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Abstract 
In this work, we have investigated the monovariate relationship between reduced viscosity 
and residual entropy in pure fluids and in binary mixtures of hydrocarbons and hydrocarbons 
with dissolved carbon dioxide. The mixtures considered were octane + dodecane, decane + 
carbon dioxide and 1,3-dimethylbenzene (m-xylene) + carbon dioxide. The reduced viscosity 
was calculated according to the definition of Bell, while the residual entropy was calculated 
from accurate multi-parameter Helmholtz-energy equations of state and, for mixtures, the 
multi-fluid Helmholtz energy approximation. Mono-variant dependence of reduced viscosity 
upon residual molar entropy was observed for the pure fluids investigated and, by 
incorporating two scaling factors (one for reduced viscosity and the other for residual molar 
entropy), the data were represented by a single universal curve. To apply the method to 
mixtures, the scaling factors were determined from a mole-fraction weighted sum of the pure-
component values. This simple model was found to work well for the systems investigated. 
The average absolute relative deviation (AARD) was observed to be between 1 % and 2 % 
for pure components and a mixture of similar hydrocarbons. Larger deviations, with AARDs of 
up to 15 %, were observed for the asymmetric mixtures but this compares favourably with 
other methods for predicting the viscosity of such systems. We conclude that the residual-
entropy concept can be used to estimate the viscosity of mixtures of similar molecules with 
high reliability and that it offers a useful engineering approximation even for asymmetric 
mixtures. 
 

 

 

  



2 
 

1. Introduction 
Viscosity is one of the most important properties influencing the performance of chemical 
processes, especially in connection with pressure drops and heat and mass transfer. In oil 
exploration and production, viscosity is one of the key parameters determining the selection 
of production techniques and the design of processing facilities. However, despite its 
importance in many processes, there is presently no well-founded theoretical method for 
predicting the viscosity of dense fluids and empirical methods are often unreliable, especially 
under high-temperature and/or high-pressure conditions.   
 
Several models for predicting the viscosity of dense fluids have been proposed. For petroleum 
systems, the Lohrentz-Bray-Clarke (LBC) method is widely used.1 In the LBC method, the 
reduced excess viscosity is expressed as a function of reduced density for reservoir oils and 
gases in what amounts to a corresponding-states treatment. Other corresponding-states 
treatments have been developed, including the TRAPP model of Ely and Hanley2 and the 
models of Pedersen et. al.3 and Aasberg-Petersen et al.4 Although useful, these methods 
employ empirical functions to account for density dependence and involve uncertain mixture 
critical parameters. A more theoretically-based approach was followed by  Galliero et. al.5 
based on molecular dynamics (MD) simulations where, for simple fluids such as methane, 
ethane, propane, argon, nitrogen, oxygen and carbon dioxide, the molecular parameters were 
deduced from the experimental critical temperature and volume. Other works on predicting 
viscosities include using friction theory,6, 7 free-volume theory,8-10 thermodynamic scaling,11, 12 
the Dymond-Assael (DA) hard-sphere model13-22 and the Vesovic- Wakeham (VW) model.22-

26 The applications of such models have been widely explored, especially for pure components 
and mixtures of similar substances.12, 14-20, 22, 24-31 Some approaches offer acceptable results 
but others are unsatisfactory especially for asymmetric mixtures and/or extreme conditions.21 
Entropy scaling (or residual entropy) models offer an interesting and promising alternative 
approach. 
 
The entropy scaling approach, originally put forward by Rosenfeld32 in 1975, states that the 
complex temperature and density dependence of the reduced viscosity and the reduced self-
diffusion coefficient can be collapsed into a mono-variant function of the residual entropy. The 
residual entropy is defined for specified temperature T and molar density ρ as follows:  

 ( ) ( )r id, , ( , )S T S T S Tρ ρ ρ= −  (1) 

where S (T, ρ) is the molar entropy and Sid(T, ρ) is the molar entropy of the hypothetical ideal 
gas at the same temperature and molar density. The entropy scaling approach is a hypothesis 
and is not based on an exact theory; therefore, it cannot be derived from first principles. The 
underlying physics, and the associated concept of isomorphic invariance, has been discussed 
by Dyre33 who also reviewed molecular simulation results that exemplify the working of the 
approach. Dzugutov34 also used molecular dynamics simulations to demonstrate that the self-
diffusion coefficient of monatomic fluids, reduced to dimensionless form, was a universal 
function of the residual molar entropy only.  In non-monoatomic fluids, it has been established 
that entropy scaling also applies but that the dimensionless transport properties do not follow 
exactly the same universal relation; instead, they exhibit a substance-specific but mono-
variant dependence upon residual entropy.35-37 Goel et. al.38, also using molecular dynamics 
simulations, tested the residual-entropy scaling relationship for the diffusivity and viscosity of 
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Lennard-Jones chain fluids, restricted to short chains that do not show significant 
entanglement. He concluded that the residual-entropy scaling associated with the transport 
properties shows a simple but strong dependence on chain length. It has been confirmed in 
other simulation work that this mono-variant dependence applies to more complex substances 
such as the n-alkanes39-41 and hard dumbbell-shaped particle.36 The analysis has also been 
applied to the experimental data for water.35, 42, 43 Loetgering-Lin and Gross44 presented a 
group contribution method for the correlation and prediction of pure-component viscosities 
involving nonpolar, polar, and self-associating components. They used the PCP-SAFT 
equation of state for the residual entropy and represented the reduced viscosity by a 
summation over functional groups involving three parameters per group. A similar approach 
was used by the same group to predict thermal conductivity45-47 and self-diffusion coefficients48 
of pure substances using the group contribution method. They showed that the transport 
properties of these systems could be predicted well even in the absence of a large 
experimental database.  
 
A modified entropy-scaling approach for viscosity was proposed by Bell and Laesecke49 
wherein a dimensionless residual entropy per unit volume was used as the scaling variable 
and a reference fluid was used to establish the functional dependence of reduced viscosity 
upon that variable. The method was applied with some success over the whole fluid region to 
a family of ten refrigerant fluids. Recently, Bell50 investigated the relationship between reduced 
viscosity and residual entropy for molecular fluids including argon, methane, CO2, SF6, 
refrigerant R134a, refrigerant R125, methanol and water by introducing an appropriate density 
scaling. It was concluded that the viscosity of a dense fluid could be predicted within about 
20% by using a universal scaling approach along with scaling parameters. A comprehensive 
overview of the application of the entropy scaling can be found in a review by Dyre.33 
 
Literature reports pertaining to the viscosity-entropy relation of mixtures are limited and 
restricted to mixtures of similar components.51-53 Novak51 studied the viscosity of the methane-
ethane system and came to a conclusion that a new entity-based scaled viscosity model 
correlated well the pure components and their corresponding mixtures to a single semi-
logarithmic function. Delage-Santacreu et al.52 explored the application of entropy scaling to 
the viscosity of model fluids, including mixtures that interact according to the Mie potential. A 
simple logarithmic mixing rule was used to estimate the viscosity of mixtures from pure 
component values. Loetgering-Lin et al. applied an entropy-scaling model, based on their 
earlier work on pure substances,44 to mixtures of real fluids.53 In their paper, they considered 
almost 140 pure substances and 566 mixtures of various complexity and used molecular 
dynamic simulations and PCP- SAFT to develop a mixture model for viscosity and residual 
entropy, respectively. Nevertheless, the mixtures considered were mainly of similar molecules. 
Fouad and Vega54, 55 applied a similar approach to the viscosities of hydroflourocarbon and 
hydroflouroolefin refrigerants and their mixtures. Entropy scaling based on the PC-SAFT 
equation has also been used to predict the viscosity of hydrocarbon mixtures and diesel fuels 
at several extreme conditions by Rokni et al. 56 In their work, two calculated or measured 
properties were used as the inputs and, in comparison with experimental data, average mean 
absolute percent deviations of 12.2% for hydrocarbon mixtures and 21.4% for diesel fuels. 
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In this study, we first explore the application of highly-accurate Helmholtz equations of state 
for the calculation of residual entropy and the subsequent correlation of reduced viscosity for 
pure substances. We introduce scaling factors to reduce the data to a universal function. We 
then apply the method to mixtures based on the multi-fluid Helmholtz-energy approximation 
for the mixture residual entropy and simple mixing rules for the scaling factors. In our work, 
the compounds of interest are aliphatic and aromatic hydrocarbons and their mixtures with 
CO2. We have tested these methods in comparison with experimental mixture viscosities in 
the temperature range from (200 to 500) K and at pressures up to 200 MPa. 
 

 
2. Theoretical Background 
We begin with a review of the methods to reduce the viscosity to dimensionless form as well 
as the method to calculate residual entropy according to the multi-fluid Helmholtz energy 
approximation.  

 
2.1 Reduced Viscosity 

According to the original model proposed by Rosenfeld,32 the dimensionless viscosity η* was 
defined in terms of the thermal velocity (kBT/m)1/2 and the number density n as follows: 

 
( )

2/3
*

1/2
B

n
mk T
ηη

−

= , (2) 

where m is the mass of one molecule and kB is Boltzmann’s constant. This definition of 
reduced viscosity is illustrated in Fig. 1(a), where we plot data for pentane in the following 
ranges of temperature T and pressure p: 200 ≤ T/K ≤ 550 K and 0.1 ≤ p/MPa ≤ 50. These data 
were taken from a correlation57 of experimental data that has an estimated expanded relative 
uncertainty (k = 2) of 4 %. It can be seen that log(η*) is a very-nearly linear function of residual 
molar entropy in the dense-fluid region. However, in the low-density region (-Sr/R ≤ 1.0), log(η*) 
is divergent. To counter this issue, Novak58-60 proposed an alternative definition of reduced 
viscosity,  

 *
0η η η= , (3) 

in which η0 is the zero-density viscosity of the fluid. For pure substances, Novak obtained η0 
from the Chapman-Enskog formula: 

 0 2 (2,2)

5 /
16

Bmk T π
η

σ ∗=
Ω

, (4) 

where σ is the characteristic molecular diameter and Ω*(2,2) is a dimensionless collision integral, 
typically estimated from the Lennard-Jones potential.61, 62 Fig. 1(b) illustrates this definition of 
reduced viscosity, again for the case of pentane, and shows that the log(η*) goes smoothly to 
zero as Sr/R →0. In his work,59 Novak showed that a small amount of data was sufficient to 
obtain a correlation that could then be applied to determine the viscosity in the entire fluid 
region.  
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Figure 1 Reduced viscosity η* and residual entropy (Sr/R) for n-pentane: (a) based on 

Rosenfeld 32; (b) based on Novak 58 ; (c) based on Bell 50 
 
Bell 50 proposed another approach in order to eliminate the divergence of the reduced viscosity 
in the zero-density limit.  Based on the theory of Rosenfeld,63 according to which the transport 
properties should be proportional  to the residual entropy raised to the power of -2/3 in the 
dilute gas, the reduced viscosity of Eq. (2) was multiply by (-Sr/ R)2/3  to give the following 
definition: 

 
( ) ( )

2/3 2/32/3 1/32/3
*

1/2 1/2

r r
A

B

Nn S S
R Rmk T MRT

ηρηη
−−    

= − = −   
   

. (5) 

Here, ρ is molar density, M is the molar mass, T is temperature, R is the gas constant and NA 
is Avagadro’s constant. Fig. 1(c) shows that this definition also yields an approximately mono-
variant relationship. In a subsequent paper by Bell et al.,64 the same approach was applied to 
analyse the viscosity, thermal conductivity and self-diffusion coefficients of Lennard-Jones 12-
6 fluids. Further discussion of the behaviour of the scaled viscosity in the limit of zero-density 
for different types of molecules can be found in Bell et al.65 Other alternatives have also been 
proposed to eliminate the divergence at low densities however, despite success in eliminating 
the divergence, these somewhat compromise the mono-variant scaling in the compressed 
liquid region.44, 49, 51, 53, 58-60 
 
In this work, we adopt Bell’s definition of reduced viscosity and our model was then developed 
without making any assumption about the form of interaction between molecules.64 
 
 
2.2 Residual Entropy 

Fundamental equations of state, expressed in terms of the Helmholtz energy, have been 
developed for many fluids.66 In these formulations, the dimensionless Helmholtz energy of a 
pure component is separated into ideal-gas and residual parts: 
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 ( ) ( ) ( )id r, , ,T T Tα ρ α ρ α ρ= +  (6) 

where α = A/RT and A is molar Helmholtz energy. The residual molar entropy is then given 
by, 

 ( )r r r/S R
δ

τ α τ α= ∂ ∂ − , (7) 

where τ and δ are the inverse reduced temperature and the reduced density, respectively, 

defined as follows: 

 rT Tτ =  (8) 

and 

 rδ ρ ρ= . (9) 

For pure fluids, the reducing temperature Tr and reducing density ρr are the critical temperature 
Tc and critical density ρc, respectively.  
 
For a mixture, the basic structure of equation (6) is retained. The ideal-gas part is given exactly 
by 

 ( ) ( )id id id

1 1
, , , ln

N N

i i i i
i i

T x x T x xα α ρ α ρ
= =

= = +∑ ∑ , (10) 

where N is the number of components and xi is the mole fraction of component i. The residual 
part is generally approximated as follows: 

 r r r

1
( , , ) ( , ) ( , , )

N

i i
i

xα τ δ α τ δ α τ δ
=

= + ∆∑x x , (11) 

where x is the vector of mole fractions. The first term in Eq. (11) represents a corresponding-
states approximation while the second term, rα∆ , is a departure function that can be used to 
improve the representation of the properties of specific mixtures. For the mixtures considered 
in this work, no binary-specific departure functions have been developed and rα∆  = 0. 
 
The inverse reduced temperature and reduced density of the mixture are given as before by 
Eqs (8) and (9) but the reducing parameters are now functions of composition as follows: 
 

 ( )
1 0.52

r c, , , c, c,2
1 1 1 ,

( ) 2
N N N

i j
i i i j T ij T ij i j

i i j i T ij i j

x x
T x T x x T T

x x
β γ

β

−

= = = +

+
= +

+∑ ∑ ∑x  (12) 

and 

 1 1
3 3

3
1

2
, , 2

1 1 1r c, , c, c,

1 1 1 1 12
( ) 8

N N N
i j

i i j ij ij
i i j ii ij i j i j

x x
x x x

x xυ υ
υ

β γ
ρ ρ β ρ ρ

−

= = = +

 +
= + +  +  
∑ ∑ ∑x

 (13) 

Here, Tc,i and ρc,i are the critical temperature and density of component i and βT,ij, βv,ij, γT,ij and 
γv,ij are a set of adjustable binary parameters. Note that, while γT,ij = γT,ji and γv,ij = γv,ji, 
βT,ij = 1/βT,ji and βv,ij = 1/βv,ji. A more details explanation on this method can be found in the 
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original work of Lemmon,67 and in connection with the GERG-200468 and GERG-200869 
equations of state.  
In the present work, the values of the binary parameters βT, βV, γT and γV were all taken from 
the REFPROP database70 and the values are given in Table 1. For CO2 + decane, the 
parameters come from the GERG-200869 models. For CO2 + m-xylene, optimised parameters 
are not available and the values used were those reported for CO2 + octane.69  The values for 
octane + dodecane are unpublished data taken from the REFPROP database.70 Calculations 
of Sr(T,ρ) were also carried out using the REFPROP software.  
 
 

Table 1. Mixing parameters for mixtures involved in this work 
Mixtures octane (1) + 

dodecane (2) 
CO2 (1) + m-

xylene (2)  
CO2 (1) + 

decane (2) 
βT 0.99884 1.02969 1.02003 
βv 1.00000 1.02617 1.00015 
γT 1.02500 1.07446 1.14551 
γV 1.00000 1.10404 1.18339 

 

3. Entropy Scaling Model for Pure Fluids and Mixtures 
The objective of this study was to devise an entropy-scaling model for the viscosity of mixtures 
based on the definition of reduced viscosity proposed by Bell combined with accurate models 
for the residual entropy. We first consider the case of pure fluids and then, by introducing 
simple mixing rules, extend the approach to the mixtures of interest. 
 

3.1 Pure fluids 

In this work, five pure components were studied: decane, 1,3-dimethylbenzene (m-xylene), 
CO2, dodecane and octane. The viscosity data for CO2 was taken from a precise correlation 
having an estimated expanded relative uncertainty (k = 2) of approximately 3 %71 as well as 
experimental data from Iwasaki and Takahashi72. The viscosity data of octane, decane, 
dodecane and m-xylene were original experimental data measured in our laboratory18, 73-75 
with estimated relative uncertainties of 2 %. These data span temperatures from (298 to 473)K 
and pressures from (0.1 to 200) MPa. Additional experimental data were added for from 
several previous works: octane76, decane77, 78, dodecane79 and m-xylene30, 80. The criterion for 
selecting the hydrocarbons were based upon the availability of both reliable wide-ranging 
viscosity data and a wide-range Helmholtz equation of state. 



8 
 

 
Figure 2 Reduced viscosity η* and residual molar entropy (Sr/R) for pure fluids: , decane; 

, m-xylene; , CO2; , dodecane; , octane. 
 
For each substance, reduced viscosities were calculated from Eq. 5 while the residual molar 
entropy was calculated from the relevant Helmholtz equation of state81 via Eq. 6. Figure 2 
shows the reduced viscosities of the pure components plotted against residual molar entropy. 
To a good approximation, the data for each substance fall approximately on a single curve, 
demonstrating the expected mono-variant relationship over an extended range of temperature 
and pressure. On the semi-logarithmic scale of the plot, these mono-variant relationships 
happen to be nearly linear but different from one substance to the next. 
 

Table 2. Scaling parameters for each substance 

 Substance h Rη 

decane 1.000 1.000 
m-xylene 0.8309 0.6792 
CO2 0.6370 0.5483 
dodecane 1.0901 1.1037 
octane 0.9045 0.8681 

 
In order to reduce all of the data to a single universal curve, we introduce two scale factors: a 
horizontal factor h, which scales the residual molar entropy, and a vertical factor Rη, which 
scales the reduced viscosity. The latter is incorporated into our definition of η* as follows: 

 
( )

2/32/3 1/3
*

1/2

r
AN S

RR MRTη

ηρ
η

−  
= − 

 
. (14) 

Since the data for decane span the widest range of residual molar entropy, we selected this 
substance as a reference fluid to which we assigned the scaling factors h = 1 and Rη = 1. 
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However, this choice is arbitrary. The universal correlation (which is slightly non-linear on a 
semi-log scale) was then represented by the polynomial function 

 
3

*

0
ln ( )

ir
i

i
c S hRη

=

 = − ∑ . (15) 

The parameters ci, together with the values of h and Rη, for each substance other than decane 
were optimised in a global regression that minimised the following objective function: 

 
2

,exp ,fit

1 ,exp

1 N
i i

i iN
η η

η=

 −
Θ =   

 
∑  (16) 

where ηi,exp is an experimental datum and ηi,fit is the value calculated from Eq. (15) with the 
best-fit parameters. The scaling factors so determined for each substance are given in Table 
2 while the coefficients ci are given in Table 3 together with the absolute average relative 
deviation ΔAAD and the maximum absolute relative deviation ΔMAD for all data. These metrics 
are defined by  

 ,exp ,fit
AAD

,exp

i i

i i

η η
η
−

∆ = ∑  (17) 

and 

 ,exp ,fit
MAD

,exp

Max i i

i

η η
η
−

∆ = . (18) 

Figures 3 shows the scaled experimental data in comparison with the universal function and 
illustrates the generally excellent mono-variant representation. The deviations of the data from 
the model, shown for each substance separately in Figure 4, are all within a band of ±10 %. 
With this finding, we concluded that, by an appropriate scaling, the experimental data for each 
component can be collapsed onto a single curve relating reduced viscosity to residual molar 
entropy. 
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Figure 3 Scaled reduced viscosity η* against scaled residual entropy (Sr/hR) for each pure 
substance: , decane; , m-xylene; , CO2; , dodecane; , octane. The solid line 
represents Eq. 15. 

  

  

 

 

 
Figure 4 Relative deviations Δη*/η* of the scaled reduced viscosity from the values estimated 
from equation (15) for each component: (a) decane: , Liu et al.74; , Caudwell et al.18; , 
Assael et al.77; , Carmichael et al.78 (b) m-xylene: , Caudwell et al.18; , Assael et al.30; , 
Et-tahir et al.80 (c) CO2: , Fenghour et al.71 ; , Iwasaki and Takahashi72 (d) dodecane: , 
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Caudwell et al.73, 75; , Yang et al.79 (e) octane: , Caudwell et al.18; , Badalyan and 
Rodchenko76; , Stephen and Heckelberger.82  
 
 
Table 3. Coefficients of equation 15 and statistical parameters for the universal correlation 

i  ci 
0 -1.12478 
1 0.70260 
2 -0.02813 
3 1.1865 x 10-3 

ΔAAD 1.9% 
ΔMAD 9.9% 

 

3.2 Application to Mixtures 

In order to apply the model to mixtures, one simply needs a means of determining the molar 
mass M in Eq. (14) and the scaling factors hmix and Rη,mix that apply. These can of course be 
fitted to experimental data but, to obtain a predictive model, we postulate the simplest possible 
mixing rules as follows: 

 mix i i
i

M x M= ∑  (19)

 mix i i
i

h x h= ∑  (20)

 ,mix ,i i
i

R x Rη η= ∑  (21) 

 

 
Figure 5 Scaled reduced viscosity η* (a) and relative deviations Δη*/η* (b) for octane (1) + 
dodecane (2) system as a function of scaled residual entropy: , 1x  = 0.743; , 1x = 0.434. 
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An initial test of this postulate is provided by a comparison with data for a mixture of two 
hydrocarbons having similar characteristic. Due to the availability of wide-ranging and precise 
experimental data at more than one mixture composition, the (octane + dodecane) system 
was chosen for this test.73 Figure 5 compares the experimental data with the model and shows 
reasonable agreement with absolute average relative deviation of 2%. 
 
A more severe test of the approach is provided by data for asymmetric mixtures, for example 
hydrocarbon liquids with dissolved CO2. Two such mixtures are considered here, namely (CO2 
+ decane) and (CO2 + m-xylene). The experimental viscosity data for the (CO2 + decane) 
system were those of Cullick et al.83 while those for the (CO2 + m-xylene) system were taken 
from a recent study carried out in our laboratory.84 All data considered fall in the homogeneous 
liquid region. A complication arises in the latter case because the binary parameters in the 
MFHEA have not been optimised for the (CO2 + m-xylene) system. Therefore, the calculated 
residual entropy, based on the parameters from Table 1, might not be as reliable as in the 
other cases. To test the accurate of the equation-of-state model, we compare in Figure 6 the 
reported experimental densities84 with those predicted by the model. Here, we plot the relative 
differences Δρ/ρ, where Δρ = ρ(experimental) – ρ(predicted). The analysis of the viscosity 
data was then restricted to those state points for which | Δρ/ρ| ≤ 5%. Figures 7 and 8 compare 
the viscosity data for these two systems with the model. Clearly, the deviations are larger in 
these cases, particularly for (CO2 + decane) where a few points deviate by more than 30%. 
The three most discrepant points relate to the highest composition of CO2 at a temperature of 
403 K. It is also observed that the model systematically underestimates the experimental data 
for both systems. 

 

 
Figure 6 Density deviation as a function of pressure for CO2 (1) +  m-xylene (2). Data points 

above the dashed line was not considered in this work. 

 

-5%

0%

5%

10%

15%

20%

25%

30%

0 20 40 60 80 100

Δρ
*/
ρ*

p/MPa



13 
 

 

 
Figure 7 Scaled reduced viscosity η* (a) and relative deviations Δη*/η* (b) for CO2 (1) +  decane 
(2): , x1 = 0.15; , x1 = 0.30; , x1 = 0.51; , x1 = 0.85. Solid line in (a) represents the 
predicted values. 
 

 

 
Figure 8 Scaled reduced viscosity η* (a) and relative deviations Δη*/η* (b) for CO2 (1) +  m-
xylene (2): , x1 = 0.19; , x1 = 0.38; , x1 = 0.46; , x1  = 0.51; ×, x1 = 0.62; , x1 = 0.65. 
Solid line in (a) represents the predicted values. 
 

1

10

100

η*

(a)

0%

40%

2 4 6 8 10

Δ
η*

/η
*

-Sr/hR

(b)

1

10

100

η*

(a)

0%

30%

2 4 6 8 10

Δη
*/
η*

-Sr/hR

(b)



14 
 

3.3 Discussion 

The method proposed in this work has the potential to be a universal model, at least for the 
class of non-polar and non-associating fluids consider in this paper. The approach is 
contingent upon the availability of an accurate method for calculating the residual molar 
entropy of pure fluids and mixtures. The use of multi-parameter Helmholtz-energy models 
limits the approach to the 100 or so pure substances for which such models have so far been 
developed and to mixtures of these for which the binary parameters βT, βV, γT and γV, and any 
necessary binary-specific departure functions, have been adequately determined. Of course, 
other equation of state models, such as SAFT approaches,53 could be used but the multi-
parameter Helmholtz-energy models are preferred. 
 
The scaling used to map the reduced viscosity onto a universal curve is somewhat similar to 
that in the hard-sphere theory of Dymond and Assael (DA) wherein a scaled reduced viscosity 
is represented as a universal function of a reduced molar volume. However, whereas the 
reducing molar volume in the DA theory is a function of temperature, the scaling factors in the 
present method are constants for a given substance. This means that only a limited amount 
of viscosity data is required to determine the scaling parameters. The performance of the 
present method appears to be excellent for pure substances and competitive with correlation 
models that involve many more parameters. When applied to mixtures, larger deviations are 
observed and it is not clear if these reflect inaccuracies in the prediction of the mixture residual 
entropy, limitations of the simple linear mixing rules used for the scaling factors, or both. 
Nevertheless, we consider the results encouraging and worthy of further investigation. 
 
Referring to Fig. 3, one can observe that data points at -Sr/R < 2 are included. These points 
are located near the critical point or in the supercritical region and, in Fig. 4, they show greater 
and somewhat systematic deviations from the correlation. If one considers only those points 
at -Sr/R ≥ 2 then a better fit can be obtained with an AAD of 1.5% and MAD of 7.8%.   
 
In this work, we adopted the simplest possible expression for the molar mass of the mixture 
appearing in Eq. (14). As discussed by Galliero et al.,85 several other rational possibilities exist 
including: (1) a quadratic model 

 1/2 1/2
mix i j ij

i i
M x x M= ∑∑ , (22) 

in which Mij is the reduced molar mass (1/ 1/ 1/ij i jM M M= + ); (2) a linear square-root model 

 1/2 1/2
mix i i

i
M x M= ∑ , (23) 

and (3) a log-linear square-root model 

 1/2 1/2
mixln lni i

i
M x M= ∑ . (24) 

To test the effect of these different assumptions, we have made additional calculations with 
each of these alternative definitions for Mmix and, in Table 4, we compare the results in terms 
of the AAD and MAD statistics. However, these different rules do not offer any improvement, 
being either the same or slightly worse than the results obtained with Eq. (19) for Mmix. Galliero 
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et al.,85 also considered a mixing rule for Mmix containing adjustable parameters but we prefer 
to avoid introducing additional parameters. 
 
Table 4. Summary of the AADs and MADs for several mixing rule equations referred from 
Galliero et al.85 

Mixture 
Equation (19) Equation (22) Equation (23) Equation (24) 
AAD MAD AAD MAD AAD MAD AAD MAD 

octane + dodecane  2% 4% 2% 4% 2% 4% 2% 4% 
decane + CO2  11% 36% 16% 41% 13% 38% 15% 40% 
m-xylene + CO2  13% 28% 17% 32% 14% 29% 16% 31% 

 
 
4. Conclusion 
In this work, we developed a prototype universal relation between reduced viscosity and the 
residual molar entropy. We evaluate the residual entropy from multi-parameter Helmholtz-
energy equation of state that are known to be accurate for pure substances. For mixtures, a 
multi-fluid Helmholtz-energy approximation is used for the same purpose. The model 
incorporates two system-dependent scaling parameters and is therefore correlative for pure 
fluids. The simple linear mixing rules proposed render the method predictive for mixtures.  
 
The method was able to correlate the viscosity of CO2 and several hydrocarbon liquids over 
wide ranges of temperature and pressure with average absolute relative deviations of less 
than 2 % and maximum absolute relative deviations of less than 10 % for all components 
investigated. When applied to mixtures, larger deviations were observed that appear to 
increase with the molecular asymmetry of the system. Determining the origin of these 
deviations is a topic for further research. The methods proposed here should be capable of 
extension to other transport properties such as the self-diffusion coefficient and the thermal 
conductivity.  
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