in the presentstress: after removal of external forces any elastic
case, since it allows the fundamental aspects of theobject must return to precisely the same shape and
approach to be readily clarified.dimension, i.e. the condition of zero elastic strain

and hence stress. It is the introduction of permanent

inelastic deformation (eigenstrain) that is responsible

for residual stress. Additionally, eigenstrain distri- 2 DIRECT PROBLEM: DETERMINATION OF
butions are more compact and more stable than RESIDUAL ELASTIC STRAIN FROM A GIVEN
residual stress distributions. As an illustration of this EIGENSTRAIN
point consider an elastoplastic indentation of a plate

that leads to some local permanent deformation. Consider an elastic beam occupying the region
Numerical simulation readily shows that the residual x

L
<x<x

R
, −2<y<2, and containing a distri-

stress state persists over much larger distances from bution of eigenstrain e*
yy
=e*(x). The basic framework

the indent than the plastic strain. If the plate edge for evaluating the residual elastic strain (RES) distri-
lies relatively closely to the indentation, then the bution e

yy
(x) that arises in the beam has been pre-

resulting residual stress state is disturbed (modified) sented in reference [5] and will only be reproduced
by its presence, unlike the plastic strain distribution. here in brief to introduce some modifications to the
Finally, if the underlying plastic strain (eigenstrain) previously published results.
distribution is known, then the residual elastic The following statements provide the basis for the

analysis.strain and residual stress field can be found from the

solution of an essentially elastic problem containing
1. Total strain in the beam is given by the sum of thea perturbation.

elastic and inelastic strains (eigenstrains).The mathematical fundamentals of eigenstrain
2. Following Kirchhoff’s hypothesis of straighttheory have been summarized in the book by

normals, it is assumed that material pointsMura [2], where explicit analytical integral expressions
originally lying on a line perpendicular to theare presented for elastic strain and stress fields due
beam axis remain on a straight line, i.e. anyto known eigenstrain distributions. However, these
normal to the beam axis only undergoes rotation

expressions are only readily obtained for infinite or
without distortion.

semi-infinite three-dimensional or two-dimensional
3. Hence displacements, and therefore total strain

problems. The application of these classical formulae
must vary linearly through the plate thickness,

to finite geometries requires significant computational
i.e. be given by

efforts, since it is associated with the use of complex

kernels that are themselves usually expressed in
e=e+e*=a+

bx

h
(1)the form of integral transforms. The approach pre-

sented here, in contrast, relies on the simple bending

formulation that gives rise to straightforward calcu- where h=x
R
−x

L
is the beam thickness. Here the

lations that can be very readily accomplished, e.g. by parameter a characterizes the amount of axial
using a spreadsheet. straining experienced by the beam and term b

When general complex geometries are considered characterizes the intensity of bending.
the use of finite element formulations offers a tool 4. In the absence of external loading being applied,
that possesses sufficient flexibility. The presence of elastic strain e presents an example of macroscopic
eigenstrain can be incorporated in these formulations residual elastic strain, such as that measured in a

diffraction experiment.through the use of nodal forces (e.g. see reference [3])
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197Residual elastic strain due to laser shock peening

5. From equation (1), residual elastic strain is given by then from equation (8) the curvature of the bent

beam is found as

e=a+
bx

h
−e*(x) (2)

k=
a

h
=

6C
1
(x2
R
−x2
L

)−4C(x2
R
+x
R

x
L
+x2
L

)

(x
R
−x
L

)3
(11)

If the dependence of parameters a and b on the
Equation (11) contains an expression that is usefuleigenstrain distribution e*(x) is known, then the
for the analysis of beam curvature as a function ofrelationship between the residual elastic strain e
the eigenstrain distribution e*(x).and the eigenstrain e*(x) is established.

Substituting equations (8) and (9) back into6. It will be shown (below) that parameters a and b
equation (2) gives the resulting prediction for thedepend solely on two integral parameters, namely
residual elastic strain distribution in the formthe zeroth and first moments of the eigenstrain

distribution given by
e(x)=

1

(x
R
−x
L

)2
C=

1

h P
xR

xL

e*(x) dx, C
1
=

1

h2 P
xR

xL

e*(x)x dx
×{6C

1
(x
R
−x
L

)(2x−x
R
−x
L

)

(3) +2C[(x2
R
+x
R

x
L
+x2
L

)−3x(x
R
+x
L

)]}

The relationship between parameters a and b, on the −e*(x) (12)
one hand, and C and C

1
, on the other, is established

Equation (12) establishes the solution of the directusing the requirements of force and moment balance
problem about the determination of residual elasticacross the beam, given by
strain for an arbitrary given distribution of eigenstrain.

F=P
xR

xL
Ca+

bx

h
−e*(x)Ddx=0 (4)

3 INVERSE PROBLEM: DETERMINATION OF

EIGENSTRAIN DISTRIBUTION FROM THEM=P
xR

xL
Ca+

bx

h
−e*(x)Dx dx=0 (5)

MEASURED RESIDUAL ELASTIC STRAIN

leading to the following relationships
The problem that will now be addressed in the

present section stands in an inverse relationship to(x
R
+x
L

)b

2
+a(x

R
−x
L

)−(x
R
−x
L

)C=0 (6) the one solved in the previous section. In practice,

it is the residual elastic strain distribution that

may be known, e.g. from diffraction measurement.(x2
R
+x
R

x
L
+x2
L

)b

3
+

(x2
R
−x2
L

)a

2 Alternatively, changes in the elastic strain values can

be monitored, e.g. using strain gauges, in the course
−(x
R
−x
L

)2C
1
=0 (7)

of material removal, and the underlying eigenstrain

distribution needs to be determined.Expressions are given explicitly in terms of the beam
In practice, the residual elastic strain, or itsboundaries x

L
and x

R
for the purposes of generality,

increments, can only be measured at a finite numbere.g. to allow the consideration of effects of surface
of points. Therefore the reconstruction of an unknownlayer removal.
functional distribution is sought, i.e. an object withThe solution of the linear system for parameters a
an infinite number of degrees of freedom, using aand b has the form
finite data set. Several difficulties may arise in this

situation; e.g. whether the problem described in thea=
6C
1
(x2
R
−x2
L

)−4C(x2
R
+x
R

x
L
+x2
L

)

(x
R
−x
L

)2
(8)

previous section can be inverted; whether the inverse

problem is regular, i.e. varies in a smooth fashion

depending on the data; and whether the obtainedb=
12C
1
(x
R
−x
L

)−6C(x
R
+x
L

)

(x
R
−x
L

)
(9)

solution is unique. In the present study an attempt

is not made to answer these questions. Instead, anNoting that since the bending component of strain
efficient inversion procedure is offered, leaving thein terms of the beam bending radius R and the beam
evaluation of its uniqueness and regularity for futurecurvature k is given by
consideration.

Consider a set of experimental data consisting of
e=

x

R
=xk (10)

the values of residual elastic strain (RES) y
j

collected
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198 A M Korsunsky

at positions x
j
, j=1, … , m. In the present study it is functional J in equation (13) and may now be

rewritten asassumed that the data were collected from a one-

dimensional scan in coordinate x. It is worth noting,

however, that the approach presented below is not J= ∑
m

j=1

w
jA ∑
N

i=1

c
i
e
ij
−y
jB
2

(16)
in any way limited to one-dimensional problems,

and can be readily generalized to two- and three- The above expression is quadratic and positive
dimensional cases. definite in the unknown coefficients c

i
. It follows that

Denote by e(x), as in the previous section, the pre- the functional has a unique minimum, found by
dicted, or modelled residual elastic strain distribution. satisfying the condition
Evaluating e(x) at each of the measurement points

gives the predicted values e
j
=e(x

j
). In order to

V
c
J=0 or

qJ

qc
i

=0, i=1, … , N (17)
measure the goodness of the prediction a functional J

is formed, given by the sum of squares of differences
Due to the quadratic nature of the functional in

between actual measurements and the predicted
equation (16), the system of equations in equation (17)

values, with weights
is linear. Therefore, the solution for the unknown

coefficients c
i

can be readily found without iteration
J= ∑

m

j=1

w
j
(y
j
−e
j
)2 (13) by inverting the linear system arising in equation (17).

This system is written out explicitly below.
The choice of weights w

j
is left to the modeller; The partial derivative of J with respect to the

e.g. they could be chosen based on the accuracy of coefficient c
i

can be written explicitly as
measurements being interpreted. Minimization of

the functional J provides a rational variational basis qJ

qc
i

=2 ∑
m

j=1

w
j
e
ijA ∑
N

k=1

c
k
e
kj
−y
jBfor selecting the most suitable model to match the

measurements, in terms of the overall goodness of fit.

It will now be assumed that the unknown eigen- =2A ∑
N

k=1

c
k
∑
m

j=1

w
j
e
ij

e
kj
− ∑
m

j=1

w
j
e
ij

y
jB=0 (18)

strain distribution, yet to be determined, is given by

a truncated series of basis distributions For purposes of illustration, it will now be assumed

that the weights are equal to unity, so that equation
e*(x)= ∑

N

i=1

c
i
j
i
(x) (14) (18) simplifies to

Here N is the total number of basis distributions used
qJ

qc
i

=2A ∑
N

k=1

c
k
∑
m

j=1

e
ij

e
kj
− ∑
m

j=1

e
ij

y
jB=0 (19)

in the prediction. The results of the previous section

contain the analytical procedure for the solution of The following matrix and vector notation are
the direct problem, i.e. the determination of the introduced
residual elastic strain distribution that arises in

E={e
ij

}, y={y
j
}, c={c

i
} (20)response to an arbitrary eigenstrain distribution

e*(x). This procedure can now be applied to each of Noting that notation e
kj

corresponds to the transpose
the N basis distributions j

i
(x) in turn. As a result, a of matrix E, the entities appearing in equation (19)

family of residual elastic strain solutions E
i
(x) is can be written in matrix form as

obtained.

Due to the linearity of the direct problem, the pre- A= ∑
m

j=1

e
ij

e
kj
=EET, b= ∑

m

j=1

e
ij

y
j
=Ey (21)

dicted values e
j

of the residual elastic strain due to

the eigenstrain distribution e*(x) of equation (14) can Hence equation (19) assumes the form
themselves be written in the form of a superposition

V
c
J=2(Ac−b)=0 (22)of responses to the basis eigenstrain distributions

The solution of the inverse problem has thus been
e
j
= ∑
N

i=1

c
i
E
i
(x
j
)= ∑
N

i=1

c
i
e
ij

(15) reduced to the solution of the linear system

Ac=b (23)
with the same coefficients c

i
as in equation (14).

The inverse problem of determining the unknown for the unknown vector of coefficients c={c
i
}.

Whenever the solution of an inverse problem iseigenstrain distribution e*(x) has now been reduced

to the problem of determination of N unknown sought, questions arise concerning the existence and

uniqueness of the solution, and also concerning thecoefficients c
i
, which deliver a minimum to the
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199Residual elastic strain due to laser shock peening

well-posedness of the problem, i.e. the continuity

of the dependence of the solution on the problem

parameters, the choice of the basis functions, the

number of terms N in the truncated series, etc.

Within the present regularized formulation of the

problem, for an arbitrary choice of the family of basis

functions and arbitrary number of basis functions N,

unique solution is guaranteed to exist. This is a

consequence of the positive definiteness of the

quadratic functional J. Furthermore, it is clear that

increasing the number of terms N is guaranteed to
Fig. 1 Schematic illustration of the square coupondeliver a sequence of monotonically non-increasing

from the plate of Ti-64 alloy and the slice partedvalues of J; i.e. the goodness of approximation will
off for transmission diffraction investigationnot be diminished.

An interesting question concerns the convergence

of the solution, e.g. in terms of eigenstrain distri- beam spot was set using collimating slits to the

size of s
x
=25 mm by s

y
=100 mm. The beam wasbution e*(x), to the ‘true’ solution, in the limit N�2.

Similarly, the continuity in the behaviour of the monochromated using a single bounce bent Laue

crystal, which selected the photons with an energysolution with the choice of basis functions deserves

to be discussed. While it must be emphasized that of approximately 60 keV. The measurements of

residual elastic strain were performed in the coupledthese questions are clearly fundamental and ought

to be addressed, the focus is currently placed on the h–2h scan configuration, thus ensuring that the y

direction within the sample (Fig. 1) always remaineddevelopment of a practical tool for residual strain

analysis. Insofar as this is the aim of the present study, aligned with the scattering vector (the bisector of the

incident and scattered beam). The height of the ‘slice’the proposed framework offers an efficient ‘one shot’

approach to the solution of the inverse problem. was adjusted so that the beam spot was located in

the middle of the sample length in the y direction.Furthermore, the choice of moderate values N,

compared to the number of measurements, m, offers The ‘slice’ was scanned in the x direction across the

beam, with several diffraction peaks collected at eacha rational procedure for smoothing the data, as

discussed in the next section. x position. The same peaks were also collected from

a diffracting volume located at the corner of the

‘slice’, which was assumed to be stress (and strain)

free, and provided the reference peak positions for4 APPLICATION TO THE ANALYSIS OF RESIDUAL

ELASTIC STRAIN INDUCED BY LASER SHOCK each of the reflections.

Figure 2(a) shows the profile of the residual elasticPEENING

strain component e
yy

for reflections (00.2) and (11.0)

parallel to the laser shock peened surface plotted asThe approach developed in the previous section

is now applied to the problem of interpreting a function of distance along the x direction from the

treated surface across the entire sample depth. It isdiffraction measurements of residual elastic strain in

a slice parted off from a laser shock peened plate of important to note the difference between the two

profiles, arising from the anisotropy of deformationan aerospace alloy Ti–6Al–4V [1].

Figure 1 shows the geometry of the specimen. The response of the individual hcp (hexagonal close-

packed) crystals within the polycrystalline aggregate,8.5 mm thick plate of titanium alloy was laser shock

peened on the surface x=0, resulting in the creation both in the elastic and plastic regime. Elastic aniso-

tropy gives rise to a difference in the strain experi-of plastic strain in the near-surface regions and of

the residual elastic strain that arose due to elastic enced by the crystallites in response to the same

applied stress, due to the variation of stiffness withequilibration. Instead of attempting to measure the

residual stress or residual elastic strain in the com- the orientation within the crystal. Plastic anisotropy

gives rise to a difference in the maximum strain thatplete plate, a thin (3 mm) slice of material was parted

off from the plate, as shown in the figure. can be sustained within the crystal, since strain can

be accommodated by plastic slip. This phenomenonThe ‘slice’ was mounted on the Euler cradle. High-

energy X-ray diffraction measurements were per- does not give rise to a peak shift, and appears in

the diffraction experiment as strain ‘shedding’. Theformed in transmission on this slice, by initially

aligning the beam with the z direction. The incident difference in the measured residual elastic strains in

JSA141 © IMechE 2006 J. Strain Analysis Vol. 41 No. 3



200 A M Korsunsky

Fig. 2 (a). Profile of residual elastic strains for reflections (00.2) and (11.0) parallel to the laser
shock peened surface plotted as a function of distance from the treated surface across the
entire sample depth. (b). Profile of residual elastic strains parallel to the laser shock peened
surface plotted as a function of distance from the treated surface across the entire sample
depth. Markers indicate the strain values computed using individual diffraction peaks
(00.2), (10.1), (10.2), and (11.0). The line indicates an estimate of the macroscopic average
residual elastic strain computed using appropriate weighting of the available peak strains

the plastically deformed region therefore primarily values from the (00.2) stain values. High values of

reflects the anisotropy of the ease with which plastic the ‘difference strain’ indicate the region where

slip can take place in different orientations and is significant plastic deformation took place. Also

related to the macroscopic plastic strain (see below). plotted (cross markers) is the plastic strain, computed

The difference in the measured residual elastic as the difference between the measured residual
strains in the elastic region primarily reflects the elastic strain profile and the ‘pure bending’ line, and
anisotropy of Young’s modulus (stiffness) with the multiplied by a factor of 0.5 for ease of comparison.
crystallites. The following assumptions were made for the

Figure 2(b) shows further profiles of the residual purposes of interpretation of the measurements.
elastic strain component e

yy
parallel to the laser

1. It was assumed that parting off the ‘slice’, whichshock peened surface plotted as a function of distance
was performed using slow electrical dischargealong the x direction from the treated surface across
machining (EDM), did not cause the eigenstrainthe entire sample depth. Markers indicate the strain
distribution within the piece to be modified. Atvalues computed using individual diffraction peaks
any rate, it may be stated with reasonable con-(00.2), (10.1), (10.2), and (11.0). The line indicates an
fidence that any additional deformation or residualestimate of the macroscopic average residual elastic
stress generation due to spark erosion (EDM) canstrain computed using appropriate weighting of the
be expected to be confined to a very shallow layeravailable peak strains [6, 7].
close to the newly created surface; i.e. it did notFigure 3 shows the plot of the ‘difference’ strain

extend deeper than about 100 mm in the z directionplotted as a function of depth from the laser shock

surface, obtained by subtracting the (11.0) strain from the newly created surface.

JSA141 © IMechE 2006J. Strain Analysis Vol. 41 No. 3



201Residual elastic strain due to laser shock peening

Fig. 3 ‘Difference strain’ plotted as a function of depth from the laser shock surface. High values
of the ‘difference strain’ indicate the region where significant plastic deformation took
place. Also plotted (cross markers) is the plastic strain, worked out as the difference
between the measured residual elastic strain profile and the ‘pure bending’ line, and
multiplied by a factor of 0.5 for ease of comparison

2. It was further ensured that the scattering volume In the present study the value of x
0

was assumed

(gauge volume) was completely embedded within to be equal to 2.3 mm. Although in principle this

the slice, so that near-surface effects did not parameter may also be refined, the necessary non-
contribute to the measured peak profile. linear optimization procedure was not implemented

3. It was assumed that the redistribution and relax- since it requires a distinctly different set of tools. In
ation of the residual elastic strain within the ‘slice’ practice, an approximate determination of the eigen-
primarily concerned the z component and that strain distribution depth was carried out by fitting a
the effect of the eigenstrain component e*

zz
can be straight line to the elastically bent part of the beam

neglected in the analysis. This assumption can and registering the point of significant deviation of
be made on the basis of the finite element investi- the residual elastic strain profile from this line.
gation of the residual elastic strain response to It is important to note that, provided the assumed
eigenstrain distributions [8]. depth of eigenstrain distribution exceeds a minimum

4. It was assumed that the only eigenstrain com- value, the variational procedure adopted here is
ponent relevant to the analysis of the residual capable of describing the smooth decay of the eigen-
elastic strain state within the slice is the com- strain distribution to a zero value that it assumes
ponent e*

yy
and that the analysis of residual elastic on part of the domain of its existence. A rational

strain can be conducted within the approximation approach may be adopted whereby the domain of
afforded by the Kirchhoff beam bending theory. existence of eigenstrain coincides with the entire

width of the beam. The most appropriate choice ofThe depth of the eigenstrain distribution, x
0
, was

basis functions in this case will, however, be differentconsidered to be an external parameter set at the
from that used here.beginning of analysis, and not adjusted in the pro-

The system of basis functions considered in thecess. The reason for this choice is that, in the present
present study was of the formapproach, the dependence of the functional J on this

parameter is non-linear and the value of the distri-
j
i
(x)=(x−x

0
)i+2, i=1, … , 6 (24)bution depth, x

0
, cannot be obtained from the single

inversion of the linear system. It is possible, however,
This choice of the functional basis ensures that atto devise an iterative procedure for establishing the
x=x

0
both the eigenstrain and its derivative turn tobest value of x

0
, e.g. by comparing the ‘goodness of

zero, thus giving rise to the prediction of a smoothfit’, i.e. the values of the functional J obtained taking

different values of x
0
. residual elastic strain profile.

JSA141 © IMechE 2006 J. Strain Analysis Vol. 41 No. 3



202 A M Korsunsky

Figure 4 shows the comparison between the the eigenstrain profile obtained from direct inter-

pretation of the measured data, by subtracting themeasured RES shown by the markers and the eigen-

strain model prediction, shown by the continuous straight line fit to the pure bending part of the RES

profile (see Fig. 4). This is the same method ofcurve. The predicted RES profile was computed

following the procedures described in the present interpretation used to obtain information about the

plastic strain distribution. Indeed, in the presentpaper.

context plastic strain and eigenstrain are terms that

can be used interchangeably, although a caveat must

be made that this does not apply in all situations. A5 RESULTS AND DISCUSSION

continuous curve shows the eigenstrain model pre-

diction obtained using the procedure described inThe agreement between the predicted and measured

profiles in Fig. 4 is excellent, perhaps with the the present paper, i.e. global minimization of the

sum of squared differences between predicted andexception of the region close to the edge of the eigen-

strain distribution, around x=2.5 mm. Increasing the measured RES values at measurement points.

The agreement between the two methods ofnumber of terms in the functional basis [equation

(24)] or modifying the depth of the eigenstrain distri- eigenstrain evaluation in Fig. 5 is clearly good,

but not perfect. This situation is likely to arise duebution, x
0
, does not lead to an improvement in the

quality of fit. Various explanations can be offered for to the difference in the definition of eigenstrain:

in the present context it refers to the equivalentthe observed phenomenon. One possibility is that in

this region relatively small values of plastic strain are average macroscopic plastic strain, while in diffraction

analysis it may be approximately determined usingobserved. In a polycrystalline material this is likely to

lead to some grains sharing a favourable orientation the difference strain, i.e. the mismatch between

residual elastic strains calculated from differentfor plastic slip undergoing yielding, while other grains

remain elastic. This leads to additional deviations reflections. The correlation of the latter parameter

with plastic strain has been established, but it doesin elastic strains measured for certain reflections,

so that the interpretation of diffraction data in not amount to simple equality. Furthermore, the

use of independent reference peak positions forterms of the average macroscopic RES may become

particularly challenging. each reflection in the present set-up is likely to give

rise to small inconsistencies that affect the RESFigure 5 shows the comparison between two

methods of evaluating eigenstrain. Markers show magnitudes, and ultimately the strain profile across

Fig. 4 Comparison between measured residual elastic strain (RES) shown by the markers and
the eigenstrain model prediction shown by the continuous curve

JSA141 © IMechE 2006J. Strain Analysis Vol. 41 No. 3
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Fig. 5 Comparison between two methods of evaluating eigenstrain. Markers show the eigen-
strain profile obtained from direct interpretation of the measured data by subtracting the
straight line fit to the pure bending part of the residual elastic strain profile (see Fig. 4).
The continuous curve shows the eigenstrain model prediction obtained using the
procedure described in the present paper

the slice. An experimental approach that allows these process (at least remotely from plate edges) must

also be isotropic. Hence the residual stress state sdifficulties to be overcome involves the use of energy

dispersive X-ray diffraction coupled to Rietveld within the complete plate prior to separating off the

slice is equi-biaxial within every plane parallel to therefinement of the complete collected diffraction

profile [9, 10]. peened surface, and is related to the biaxial residual

elastic strain e viaThe procedure put forward in the present paper

provides a rational algorithm for the evaluation of

the most likely underlying eigenstrain distribution s=
E

1−n
e (25)

responsible for the entire set of measurements

available for interpretation. A judicious choice
where E is Young’s modulus and n is Poisson’s ratio.

must be made for the order of approximation, N,
In comparison, when the parted-off slice of small

given by the number of functions in the basis
width is being considered, then the effect of the

[equation (24)]. Increasing N unduly amplifies the
transverse component of peening-induced eigen-

oscillatory behaviour of the predicted solution, lead-
strain can be ignored, and the residual elastic strain

ing to approximate profiles containing the level of
state can be thought of as uniaxial, i.e. in the beam

detail that cannot be justified with any confidence.
bending approximation

On the other hand, selecting a moderate value

of N provides a natural method of smoothing out s=Ee (26)
inherently ‘noisy’ strain measurement data.

It is interesting to note that the analysis of residual It is very interesting to note that the predicted

residual elastic strain profile is unchanged betweenelastic strains arising due to eigenstrains in a

beam does not require the knowledge of material’s the two cases. This observation, made here on

the basis of beam and plate approximations, wasstiffness, although it uses the assumption of a linear

relationship between elastic strains and stresses. verified and confirmed through numerical experi-

ments using finite element modelling [8]. Thus, theIt is appropriate here to provide an outline of the

way in which the proposed approach serves as the separation of the slice results in relaxation of residual

stress of the order of 30 per cent for most metallicbasis for the reconstruction of residual stress. Plastic

deformation arising as a consequence of the laser materials. It is also important to note that no

additional plastic deformation occurs during thisshock peening process considered in the present

example was isotropic within the planes parallel to process, i.e. the underlying eigenstrain distribution

remains unchanged.the surface of the peened plate. It is logical to draw

the conclusion that the eigenstrain distribution The present application of the paradigm was cast

in the context of beam bending theory, since itwithin the plate that arose as a consequence of this
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5 Korsunsky, A. M. On the modelling of residualprovides a convenient vehicle for demonstrating
stresses due to surface peening using eigenstrainthe flexibility and power of the proposed approach.
distributions, J. Strain Analysis, 2005, 40, 817–824.It is important to note, though, that the method

6 Korsunsky, A. M., Daymond, M. R., and James, K. E.
possesses a very considerable degree of flexibility, The correlation between plastic strain and aniso-
and can be applied with equal success within the tropy strain in aluminium alloy polycrystals. Mater.
framework of other numerical modelling tools. Sci. Engng A – Struct. Mater. Properties, Microstruct.

and Processing, 2002, 334, 41.
7 Korsunsky, A. M., James, K. E., and Daymond, M. R.

Intergranular stresses in polycrystalline fatigue:
diffraction measurement and self-consistent
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