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or indirectly, as a deterministic variable in both deterministic and probabilistic studies. This paper 15 

discusses the uncertainties associated with R and outlines a systematic approach for the reliability 16 

analysis of a natural slope in which shear strength parameters and pore pressure ratio are  random varia-17 

bles, each assumed with a lognormal probability distribution. For the residual factor R, seven 18 

probability distribution options under the generalized beta-distribution system are considered. Slope 19 

reliability is computed based on the First Order Reliability Method (FORM) and validated against 20 

Monte-Carlo simulation (MCS). Results obtained from two illustrative examples indicate that the 21 

probability of failure, with R as one of six random variables, can be orders of magnitude higher than 22 

that based on five random variables with R considered as a deterministic parameter. The magnitude of 23 

influence of R as a random variable is, however, highly dependent on its probability distribution, the 24 

left-skewed triangular distribution having the most significant influence in both the examples. Results 25 

of sensitivity analyses reveal that, for almost all of its assumed probability distributions, R is the most 26 

dominant among the six random variables. Effects of variation of some of the statistical and correlation 27 

properties of the other random variables, viz. the shear strength parameters and the pore pressure ratio, 28 
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1.  INTRODUCTION 1 

The processes of progressive failure are often associated with a decrease in the values of shear 2 

strength parameters in strain-softening soils. Skempton (1964, 1985) proposed a definition of resid-3 

ual factor at a point in a soil mass as the extent to which shear strength has decreased from its peak 4 

value to its residual value. The definition of local residual factor that has become accepted is the ra-5 

tio [(sp – s)/(sp – sr)] in which sp, sr, and s denote the peak shear strength, the residual shear strength, 6 

and the current shear strength respectively at the concerned point in soil mass. If no decrease has 7 

occurred, the residual factor is equal to 0; if the strength has decreased to the residual value, the re-8 

sidual factor is 1; and in all other cases the residual factor lies between 0 and 1. It is very useful to 9 

consider an alternative definition of the residual factor which represents the whole of a potential 10 

slip surface. For a perfectly brittle soil, strain-softening will lead to one part of slip surface being at 11 

residual shear strength and the remaining part at peak shear strength.  12 

  Skempton (1964) also proposed that the overall or average residual factor R for a slip surface 13 

in a slope could be represented as the proportion of slip surface length along which the shear 14 

strength has decreased to the residual, i.e., R = Lr /L in which L is the total length of a slip surface 15 

of which the length Lr is at the residual shear strength, the remaining length (L – Lr ) being still at 16 

the peak shear strength. The magnitude of the average residual factor represents the state of nature 17 

for a slope at a given point in time, being a consequence of the decrease in material strength param-18 

eters associated with processes of progressive failure. Considering average shear strength along a 19 

slip surface, the two definitions are found to be consistent with each other as shown in Appendix-A. 20 

The first definition is convenient for formulation of performance function to include the residual 21 

factor as a variable. The second definition is useful to visualise the change in shear strength along 22 

one or more sections of a potential slip surface in a slope when strain-softening process occurs.  23 

  For analysis of a potential first-time slope failure, it is generally assumed that peak shear 24 

strength is operative all along a slip surface. For analysis of potential reactivation of a landslide 25 
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along a pre-existing discontinuity, on the other hand, residual shear strength is considered to be op-1 

erative all along the slip surface. Yet, careful research over several decades has revealed that the 2 

shear strength may have decreased to the residual within parts of a slope with no observed history 3 

of sliding of the slope as a whole and thus part of a potential slip surface may be already at the re-4 

sidual shear strength (James, 1971; Morgenstern, 1977). Significant relative displacement is often 5 

considered as a precondition for decrease of shear strength to a residual value. However, research 6 

has revealed important exceptions with far-reaching implications. The shear strength of clays along 7 

bedding planes can fall from the intact to the residual condition as a result of quite modest dis-8 

placements, and, on pre-existing shear surfaces, the residual condition may be reached at virtually 9 

zero displacement (Skempton, 1966, 1985; Skempton and Petley, 1967; Skempton and Vaughan, 10 

1995). The displacement required to reach the residual, however, is expected to depend on the ini-11 

tial degree of clay particle orientation parallel to the bedding plane, the thickness of the shear zone 12 

and the direction of shearing.  13 

  Mesri and Shahien (2003) carried out a comprehensive review of long-term stability of stiff 14 

clay and clay shale slopes and detailed re-analyses of 99 case histories of slopes in soft clays to stiff 15 

clays and clay shales. They concluded that, for first-time slope failures in stiff clays and clay-16 

shales, the slip surface may be unsheared prior to the occurrence of a landslide but a part of the slip 17 

surface may be at the residual condition before the final slope is formed. They cited extensive pub-18 

lished evidence in support of the view that, in geological settings other than reactivated landslides, 19 

a potential slip surface may incorporate a segment that is at the residual state. Shear strength along 20 

horizontal and sub-horizontal bedding planes, laminations, and weak seams can reduce to residual 21 

condition after relatively small shear displacements, measured in millimeters or centimeters rather 22 

than metres, as commonly assumed for homogeneous clays or across laminations. More recently, 23 

the view that the average shear strength along a potential slip surface may be at levels in between 24 
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the peak and the residual has been supported during discussion of case histories of slope stability 1 

and landslides by Stark and Hussain (2010, 2011) and by Hamel and Adams (2011).  2 

  In the past, residual factor has been included, either directly or indirectly, as a deterministic 3 

variable in both deterministic and probabilistic studies (e.g., Lo and Lee, 1973; Christian and 4 

Whitman, 1969; Chowdhury et al., 1987; Chowdhury and Zhang, 1993). However, because of un-5 

certainties associated with R, it is very important to consider it as a random variable in reliability 6 

studies. 7 

  The main objectives of this paper are to highlight the importance of the residual factor R as an 8 

additional random variable for assessing the reliability of natural slopes, to update the analysis 9 

method, and to study the influence of the residual factor, relative to other variables, on slope relia-10 

bility. Fulfilment of these objectives, however, involves the following essential steps: (1) discuss 11 

the uncertainties associated with the residual factor, (2) express the overall residual factor R for a 12 

slip surface in terms of average values of current shear strength, peak shear strength and residual 13 

shear strength, (3) demonstrate how the factor of safety F can be modified by including R as an ad-14 

ditional geotechnical parameter, (4) discuss sensible alternatives for assuming the probability dis-15 

tribution of residual factor R, (5) carry out reliability analyses considering both symmetrical and 16 

asymmetrical (skewed) probability distributions of R, and discuss the relative influence of different 17 

distributions; (6) carry out sensitivity analyses in order to study the relative influence of different 18 

random variables including R. It is of real interest to know whether the influence of R is more or 19 

less significant than that of pore water pressure or that of peak and residual shear strength parame-20 

ters, and to discuss how this influence may be related to the assumed distribution of R.  21 

  For the performance function, considered as (F – 1), an expression for the factor of safety F is 22 

developed for an ‘infinite slope’ analysis. Due to space limitations, analyses for natural slopes cor-23 

responding only to this assumption are included in this paper. The authors have already extended 24 

the concepts to slopes with curved slip surfaces using Bishop simplified and Spencer methods and 25 
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including the search for critical slip surfaces (Metya et al, 2016a, b; Metya, 2017). While full de-1 

tails are outside the scope of this paper, a modified expression for F, considering a curved slip sur-2 

face and based on Bishop simplified method, is given in Appendix-B.  3 

 4 

2.  UNCERTAINTIES ASSOCIATED WITH THE RESIDUAL FACTOR 5 

Uncertainties associated with the residual factor R may be due to a number of factors. Natural 6 

slopes may have potential slip surfaces which include portions belonging to old landslides but the 7 

precise extent of that proportion may be difficult to estimate. Even in man-made slopes such as ex-8 

cavations and fills, the proportion of slip surface length already at the residual shear strength is not 9 

known accurately. Moreover, in both natural and man-made slopes, the location of the part of slip 10 

surface with residual shear strength is often unknown. In some slopes the rear part of a potential 11 

slip surface below the crest may already be at the residual strength whereas the remaining part may 12 

be at the peak strength. For example, such was the interpretation, based on some early studies, con-13 

cerning the bi-planar slip surface of Kettleman Hills landfill (Gilbert et al, 1998). In contrast, the 14 

upper part of a slip surface in an excavated slope may still be at peak strength while the lower part 15 

is at the residual strength. 16 

  It is also important to highlight uncertainties associated with shear strengths along slip surfaces 17 

within both failed slopes and those currently stable. In brittle strain-softening soils uncertainties in 18 

shear strength, combined with other factors, lead to uncertainties in the proportion of slip surface at 19 

the residual and in the location of the residual part of the slip surface relative to the rest of the 20 

length. Back-calculated strengths for failed slopes are often subject to considerable uncertainty. 21 

Shear strengths measured in the laboratory may be significantly different from mobilized field 22 

shear strengths. Hamel and Adams (2011) state that shear strength could be higher by 20% to 50% 23 

of the “shear strengths measured in laboratory tests of practical duration on small samples” imply-24 

ing field residual factor between 0 and 1. They also concluded that amongst intermittently creeping 25 
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colluvial slopes, some quasi-stable masses “have nominal strength reserve –perhaps on the order of 1 

20% above field residual level”. The percentages would, of course, be different in other regions 2 

with different geology, soil types and environmental conditions, highlighting the significant uncer-3 

tainties associated with such estimates. 4 

  With regard to the Kettleman Hills landfill case history mentioned earlier, uncertainties were 5 

explored by a number of investigators and summarized by Gilbert et al (1998). This slope failure 6 

involved slippage along two distinct interfaces, a geotextile /geomembrane interface and a ge-7 

omembrane/clay interface. A back analysis procedure was used to account for uncertainty through 8 

probability theory. Based on a number of assumptions and using Bayesian analysis, the probability 9 

distribution of a non-dimensional, average shear strength mobilisation factor Rs was estimated. This 10 

factor is directly related to the average residual factor by the relationship: Rs = 1 – R. The outcome 11 

was a mildly skewed probability distribution for Rs with a mean of 0.44. As the relationship be-12 

tween Rs and R is linear, R will have the same distribution as that of Rs, with a mean of (1 – 0.44) 13 

or 0.56. 14 

 15 

3.  OVERALL OR AVERAGE RESIDUAL FACTOR  16 

3.1 Slip Surface of Planar Shape in an ‘Infinite Slope’ – Special Case  17 

From the original definition of residual factor at a point in soil mass considered earlier, the overall 18 

or average residual factor R over a slip surface of length L could be expressed as follows for a 19 

simple slope assuming a slip surface parallel to the ground surface. 20 

p av

p r

s s

s s
R

-
=

-                               (1) 21 

  In Eq. (1) above, sp is the average peak shear strength, sr is the average residual shear strength, 22 

and sav is the average current shear strength along a slip surface. Assume that steady seepage is also 23 

occurring parallel to the slope surface. Therefore, pore water pressure and, hence, the effective 24 
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normal stress is constant along the slip surface. Both the peak shear strength sp and the residual 1 

shear strength sr are thus constant along the slip surface of length L. In a perfectly brittle strain-2 

softening soil, any part of a potential slip surface will be either at the peak strength or at the residu-3 

al strength. If Lr is the length of the portion of slip surface over which strength has decreased to the 4 

residual, the average current shear strength sav over the whole of the slip surface is [sr Lr + sp (L – 5 

Lr)]/L which, when substituted in Eq. (1), yields the average residual factor R as equal to the ratio 6 

Lr/L. Thus, in this special case of ‘infinite slope’ and planar slip surface, the definition of an overall 7 

residual factor for a slip surface in terms of the part of length of a slip surface at residual strength 8 

relative to the whole length (Skempton, 1964) is consistent with that for a local residual factor in 9 

terms of average current shear strength, average peak strength and average residual strength. As 10 

outlined below and in Appendix-A, the same conclusion can be reached for the general case of a 11 

slip surface of arbitrary shape for which the shear strength may vary from point to point.  12 

3.2 Slip surface of arbitrary shape - General case 13 

In accordance with Eq. (1), the overall residual factor must be expressed in terms of average values 14 

of shear strength - peak, residual and current. Consider a slip surface of arbitrary shape and of 15 

length L along which shear strength varies in an arbitrary manner. Let part of the length Lr be at the 16 

residual shear strength and the remaining length (L – Lr) be still at the peak shear strength. The ex-17 

pression for average residual factor, defined in terms of average shear strengths, is again shown to 18 

be the ratio (Lr /L). The derivation is given in Appendix-A.  19 

 20 

4.  EXPRESSION FOR FACTOR OF SAFETY IN TERMS OF R  21 

4.1 Average shear strength in terms of R  22 

From Eq. (1), the average shear strength may be expressed in terms of the average or overall resid-23 

ual factor R as follows 24 

                                   av r p
s = Rs + (1- R)s                       (2) 25 
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The Mohr-Coulomb shear strength equation relates shear strength to cohesive and frictional 1 

strength parameters through the normal effective stress as c tans ′ ′ ′= + σ φ . Thus, the peak and the re-2 

sidual shear strengths can be related to corresponding strength parameters as follows: 3 

                                p p ps c tan= + σ φ′ ′ ′                          (3a) 4 

                                r r rs c tan= + σ φ′ ′ ′                          (3b) 5 

From Eqs. (2) and (3), 6 

                                 rav r p ps = R [c + σ tan ] + (1- R) [c + σ tan ]φ φ′ ′ ′ ′ ′ ′
              (4a)

 7 

or,                             av r p r ps =[Rc + (1- R)c ] + σ  [R tan + (1- R) tan ]φ φ′ ′ ′ ′ ′             (4b) 8 

4.2 Factor of Safety for ‘infinite slope’ analysis 9 

Consider the simple ‘infinite slope’ model for the stability of a slope with a potential slip surface 10 

parallel to the ground surface assuming first that no strain-softening has occurred. Denote the 11 

ground surface inclination by i, the vertical depth to potential slip surface by z, the unit weight of 12 

the soil by γ, the shear strength parameters by c′ and tan φ′ and the dimensionless pore water 13 

pressure ratio by ru (corresponding to pore water pressure u). The peak shear strength parameters 14 

are denoted by suffix p and residual shear strength parameters by suffix r. Assume now that strain-15 

softening has occurred over part of the slip surface within such a slope and that the residual factor 16 

is represented by a variable R. The average shear strength along the potential slip surface may be 17 

obtained from Eq. (4) after substituting for normal effective stress as given by 18 

                   σ′ = γz cos
2
 i – u                              (5a) 19 

One may now use the dimensionless pore pressure ratio ru (ru = u /γz), instead of u. Considering 20 

seepage parallel to slope surface, a value of ru = 0.5 represents seepage occurring throughout the 21 

slope with top flow line at ground surface. A value of ru < 0.5 indicates that the top flow line is be-22 

low the ground surface. Thus the effective normal stress, in terms of the dimensionless pore pres-23 

sure ratio, is given by  24 
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                    σ′ = γz (cos
2
 i – ru )                             (5b) 1 

From Eqs. (4a) and (5b), the average shear strength along the potential slip surface is given by 2 

                     sav = 
2 2

r u r p u pR[c z (cos i r ) tan ' ] (1 R)[c z (cos i r ) tan ' ]′ ′+ γ − φ + − + γ − φ        (6) 3 

The average shear stress along the potential slip surface parallel to the slope surface is given by 4 

                     τav  =  γz sin i. cos i                            (7) 5 

The factor of safety may be defined simply as the ratio of average shear strength and average shear 6 

stress. Thus, from Eqs. (6) and (7), one obtains the factor of safety for a slope in which strain-7 

softening has occurred over part of the slip surface, as the following expression. 8 

2 2

r u r p u p
R[c z(cos i r ) tan ' ] (1 R)[c z (cos i r ) tan ' ]

F
zsin icosi

′ ′+ γ − φ + − + γ − φ
=

γ
            (8) 9 

4.3  Alternative Derivation of Expression for F 10 

It is important to underline the importance of residual factor R as an independent field variable de-11 

fined by the ratio of length of slip surface at residual strength Lr to the total length of slip surface. 12 

Therefore, an alternative way to derive Eq. (8) is to consider factor of safety F as a ratio of total re-13 

sisting force to total driving force. Consider a long slope of finite length L with slip surface parallel 14 

to ground surface. (The slope is assumed to be long enough so that end effects can be neglected). A 15 

portion Lr of the slip surface is at residual strength and the remaining part (L – Lr) still at peak 16 

strength. The total resisting force along the slip surface is: Lrsr + (L – Lr) sp. The total driving force 17 

is L (γz sin i cos i). The factor of safety F is the ratio of resisting force and driving force. Thus F = 18 

[Lrsr + (L – Lr) sp]/ [L (γz sin i cos i)]. Dividing numerator and denominator by L, noting that R = 19 

(Lr/L), substituting for sr and sp from Eqs. (3a) and (3b), and substituting for the effective normal 20 

stress from Eq. (5b), the factor of safety expression is still given by Eq. (8). 21 

 22 

 23 
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5.  PROBABILITY DISTRIBUTION ASSUMPTIONS FOR RANDOM VARIABLES 1 

5.1 Choice of random variables and probability distributions 2 

For slope stability, the most important parameters are the four shear strength parameters (two for 3 

peak strength and two for residual strength), the pore water pressure ratio and the residual factor. 4 

Thus it is reasonable to consider a total of six random variables for a reliability analysis and these 5 

are: 
p r p r u[c , c , tan ' , tan ' , r′ ′ φ φ and R] . 6 

  In geotechnical reliability, the factor of safety is often assumed to have either a normal or a 7 

lognormal distribution. The probability distributions of shear strength parameters and pore pressure 8 

ratio have often been assumed to be normal (e.g., Li and Lumb, 1987; Xue and Gavin, 2007; Ji et 9 

al., 2012). However, for those random variables which cannot take negative values, such as the 10 

shear strength parameters and the pore pressure ratio, a lognormal distribution assumption may be 11 

considered preferable. For examples considered in this paper, a lognormal distribution assumption 12 

has been made for all the random variables except for the residual factor R.  13 

  For the residual factor R, a choice may be made between the assumption of a normal distribu-14 

tion and that of a generalized beta distribution. The choice of a normal distribution allows wide 15 

flexibility in accommodating the mean value of R and its standard deviation. However, errors will 16 

arise as the mean values approach the end points 0 and 1. Moreover, consideration of skewed dis-17 

tributions is excluded. A generalized beta distribution with the end points of 0 and 1 seems more 18 

appropriate. Both symmetrical and skewed distributions can be included with the assumption of a 19 

beta system. For given values of mean and standard deviation of R, a corresponding beta distribu-20 

tion can be obtained [see comments in Section 5.2 after Eqs. (11) and (12)]. Therefore, it is feasible 21 

to vary independently the mean of R and the standard deviation of R. For this paper, it was consid-22 

ered appropriate to study both symmetrical and skewed distributions and hence a generalized beta 23 

distribution was assumed for R. Moreover, given the nature of the variable with end points of 0 and 24 

1, a beta distribution is conceptually appealing and has practical benefits for accuracy. 25 
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5.2 Assumed shapes of the beta distribution 1 

The probability density function (PDF) for the generalized beta distribution representing a variable 2 

between given bounding values a and b is represented by the following (Harr, 1977) 3 

      11 )()(
1

)( −− −−= rq
xbax

C
xf                        (9) 4 

where,       
)!1(

)()!1()!1( 1

−+

−−−
=

−+

rq

abrq
C

rq

                      (10) 5 

 6 

The following seven probability distributions were chosen for analysis to cover both symmetrical 7 

and skewed shapes. 8 

(i)  Shape (1): Triangular skewed right (r > q)      [q=1, r=2] 9 

(ii) Shape (2): Triangular skewed left (q > r)       [q=2, r=1] 10 

(iii) Shape (3): Curved symmetrical about (a+b)/2    [q=2, r=2] 11 

(iv) Shape (4): Curved symmetrical about (a+b)/2    [q=3, r=3] 12 

(v) Shape (5): Curved symmetrical about (a+b)/2    [q=6, r=6] 13 

(vi) Shape (6): Curved skewed right (r > q)       [q=2, r=6] 14 

(vii) Shape (7): Curved Skewed left (q > r)       [q=6, r=2] 15 

 16 

In the above, the numbers in parenthesis, (1), (2), (3),…etc. assigned to the different shapes of beta 17 

distributions are referred to as ‘R-shapes’ in tabular and graphical forms of presentation of results. 18 

For the sake of visual impression, these are presented in Fig. 1 below. 19 
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 1 

Fig.1. Assumed beta distributions for the residual factor R (R-Shapes) 2 

  The expected value and variance of the beta distribution [a, b] are given by 3 

       [ ] )( ab
rq

q
axE −

+
+=                           (11) 4 

and,      [ ]
)1()(

)(
2

2

−++

−
=

rqrq

abqr
xV                          (12) 5 

It may be noted that if expected value and variance of residual factor are known or assumed, q and r 6 

can be calculated from Eqs. (11) and (12) (with a = 0 and b = 1). With those values of q and r, the 7 

corresponding beta distribution is defined by Eq. (9). A symmetrical beta distribution (of a variable 8 

x with a = 0 and b = 1) results only when the expected value of the variable is 0.5. Substituting for 9 

expected value of 0.5 in Eq. (11) and with a = 0 and b = 1, yields q = r. Then Eq. (9) becomes a 10 

symmetrical distribution with the actual value of q and r corresponding to the variance of x. For ex-11 

pected values of x other than 0.5, the beta distribution is skewed. Since the residual factor R can 12 

have a wide range of expected values within the boundaries of 0 and 1, skewed distributions are 13 

most likely. Therefore, the assumption of a symmetrical distribution (such as a normal distribution) 14 

is unduly restrictive. The degree of skewness will be low to mild for expected values very close or 15 

close to 0.5. However, the beta distribution will be highly skewed for expected values much higher 16 
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or lower than 0.5. In order to get a broad view or the range of slope reliability values in strain sof-1 

tening soils, four skewed distribution shapes have been adopted which range from medium to high 2 

degree of skewness. The other three distributions adopted are symmetrical.  3 

5.3  Statistical Parameters of Assumed Shapes of Beta Distributions 4 

The residual factor R varies from 0 to 1. Hence, a = 0 and b = 1. Assuming different values for q 5 

and r, Eqs. (11) and (12) yield values of mean and standard deviation for the seven shapes of PDF 6 

given above, and are listed in Table 1. 7 

 8 

Table 1. Statistical properties of the residual factor R for various shapes of beta distributions 9 

Sl. 

No. 
Geometrical Shape 

Beta Distribution 

Parameters 

Designation 

Statistical Properties 

q r 

Mean 

 

µR 

Standard 

Deviation 

σR 

Coefficient 

of Variation 

(COV) δR 

1. Triangular skewed right (r > q) 1 2 R-shape (1) 0.333 0.236 0.707 

2. Triangular skewed left (q > r) 2 1 R-shape (2) 0.667 0.236 0.354 

3. Curved symmetrical about (a+b)/2 2 2 R-shape (3) 0.500 0.224 0.447 

4. Curved symmetrical about (a+b)/2 3 3 R-shape (4) 0.500 0.189 0.378 

5. Curved symmetrical about (a+b)/2 6 6 R-shape (5) 0.500 0.139 0.277 

6. Curved skewed right (r > q) 2 6 R-shape (6) 0.250 0.144 0.577 

7. Curved Skewed left (q > r) 6 2 R-shape (7) 0.750 0.144 0.193 

 10 

6.  METHODOLOGY FOR RELIABILITY ANALYSIS  11 

6.1 Choice of Reliability Analysis Method 12 

The First Order Reliability Method is widely regarded as a rigorous method of reliability analysis. 13 

The method is free from the shortcomings (Ang and Tang, 1984; Metya and Bhattacharya, 2012) of 14 

the Mean Value First Order Second Moment (MVFOSM) method used by early geotechnical re-15 

searchers (Hassan and Wolff, 1999; Duncan, 2000; Bhattacharya et al., 2003). FORM is also re-16 

garded as a versatile method in view of the fact that it can handle non-normal probability distribu-17 
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tions of the basic random variables of a system (Haldar and Mahadevan, 2000). Keeping the above 1 

in view, the FORM has been adopted in this study. In this method, the reliability index βHL is de-2 

fined as the minimum distance from the origin to the failure surface in the standard normal space, 3 

using a linearisation of the performance function around the design point as originally proposed by 4 

Hasofer and Lind (1974). The performance function, also called the limit state function, for the 5 

slope stability analysis is usually defined as g(X) = F – 1, X being the vector of basic state (or de-6 

sign) variables of the system consisting of the uncertain geotechnical parameters.  7 

6.2 Reliability Index, βHL 8 

A widely used expression for the reliability index βHL (Low and Tang, 2004; Huang and Griffiths, 9 

2011) is given by Eq. (13). 10 
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where, µi
N 

and σi
N
 are the equivalent normal mean and standard deviation respectively of the i

th
 ran-12 

dom variable Xi and [C] is the matrix of correlation coefficients between the standard normal vari-13 

ables. The determination of the reliability index βHL is, thus, a problem of optimisation, and, as in-14 

dicated by Wang et al. (2011), the successful application of FORM relies on the selection of a 15 

robust optimisation algorithm for the multi-dimensional minimisation. Keeping this in view, the 16 

Sequential Quadratic Programming (SQP) (Rao, 2009) in the MATLAB environment is employed 17 

to solve this problem. The solution yields the design point on the failure surface and the corre-18 

sponding reliability index βHL. The adoption of the SQP technique is based on its recommendations 19 

in the literature. For example, Hong and Roh (2008) reported that ‘an extensive comparative study 20 

of nonlinear programming codes presented by Schittkowski (1980) ranked the performance of the 21 

SQP method to be the highest’. 22 

 23 

 24 
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6.3 Probability of Failure, pF 1 

Having obtained the computed value of the reliability index, βHL, the probability of failure can be 2 

obtained from Eq. (14) on the assumption that the performance function follows a normal distribu-3 

tion.  4 

        pF = Φ (–βHL )                            (14) 5 

where Φ (.) denotes the standard normal cumulative distribution function.  6 

6.4 Direction Cosine as Sensitivity Index   7 

In the reliability analysis using FORM, the unit vector 'α  normal to the limit state surface at the 8 

design point is a measure of the sensitivity of the reliability index with respect to variations in each 9 

of the standard normal variates given by (Cho, 2007), 10 

        'α = HLX β∇                             (15) 11 

where the notation ∇X stands for the operators ∂/∂X1′1, ∂/∂X2′,….,∂/∂Xn′. X1′, X2′,….Xn′ being the 12 

standard normal variates. The elements ( i'α ) of the vector 'α  are the direction cosines along the 13 

reduced co-ordinate axes X′i corresponding to the i
th

 random variable, Xi. 14 

 15 

7.  ILLUSTRATIVE EXAMPLES ON NATURAL SLOPES 16 

The above formulation for the analysis of strain-softening slopes is illustrated below with the help 17 

of two example problems [Example 1 in Fig. 2(a) and Example 2 in Fig. 2(b)] of natural slopes 18 

which can be analyzed on the basis of the ‘infinite slope’ model. Both the example problems 19 

assume homogeneous slope in cohesive soil with a slip surface parallel to the ground surface and 20 

with seepage occurring parallel to the slope surface. They, however, differ in the data on slope 21 

inclination, depth to the potential failure plane, and the shear strength parameters. 22 
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 1 
(a) 2 

 3 

(b) 4 

 5 

Fig. 2. Slope Sections Considered in (a) Example 1, and (b) Example 2 6 

Note:  The top seepage line is shown as a small dashed line. Its location changes with the rate of rainfall infiltration. 7 

 8 

7.1 Assumed Slope Data 9 

In Example 1 [Fig. 2(a)] the slope is assumed to have an inclination i = 15°, depth to potential 10 

failure surface z = 5 m, and bulk unit weight of soil γ = 20 kN/m
3
. In Example 2 [Fig. 2(b)] the 11 

corresponding values are taken as i = 12°, z = 3 m and γ = 20 kN/m
3
. These three parameters are 12 

considered to be deterministic and constant in both the deterministic and the probabilistic studies.  13 

  For a deterministic analysis, shear strength parameters (peak and residual) and pore pressure 14 

ratio, are each single-valued constants. 15 

  For a probabilistic analysis, each shear strength parameter is regarded as a random variable 16 

and the pore pressure ratio is also regarded as a random variable. At least two statistical parameters 17 

of each random variable must be known or assumed. These are the mean of the random variable 18 
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and its standard deviation (or the coefficient of variation COV). Moreover, advanced methods of 1 

reliability analysis, such as the FORM, also makes use of the information regarding the probability 2 

distribution of the random variable. As discussed in section 5.1, a lognormal distribution is used for 3 

all the reliability analyses to guard against occurrence of negative values. For convenience and 4 

comparison between deterministic and probabilistic analyses, the mean value of each random vari-5 

able is selected as the single-valued constant for each deterministic analysis.  6 

7.2 Fluctuation of pore water pressure ratio, ru 7 

Reliability of natural slopes is often influenced significantly by rainfall-induced seepage. The top 8 

flow line within a slope may be located at any depth below the surface of the slope and above the 9 

potential slip surface. The pore  pressure ratio is a non-dimensional parameter and, as defined 10 

earlier, is the ratio of pore water pressure u to the product of γ and z. Where pore pressure varies 11 

over a slip surface, an average value of ru representing the whole slip surface is often used for 12 

parametric studies. Rainfall-induced seepage pore pressure reduces slope stability. Thus a landslide 13 

caused by seepage induced by rainfall is often a consequence of pore water pressures increasing to 14 

critical values. 15 

  An average value of ru = 0.5 represents seepage throughout the slope in a direction parallel to 16 

the ground surface and the corresponding value of factor of safety F will be a minimum for a given 17 

set of strength parameters and a given value of the residual factor R. A value of ru < 0.5 indicates 18 

that the top seepage line is below the ground surface. In deterministic analysis, a value of ru for 19 

which F = 1 is considered to be the critical value representing overall slope failure. 20 

  In reliability analysis, both the mean and the COV of the pore pressure ratio are required to es-21 

timate the reliability index and probability of failure. The critical pore pressure may be defined in 22 

relation to zero reliability index (β = 0) which corresponds to a probability of failure pF = 50%. 23 

However, it may be desired to set a higher pF value as the benchmark for critical ru, especially to 24 

define catastrophic failure. One must remember, however, that values of pF > 50% correspond to 25 
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negative values of the reliability index. An inconsistency may be observed in the computed values 1 

of a negative reliability index β if the COV is varied. For example, with a given value of the mean 2 

of the performance function F, an increase in its standard deviation would tend to decrease the neg-3 

ative value of β, which means an increase in algebraic value. This is opposite to how the computed 4 

value changes in the positive domain of β (an increase in standard deviation of F decrease reliabil-5 

ity index). Such an inconsistency has little practical significance because the negative range of reli-6 

ability indicates a state of failure. Moreover, with a fixed number of variables (either 5 or 6), such 7 

an inconsistency does not arise. In other words, the change in reliability index or probability of 8 

failure with increasing pore pressure ratio shows a consistent trend.  9 

7.3 Assumed Data on (a) Pore water pressure ratio and (b) Shear strength parameters 10 

7.3.1  Assumed value for pore water pressure ratio 11 

Because of uncertainties related to pore water pressure, it is important to consider pore water 12 

pressure ratio as a random variable in slope reliability analysis. Most of the analyses in this paper 13 

have been carried out for pore pressure ratio with a mean of 0.2 and a coefficient of variation of 14 

0.1. However, to check whether a change in the value of mean ru (from the selected value of 0.2) 15 

results in a change in the trend of reliability analysis results, a parametric study has been carried out 16 

by considering different values of mean ru, specifically, 0.1, 0.15, 0.25, 0.3, 0.4 and 0.45 (besides 17 

0.2), while keeping the value of COV of ru as 0.1. Further, the effect of variation in the value of 18 

COV of ru within its range (in combination with variation in the values of COV’s of the other 19 

random variables within their respective ranges) has also been studied through another parametric 20 

study in which the mean of ru is kept as 0.2. The assumed range of mean and COV values of the 21 

pore pressure ratio is shown in Table 2 at the bottom. 22 

7.3.2 Assumed values of shear strength parameters  23 

  The assumed mean values of the peak and the residual shear strength parameters are as given 24 

in Table 2. As far as the uncertainty or variability of each random shear strength parameter is 25 



19 

concerned, there is a range within which its coefficient of variation (COV) is known to vary. These 1 

ranges are collected from the literature (Hong and Roh, 2008), and presented in Table 2 for the sake 2 

of ready reference. As stated before, all analyses are carried out with the assumption of lognormal 3 

distribution for each of these five random variables.  4 

 5 

Table 2. Statistical properties of the random variables except R  6 

Random  

Variable 

Probability  

distribution 

Mean Range of 

COV* Example 1 Example 2 

c′p Lognormal 10.0 kPa 5.0 kPa 0.2–0.5 

c′r Lognormal 1.0 kPa 0.5 kPa 0.2–0.5 

tanφ′p Lognormal tan 26° 0.36 0.1–0.2 

tanφ′r Lognormal tan 18° 0.26 0.1–0.2 

ru Lognormal (0.1–0.45) (0.1–0.45) 0.1–0.2 

 Note: *Range of COV for the shear strength parameters are collected from Hong  7 
 and Roh (2008); that for the pore pressure ratio ru is assumed in this study. 8 

 9 

7.4 Correlations between random variables 10 

To highlight the versatility of the adopted method of analysis, some studies reported here include 11 

assumed correlations between peak and residual shear strength parameters. These studies were 12 

found to be useful. However, in order to concentrate on the main aims of this paper, correlations 13 

between parameters were ignored in other studies reported in this paper. It must be emphasised 14 

that, provided data on correlation between any pair of variables become available, methods devel-15 

oped in this paper are still applicable and the analyses can be extended accordingly.  16 

Correlation coefficients between shear strength parameters c and φ have been presented in a 17 

number of published papers such as Lumb (1970), Yuceman et al. (1973), Matsuo and Kuroda 18 

(1974), Wolff (1985), Low and Tang (1997), Khajehzadeh et al. (2010) etc. The magnitude of this 19 

correlation coefficient depends on type of soil, and on whether the data for shear strength parame-20 

ters are obtained from drained, undrained, or consolidated undrained shear tests. Some researchers 21 

mention a negative correlation between c and φ (or tan φ) from drained shear tests relevant to slope 22 
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stability problems (e.g., Lumb, 1970; Yuceman et al., 1973; Wolff, 1985); others mention little or 1 

negligible correlation  2 

  It is important to note that significant data are not available concerning correlations between 3 

shear strength parameters. The evidence is inconsistent in the few reported cases where correlations 4 

have been investigated. Consequently, it is not surprising that slope reliability assessments are often 5 

based on the assumption of uncorrelated random variables (e.g., Duncan 2000, Xue and Gavin 6 

2007, Hong and Roh 2008; Metya and Bhattacharya, 2014; Metya, 2017; Metya et al., 2017).  7 

  The value of the proposed new variable R over a slip surface may depend on a number of 8 

factors and it is reasonable, therefore, to regard it as an independent random variable. Moreover, no 9 

evidence has been presented in the vast geotechnical literature concerning correlation between R 10 

and any other geotechnical parameter. 11 

  As stated above, the effect of correlation between the peak and residual shear strength 12 

parameters has been examined based on a range of assumed values of the correlation coefficients. 13 

The reason for considering only positive values of the correlation coefficients must, therefore, be 14 

stated. During the strain-softening process the composition and mineralogy of a soil remain un-15 

changed. Therefore, it is entirely reasonable to stipulate that any correlation between peak and re-16 

sidual friction angles, and that between peak and residual cohesion, will be positive rather than 17 

negative. Reliable evidence is needed before a credible value can be adopted in design problems or 18 

case studies. 19 

 20 

8.  DETERMINISTIC ANALYSES AND RESULTS 21 

Table 3 presents a series of results of deterministic analyses of the slopes in Example 1 and Exam-22 

ple 2 in the form of values of factor of safety F when the values of the shear strength parameters 23 

(peak and residual) are taken to be equal to their respective mean values and the value of the pore 24 

pressure ratio is varied within the range of its mean values (0.1 - 0.45) as given in Table 2. In addi-25 
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tion, the residual factor is varied from R = 0 (when the entire slip surface is at peak strength) to R = 1 

1 (when the entire slip surface is at residual strength). In between these two limiting values, factor 2 

of safety has also been evaluated considering seven discrete values of R equal to its mean values 3 

corresponding to the seven shapes of beta distributions (R-Shapes) to be considered for the reliabil-4 

ity analyses of the slopes (Table 1). From Table 3, the following can be observed for both the ex-5 

ample problems: 6 

Table 3. Variation of Factor of Safety F with variation of R and ru for Examples 1 and 2 7 

 8 

Residual 

Factor R 

Pore Pressure Ratio ru Remarks 

0.1 0.15 0.2 0.25 0.3 0.4 0.45 

Example 1  

0.000 2.025 1.928 1.830 1.733 1.635 1.440 1.342 Entire slip surface at peak strength  

0.250 1.800 1.710 1.621 1.531 1.442 1.263 1.174 R=Mean of R-Shape (6) 

0.333 1.724 1.638 1.551 1.464 1.378 1.204 1.117 R=Mean of  R-Shape (1) 

0.500 1.574 1.493 1.411 1.330 1.249 1.086 1.005 R=Mean of any of R-Shape (3),(4),(5)
 

0.666 1.423 1.348 1.272 1.196 1.120 0.968 0.893 R=Mean of R-Shape (2) 

0.750 1.348 1.275 1.202 1.129 1.056 0.910 0.836 R=Mean of R-Shape (7) 

1.000 1.123 1.058 0.993 0.928 0.863 0.733 0.668 Entire slip surface at residual strength 

Example 2  

0.000 1.926 1.838 1.749 1.661 1.572 1.395 1.307 Entire slip surface at peak strength  

0.250 1.729 1.647 1.564 1.488 1.399 1.235 1.152 R=Mean of R-Shape (6) 

0.333 1.663 1.583 1.502 1.422 1.342 1.181 1.101 R=Mean of  R-Shape (1) 

0.500 1.531 1.455 1.379 1.303 1.227 1.074 0.998 R=Mean of any of R-Shape (3),(4),(5)
 

0.666 1.400 1.328 1.255 1.183 1.111 0.967 0.895 R=Mean of R-Shape (2) 

0.750 1.334 1.264 1.194 1.124 1.054 0.913 0.843 R=Mean of R-Shape (7) 

1.000 1.136 1.072 1.008 0.945 0.881 0.753 0.689 Entire slip surface at residual strength 

 9 

  Variation in residual factor R and/or pore pressure ratio ru leads to very large variation in the 10 

value of factor of safety F. For instance, as value of R varies from 0 to 1 together with ru which var-11 

ies from 0.1 to 0.45, the value of F varies from 2.025 to 0.668 for Example 1, and from 1.926 to 12 

0.689 for Example 2. Further, for any value of pore pressure ratio ru, as the value of residual factor 13 

R increases, the value of factor of safety decreases. Again, for any value of residual factor R, as the 14 

value of pore pressure ratio ru increases, the value of factor of safety decreases. Both these observa-15 

tions are as per expectation, and, therefore, the results of the deterministic analyses are seen to be 16 
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consistent. Further, quite a few combinations of R and ru lead to F < 1.0, which indicates overall 1 

slope failure. These values are shown in italics in Table 3. 2 

  In these two examples of relatively flat slopes the critical pore pressure ratio ru (which leads to 3 

F = 1) is reached only at high values of the residual factor R. In both examples, these critical values 4 

of ru are below the maximum of 0.5 which represents seepage occurring throughout the slope. 5 

 6 

9. RELIABILITY ANALYSES AND RESULTS 7 

9.1 Probability Distributions Used in the Analyses 8 

FORM based reliability analysis has been carried out considering all the six random variables in-9 

cluding the residual factor R for which the seven probability distributions [R-shapes (1) through 10 

(7)] listed in Table 1 (and Fig. 1) have been used in turn. Thus, for a given set of statistical proper-11 

ties (mean and COV) of the random variables other than R, the results of reliability analysis com-12 

prise a total of seven sets of values of reliability index βHL and probability of failure pF, correspond-13 

ing to the seven R-shapes. A comparison of these seven sets of values of βHL and pF then reveals 14 

the critical R-shape which yields the lowest value of βHL or the highest value of pF. 15 

  All the results presented in section 9.3 are based on the assumption of a lognormal probability 16 

distribution for all random variables except R (four shear strength parameters and one pore pressure 17 

ratio, total 5 variables).  18 

9.2 Reliability Analysis: General Features 19 

9.2.1  Case I and Case II Analysis 20 

Further, as a means to quantify the effect of including the residual factor R as one of the random 21 

variables on the reliability results, reliability analysis has also been carried out considering the re-22 

sidual factor as a deterministic variable in which case there are only five random variables as listed 23 

in Table 2. For the sake of convenience this is referred to as the Case I analysis while the one con-24 

sidering R as random (with six random variables) is referred to as the Case II analysis. The effect 25 
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of treating R as a random variable is then brought out from the difference between the values of the 1 

reliability index (and probability of failure) obtained from the Case I and Case II analyses. In order 2 

for such a difference to be meaningful, the deterministic value of R in case I analysis has been tak-3 

en as equal to the mean value of R considered in the corresponding Case II analysis.  4 

9.2.2  Sensitivity Analysis  5 

As stated earlier, in a reliability analysis using FORM, the direction cosines ( iα ′ , i=1,n) for the n 6 

nos. of random variables, whose values are obtained as part of the solution, indicate sensitivity 7 

indices for the random variables (Haldar and Mahadevan, 2000). Taking advantage of this feature, a 8 

sensitivity study has been carried out in order to compare the contribution of the residual factor 9 

relative to that of the other random variables. 10 

9.2.3  Effect of Variation of Statistical Properties and Correlation  11 

In regard to the input data for the reliability analysis, it is noted in Table 2 that while the COV’s of 12 

the random shear strength parameters are known to vary within their respective ranges, the mean 13 

and COV of the random pore pressure ratio ru are also considered here to vary within some 14 

assumed ranges. It would thus be of interest to investigate the effect of varying (i) the COV’s of the 15 

random variables other than R, as well as (ii) the mean value of the pore pressure ratio ru . It would 16 

also be of interest to investigate the effect of any kind of correlation between the shear strength 17 

parameters.  18 

9.2.4  Four Studies- Study 1 to Study 4 19 

The analyses mentioned above (in sub-sections 9.2.1-9.2.3) have been covered under the following 20 

four studies:  21 

Study 1: The study 1 comprise Case I (R-deterministic) and Case II (R-random) analyses assuming 22 

(i) the random variables as uncorrelated, (ii) mean ru = 0.2, and (iii) the COV’s of random variables 23 

(other than R) equal to the lowest values in their respective ranges (Table 2). For this initial study, 24 
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FORM based results in terms of probability of failure are also compared with those from Monte 1 

Carlo simulation (MCS). 2 

Study 2: Study 2 is similar to Study 1 except that the random variables for the peak and residual 3 

components of shear strength parameters are assumed to be correlated. 4 

Study 3: Study 3 is also similar to Study 1 except that the COV’s of the random variables (other 5 

than R) are varied within their respective ranges (Table 2). 6 

Study 4: Study 4 is also similar to Study 1 except that mean ru is varied within its range (Table 2). 7 

Specifically, ur  = 0.1,0.2,0.3,0.4, and 0.45 have been used. 8 

 9 

9.3  Results – Reliability Index and Probability of Failure 10 

9.3.1  Results of Study 1 11 

For this initial reliability analyses, while the residual factor R is assumed to have all the seven 12 

forms of beta distributions [R-Shapes (1) to (7)] detailed in Fig. 1 and Table 1, the statistical 13 

properties of the other five lognormally distributed random variables are taken as in Table 2. Based 14 

on the data in Table 2, the pore pressure ratio ru is assumed to have a mean value of 0.2, and the 15 

COV’s of the random variables are taken as the base values in their respective ranges. Further, all 16 

the six random variables are assumed to be uncorrelated.  17 

  Table 4(a) presents the values of reliability index obtained from Case I and Case II studies of 18 

both the example problems. It is seen that for the Case II analysis of both the example problems, R-19 

shape (2) results in the lowest value of βHL (and therefore, the highest value of pF ). Thus, for the 20 

residual factor, the assumption of triangular left-skewed beta distribution [R-shape (2)] is found to 21 

be the critical distribution, followed by R-shape (7), also a left skewed distribution. This is not 22 

surprising because these distributions correspond to the highest mean values of R among the seven 23 

distributions selected for analysis. For right skewed distributions, mean values of R are low and, 24 

therefore, the reliability indexes are relatively higher. Thus R-shape (6) results in the highest value 25 
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of βHL. In general, the reliability index will decrease as mean value of R increases if the standard 1 

deviation is the same. Increase in COV for given mean value decreases reliability index. This is 2 

clear from the results for R-shapes (3), (4) and (5). It may also be noted that the correspondence 3 

between the ranks of the intermediate values of βHL and R-shapes is identical for both the example 4 

problems.  5 

 Table 4(a). Summary of Results of Reliability Analyses in Study 1 6 
 7 

Statistical properties of  

Residual factor, R 

Reliability Index, βHL 

Example 1 Example 2 

R- Shape 

(1) 
Mean(2) COV(3) 

Case I 

(4) 

Case II 

(5) 

Difference (%)  

(6) 

Case I 

(7) 

Case II 

(8) 

Difference (%)  

(9) 

(1) 0.333 0.707 5.681 2.403 57.70 5.319 2.415 54.61 

(2) 0.667 0.354 3.335 1.184 64.52 3.157 1.229 61.06 

(3) 0.500 0.447 4.743 2.026 57.29 4.457 2.042 54.18 

(4) 0.500 0.378 4.743 2.356 50.33 4.457 2.357 47.12 

(5) 0.500 0.277 4.743 2.961 37.56 4.457 2.924 34.39 

(6) 0.250 0.577 6.000 3.858 35.69 5.605 3.812 31.98 

(7) 0.750 0.193 2.461 1.309 46.80 2.358 1.346 42.91 

 8 

  As stated earlier, the difference between the βHL values obtained for Case I and Case II 9 

analyses for each of the seven cases of R distributions quantifies the effect of treating R as a 10 

random variable. Table 4(a) shows that the amount of reduction in the value of βHL from Case I to 11 

Case II varies significantly with the assumed beta distribution. The reduction is largest for R-shape 12 

(2) and smallest for R-shape (6). The largest reduction is as high as 65% for example 1 and 61% for 13 

example 2, while the smallest reduction is 36% for example 1 and 32% for example 2. Thus even 14 

the smallest reductions are also substantial. Consequently, the probability of failure based on 15 

residual factor as a random variable can be one or more orders of magnitude higher than that based 16 

on assumption of residual factor as deterministic.  17 
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  For the sake of validation through comparison, values of pF for the Case II analyses have also 1 

been obtained based on the direct MCS with 10
6
 number of simulations and a seed of 28061987. 2 

Table 4(b) shows that there is a reasonably good agreement between the two sets of values (being 3 

of the same order of magnitude); further, the FORM based values of pF are, for all R-shapes, a little 4 

higher than the MCS based values, and, hence, the former is on the conservative side.  5 

 6 

Table 4(b). Comparison between FORM and MCS Results in Study 1 7 

R-shape 

Probability of Failure, pF 

Example 1 Example 2 

FORM MCS FORM MCS 

(1) 8.12x10
-3

 6.10x10
-3

 7.88x10
-3

 5.90x10
-3

 

(2) 1.18x10
-1

 8.99x10
-2 

1.09x10
-1

 8.12x10
-2 

(3) 2.14x10
-2

 1.66x10
-2 

2.06x10
-2

 1.56x10
-2 

(4) 9.24x10
-3

 7.40x10
-3 

9.22x10
-3

 7.50x10
-3 

(5) 1.53x10
-3

 1.10x10
-3 

1.73x10
-3

 1.30x10
-3 

(6) 5.71x10
-5

 3.00x10
-5 

6.88x10
-5

 4.00x10
-5 

(7) 9.52x10
-2

 7.70x10
-2 

8.91x10
-2

 7.17x10
-2 

 8 

9.3.2 Results of Study 2 9 

In Study 1 described above, all the random variables were assumed to be uncorrelated. In this 10 

study, however, correlations are assumed to exist between the peak and the residual cohesion 11 

parameters pc′ and rc′ as well as between the peak and the residual friction parameters 12 

pφ′tan and rφ′tan .  13 

  In absence of published data, a parametric study has been carried out with assumed values of 14 

the correlation coefficients between pc′  and rc′ and between pφ′tan  and rφ′tan . For simplicity, these 15 

two correlation coefficients are assumed to be of equal value and denoted by ρ. A parametric study 16 
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has been conducted considering values of ρ as 0.25, 0.5, 0.75 and 1.0. The cross correlation coeffi-1 

cients between the different strength parameters are, however, assumed to be zero.  2 

  Table 5 presents, for Example 1, a summary of values of reliability index for the all the seven 3 

R-shapes. By comparing the results of Study 2 with those from Study 1 above [i.e., for ρ = 0 in 4 

Table 4(a)], it is observed that the trend of results in Study 2 remains essentially the same as in 5 

Study 1. For any non-zero value of ρ, like Study 1, R-shape (2) results in the lowest value of βHL 6 

and the R-shape (6) results in the highest value of βHL, in a Case II analysis. For any situation, as ρ 7 

increases, βHL decreases, which is expected in view of the assumed positive correlation. Moreover, 8 

as the value of ρ increases from 0.0 to 1.0, the value of βHL decreases by nearly 5% and 9% in the 9 

Case II analysis with R-shape (2) and R-shape (6) respectively. It is seen that the trend of results in 10 

terms of the reduction in the values of reliability index from Case I analyses (R-deterministic) to 11 

Case II analyses (R-random) remains the same in Table 4(a) and Table 5. Specifically for ρ = 1.0, 12 

the largest and the smallest reductions corresponding to R-shape (2) and R-shape (6) respectively, 13 

are nearly 55% and 32% in place of 65% and 36% noted in Study 1. Details of  corresponding  re-14 

sults for Example 2 are not presented here due to space limitations. On the whole it can be stated 15 

that correlation between the peak and residual strength parameters has no major influence on the 16 

trend in reliability results although the influence can be significant for a specific analysis relevant 17 

to a given example with another set of data. In view of such an observation from this study, in the 18 

subsequent studies, e.g., Study 3 and Study 4, no correlation has been considered between the ran-19 

dom variables to save space. Fig. 3 presents a plot of probability of failure vs ρ for Study 2 on Ex-20 

ample 1. The plot of pF vs ρ for Study 2 on Example 2 has been found to be very similar to that for 21 

Example 1. 22 

 23 

 24 

 25 
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Table 5. Values of Reliability Index ββββHL for Study 2 on Example 1 1 
 2 

R-shape 
Analysis 

Case 

Reliability Index, βHL 

ρ = 0.0 ρ = 0.25 ρ = 0.5 ρ = 0.75 ρ = 1.0 

(1) 

Case I 5.681 5.357 5.092 4.871 4.689 

Case II 2.403 2.372 2.342 2.312 2.284 

Difference (%) 57.70 55.71 54.01 52.53 51.29 

(2) 

Case I 3.335 3.053 2.832 2.653 2.509 

Case II 1.184 1.169 1.156 1.142 1.129 

Difference (%) 64.52 61.69 59.19 56.94 54.99 

(3) 

Case I 4.743 4.377 4.086 3.848 3.656 

Case II 2.026 1.994 1.963 1.933 1.905 

Difference (%) 57.29 54.44 51.95 49.76 47.88 

(4) 

Case I 4.743 4.377 4.086 3.848 3.656 

Case II 2.356 2.308 2.261 2.217 2.175 

Difference (%) 50.33 47.28 44.66 42.40 40.50 

(5) 

Case I 4.743 4.377 4.086 3.848 3.656 

Case II 2.961 2.868 2.780 2.698 2.624 

Difference (%) 37.56 34.48 31.97 29.89 28.22 

(6) 

Case I 6.000 5.731 5.509 5.322 5.168 

Case II 3.858 3.761 3.669 3.581 3.502 

Difference (%) 35.69 34.37 33.41 32.72 32.24 

(7) 

Case I 2.461 2.269 2.116 1.992 1.892 

Case II 1.309 1.282 1.256 1.231 1.208 

Difference (%) 46.80 43.49 40.66 38.22 36.16 

 3 

 4 
Fig. 3. Variation of probability of failure with increasing correlations between the peak and 5 

the residual strength parameters (Study 2 and Case II analyses on example 1) 6 

 7 
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9.3.3 Results of Study 3 1 

In the Study 1 and study 2 described above, the COV’s of the shear strength parameters were taken 2 

equal to their base values (the lowest values) in their respective ranges (Table 2) and the effect of 3 

treating R as a random variable has been brought out. It, however, remains to be seen how the 4 

effect changes for higher level of uncertainty (variability), and, therefore, the same has been 5 

undertaken here in Study 3. The COV’s for the different random variables except R are assumed to 6 

vary linearly within their ranges in terms of a parameter η which varies from 0 to 1. Thus the 7 

COV’s of the five random variables are represented by δc′p  =  0.2 + 0.3 η; δc′r  =  0.2 + 0.3 η; δtanφ′p  8 

=  0.1 + 0.1 η; δtanφ′r  =  0.1 + 0.1 η and δru  =  0.1 + 0.1 η, and several values of the parameter η 9 

such as η = 0.0, 0.25, 0.50, 0.75 and 1.0 have been considered (η = 0.0 corresponds to the base val-10 

ues of the COV’s considered in Study 1 and Study 2). For the sixth random variable R, different 11 

shapes of the probability distribution are considered one by one, as in Study 1 and Study 2. The re-12 

sults for reliability index are tabulated in Table 6 for example 1. 13 

  By comparing the results of Study 3 with those from Study 1 [i.e., for η = 0 in Table 4(a)], it is 14 

observed that the trend of results in Study 3 remains essentially the same as in Study 1. For any 15 

non-zero value of η, like Study 1, R-shape (2) again results in the lowest value of βHL and the R-16 

shape (6) again results in the highest value of βHL in a Case II analysis. For any situation, as η in-17 

creases, βHL decreases, which is expected. Moreover, as the value of η increases from 0 to 1, the 18 

value of βHL decreases by nearly 31% in the Case II analysis both for R-shape (2) and R-shape (6), 19 

which are substantial. It is seen that the trend of results in terms of the reduction in the values of re-20 

liability index from Case I analyses (R-deterministic) to Case II analyses (R random) remains the 21 

same in Table 4(a) and Table 6. Specifically, for η = 0.75, the largest and the smallest reductions, 22 

corresponding to R-shape (2) and R-shape (6) respectively, are nearly 46% and 4% in place of 65% 23 

and 36% noted in Study 1. However, details of such results for Example 2 are not presented here to 24 

save space. That the amount of reduction is less in Study 3 compared to Study 1 is also expected 25 
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because, while the level of uncertainty for the other 5 random variables (considered in Case I anal-1 

ysis) increases with non-zero value of η, there is no corresponding increase in the level of uncer-2 

tainty in the residual factor R. Fig. 4 presents a plot of probability of failure vs η for Study 3 on Ex-3 

ample 1. The plot of pF vs η for Study 3 on Example 2 has been found to be very similar to that for 4 

Example 1. 5 

Table 6. Values of Reliability Index ββββHL for Study 3 on Example 1  6 
 7 

R-shape Analysis Case 
Reliability Index, βHL 

η = 0.0 η = 0.25 η = 0.5 η = 0.75 η = 1.0 

(1) 

Case I 5.681 4.434 3.622 3.049 2.621 

Case II 2.403 2.253 2.120 1.997 1.882 

Difference (%) 57.70 49.19 41.48 34.49 28.20 

(2) 

Case I 3.335 2.606 2.121 1.772 1.508 

Case II 1.184 1.074 0.978 0.894 0.817 

Difference (%) 64.52 58.80 53.86 49.57 45.86 

(3) 

Case I 4.743 3.705 3.024 2.540 2.177 

Case II 2.026 1.866 1.726 1.599 1.483 

Difference (%) 57.29 49.64 42.92 37.03 31.89 

(4) 

Case I 4.743 3.705 3.024 2.540 2.177 

Case II 2.356 2.150 1.970 1.806 1.657 

Difference (%) 50.33 41.96 34.86 28.87 23.90 

(5) 

Case I 4.743 3.705 3.024 2.540 2.177 

Case II 2.961 2.644 2.366 2.118 1.897 

Difference (%) 37.56 28.63 21.75 16.61 12.86 

(6) 

Case I 6.000 4.680 3.824 3.221 2.772 

Case II 3.858 3.545 3.247 2.952 2.655 

Difference (%) 35.69 24.26 15.07 8.34 4.22 

(7) 

Case I 2.461 1.920 1.557 1.293 1.093 

Case II 1.309 1.145 1.008 0.889 0.786 

Difference (%) 46.80 40.36 35.27 31.25 28.07 

 8 

 9 
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 1 
Fig. 4. Variation of probability of failure with increasing variability of the random variables 2 

except R (Study 3 and Case II analyses on example 1) 3 

 4 

9.3.4 Results of Study 4 5 

In all the three studies described above, the effect of treating the residual factor R as a random 6 

variable has been brought out for a medium level of pore water pressure, considering the pore 7 

pressure ratio ru as having a mean value of 0.2. It would be interesting to study how the trend of 8 

results presented above changes with change in the level of pore pressure. Keeping this in view, the 9 

study 4 has been undertaken which is similar to the study 1 except that here the mean of ru is varied 10 

from 0.1 to 0.45.  11 

  Table 7 presents, for Example 1, a summary of the values of reliability index obtained from 12 

Case II analyses. It is seen that for mean ru = 0.1, 0.15, and 0.25, the trend of results is the same as 13 

for the study 1, 2, and 3 with mean ru = 0.2. In other words, R-shape (2) again results in the lowest 14 

value of βHL (highest value of pF ), while R-shape (6) results in the highest value of βHL (lowest 15 

value of pF ). It is also seen that the largest reductions in the value of βHL [for R-shape (2)] are 16 

59.29%, 61.83% and 67.47% for mean ru = 0.1, 0.15 and 0.25 respectively, compared to 64.52% for 17 

mean ru = 0.2. Similarly, the smallest reductions in the value of βHL [for R-shape (6)] are 37.52%, 18 

36.92% and 33.68% for mean ru = 0.1, 0.15 and 0.25 respectively, compared to 35.69% for mean ru 19 
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= 0.2. For mean ru = 0.3, however, it is seen that R-shape (2) does not result in the numerically 1 

lowest value of βHL It yields a βHL of 0.389, which is higher than the value of 0.246 corresponding 2 

to R-shape (7) which, again, is a left-skewed distribution. For mean ru = 0.4 and 0.45, the 3 

assumption of R-shape (2) gives Case II analysis results to be higher (less negative) than those from 4 

the corresponding Case I analysis. This is the apparent inconsistency to which reference was made 5 

in section 7.2 concerning the effect of change in COV on computed value of reliability index. For 6 

fixed number of random variables (either 5 or 6), this inconsistency does not arise. There is a con-7 

sistent trend for change of reliability index or probability of failure with increasing pore pressure 8 

ratio. 9 

Table 7. Summary of reliability results due to variation of mean ru (Study 4 on Example 1) 10 
 11 

R-shape 
Analysis 

Case 

Reliability Index, βHL  

ru = 0.10 ru = 0.15 ru = 0.20 ru = 0.25 ru = 0.30 ru = 0.40 ru = 0.45 

(1) 
Case I 7.489 6.625 5.681 4.689 3.696 1.839 1.001 

Case II 3.225 2.808 2.403 2.018 1.654 0.961 0.610 

Difference (%) 56.93 57.62 57.70 56.96 55.24 47.74 39.11 

(2) 
Case I 5.209 4.299 3.335 2.352 1.387 –0.406 –1.219 

Case II 2.121 1.641 1.184 0.765 0.389 –0.284 –0.611 

Difference (%) 59.29 61.83 64.52 67.47 71.94 29.93 49.86 

(3) 
Case I 6.648 5.732 4.743 3.720 2.710 0.844 0.005 

Case II 2.926 2.473 2.026 1.594 1.181 0.394 0.002 

Difference (%) 55.98 56.86 57.29 57.15 56.42 53.33 51.05 

(4) 
Case I 6.648 5.732 4.743 3.720 2.710 0.844 0.005 

Case II 3.311 2.837 2.356 1.875 1.399 0.466 0.003 

Difference (%) 50.19 50.51 50.33 49.60 48.37 44.77 42.56 

(5) 
Case I 6.648 5.732 4.743 3.720 2.710 0.844 0.005 

Case II 4.050 3.520 2.961 2.380 1.783 0.586 0.003 

Difference (%) 39.08 38.59 37.56 36.03 34.21 30.51 28.83 

(6) 
Case I 7.717 6.898 6.000 5.046 4.080 2.250 1.417 

Case II 4.822 4.351 3.858 3.347 2.819 1.723 1.159 

Difference (%) 37.52 36.92 35.69 33.68 30.91 23.42 18.24 

(7) 
Case I 4.250 3.376 2.461 1.532 0.620 –1.086 –1.867 

Case II 2.378 1.848 1.309 0.772 0.246 –0.751 –1.225 

Difference (%) 44.06 45.27 46.80 49.63 60.30 30.83 34.39 

 12 

  Finally, a computed negative value of reliability index is very useful for estimating the highest 13 

value of probability of failure due to a combination of high residual factor (or adverse probability 14 
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distribution) and high pore pressure ratio. As an illustration of one such combination, for R-shape 7 1 

and pore pressure ratio of 0.45, reliability index is –1.225 for Case II analysis (see Table 7). The 2 

corresponding probability of failure from computation is 88.4%. 3 

  Fig. 5 presents graphical variation of the probability of failure obtained from Case II analysis 4 

of Example 1 with variation in the mean of pore pressure ratio for the seven probability distribu-5 

tions of the residual factor. From Fig. 5, it is observed that (i) the relationships are nonlinear and 6 

the shape of each curve is influenced by the probability distribution of R; (ii) the probability of 7 

failure increases at a somewhat decreasing rate as the mean pore water pressure increases; and (iii) 8 

the probability of failure at any mean pore pressure ratio can vary by several orders of magnitude 9 

depending on the probability distribution of R. 10 

  Observations from the results obtained from Example 2 being very similar to those for Exam-11 

ple 1, are not presented here. 12 

 13 

 14 
Fig. 5. Effect of varying pore water pressures on the probability of failure (Study 4 and 15 
Case II analyses on example 1) 16 

 17 

9.4 Study on Sensitivity Index of the Random Variables 18 

As stated earlier, in a reliability analysis using FORM, the direction cosines ( iα ′ , i = 1 to n) for n 19 

number of random variables whose values are obtained as part of the solution, directly indicate  the 20 
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values of sensitivity index for the random variables (Haldar and Mahadevan, 2000). Taking 1 

advantage of this feature, a sensitivity study has been carried out in order to compare the 2 

contribution of the residual factor R to the reliability index βHL relative to that of the other random 3 

variables. Based on the Study 1 through Study 4 described above, the following four sets of 4 

observations have been made on the sensitivity indexes of the six random variables. 5 

 6 

Study 1: Based on the results of Study 1 on example 1, values of the sensitivity indexes, in terms of 7 

direction cosines, of the six random variables are presented in the form of a histogram in Fig. 6. 8 

From Fig. 6 it is observed that the residual factor R has the highest value of the direction cosine, 9 

and therefore, has the single largest contribution or influence on the reliability index for all the R-10 

shapes except for R-shape (7) in which case R has a joint largest influence along with rφ′tan . From 11 

the results of Study 1 of Example 2, the observations are similar. 12 

 13 

 14 

Fig. 6. Results of Sensitivity Analysis based on the FORM method (Study 1 on Example 1) 15 
 16 

 17 

Study 2: From the results of Study 2 on both the examples, the observations are the same as in 18 

Study 1. 19 
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 1 

Study 3: From the results of Study 3 on both the examples, the observations are, however, 2 

somewhat different from those from Study 1 or Study 2. It is seen that the rank of the sensitivity 3 

index for R is heavily dependent on its distribution (R-shape). For all of R-shapes (1), (2), (3) and 4 

(4), R has the single largest sensitivity index. For R-shapes (5) and (7), R has a joint largest sensi-5 

tivity index along with rφ′tan . For R-shape (6), R has the single largest sensitivity index for low to 6 

medium level of uncertainty of the other 5 random variables, i.e., η = 0.0 and 0.25. However, at 7 

higher level of uncertainty of the other 5 random variables, e.g., η = 0.5, 0.75, and 1.0, it is seen 8 

that pφ′tan  has the highest sensitivity index, followed by pc′ , rφ′tan , ru, R and rc′  in decreasing or-9 

der. 10 

 11 

Study 4: From the results of Study 4 on both the examples, the observations are the same as in 12 

Study 1 or Study 2.. 13 

 14 

10.  DISCUSSION 15 

10.1  Practical Applications and Challenges 16 

The proposed method is ready for assessing reliability of slopes in practice. The application may be 17 

to analysis of natural slopes, assessment of landslide areas as well as to the reliability of excavated 18 

slopes. Based on the results discussed in this paper, inclusion of R as a random variable will lead to 19 

more accurate assessment of reliability for any slope. Ignoring R or treating it as a deterministic 20 

variable is likely to overestimate reliability and underestimate the probability of failure even if oth-21 

er important parameters are considered as random variables. 22 

  The main challenge in reliability analysis relates to availability of data and, in particular, the 23 

distributions of parameters assumed as random variables. In this respect the inclusion of residual 24 

factor R offers both a challenge and an opportunity to any researcher or geotechnical practitioner. 25 
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As noted earlier, one group of researchers has shown how a probabilistic approach may be used for 1 

back-analysis of a significant landslide in such a way that the probability distribution of R can be 2 

assessed.  3 

  As stated above, for some cases, the mean and standard deviation of R would have to be as-4 

sessed on the basis of experience or judgment in the form of some simple rules or procedures. Such 5 

procedures have been proposed for assessing shear strength parameters for reliability analysis (e.g., 6 

Duncan, 2000). Further research may allow similar procedures to be developed for selecting the 7 

PDF of R or, at least, the COV’s of R in different situations.  8 

  Another challenge that often arises in slope reliability is the question of spatial variability of 9 

shear strength parameters (Jiang et al., 2014; Jiang and Huang, 2016; Metya and Bhattacharya, 10 

2016a, b; Metya, 2017). Consideration of spatial variability of peak and residual shear strength pa-11 

rameters, while also including the residual factor, would be a major extension which clearly is out-12 

side the scope of the paper. That extension is, however, desirable so that clear guidelines can be de-13 

veloped for different types of projects. 14 

10.2 Additional Comments on probability distribution for R 15 

Good reasons have already been advanced for choosing a beta distribution system for the residual 16 

factor R. It has been shown that choosing a normal distribution is inconsistent with the boundary 17 

values of 0 and 1, and that restriction to symmetrical distribution implies a mean of 0.5 while the 18 

mean R actually can vary from 0 to 1. Then the question arises about how to arrive at the specific 19 

beta distribution. That is not as difficult as it may seem at first consideration. The Kettleman Hills 20 

study (Gilbert et al., 1998) already points the way in which a consistent approach may be used to 21 

derive the probability distribution of R based on observational data. More generally, deterministic 22 

back analysis already allows estimation of average shear strength at failure and hence the mean re-23 

sidual factor. The choice may then be made, based on engineering judgment and any other evi-24 

dence, about the COV of R for a particular study or project. With a set of mean and COV of R, the 25 



37 

particular beta distribution can be found from the basic equations already discussed in early sec-1 

tions of this paper. Space does not permit a discussion of the other approaches that may be used for 2 

choosing a specific probability distribution of R; in particular, one can extend the Monte-Carlo 3 

simulation technique for adopting or fine tuning the probability distribution of R. 4 

10.3 Further research including consideration of progressive failure 5 

Several areas of research and extension can be pursued for reliability studies for slopes and land-6 

slides which include the residual factor as a random variable. The following would seem to be the 7 

most important areas: 8 

(a) The proposed approach can be used to develop methods and procedures for reliability of slopes 9 

with slip surfaces of curved or arbitrary shape. In fact initial work on 2-D reliability analysis in-10 

cluding residual factor R as a random variable has been carried out successfully by the authors 11 

(Metya et al., 2016a, b; Metya, 2017). The limit equilibrium framework preceding the reliability 12 

procedure has been developed on the basis of Bishop simplified method as well as the Spencer 13 

method. The search or a critical slip surfaces is part of the reliability solution. The procedures need 14 

further development and more attention must be devoted to slopes with slip surfaces of general 15 

shape. Moreover, as mentioned in the previous paragraphs, consideration of spatial variability for 16 

shear strength parameters will require an intensive research effort. 17 

(b) Strategies and methods must be developed for research investigation of the residual factor as a 18 

variable in slopes and landslides. Such research would include the discovery of data from past in-19 

vestigations which could be assembled and analyzed to obtain evidence about the probability dis-20 

tribution of R in real cases. 21 

(c) Numerical models and computer simulation may be developed in order to understand the proba-22 

bility distribution of the residual factor for specific slopes under given conditions in order to inves-23 

tigate correlations between variables. Insight may also be gained for any correlation between ran-24 

dom variables. 25 
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(d) Most importantly, selected case studies must be analysed in detail in order to validate the meth-1 

ods and procedures. For example a large number of case studies have been investigated by Mesri 2 

and Shahien (2003) from a deterministic perspective. Some of these may be particularly appropriate 3 

for study from a probabilistic perspective and also including the residual factor as a random varia-4 

ble. Moreover, fresh insights may be gained by careful reconsideration, within a probabilistic 5 

framework, of classical case studies such as those considered by Skempton (1964, 1966) and his 6 

co-researchers in later years.  7 

(e) The inclusion of residual factor as a random variable is a recognition of progressive failure pro-8 

cesses having reached a certain stage which may or may not be close to the critical. Therefore, it is 9 

pertinent to consider the probability for continuation of the progressive failure process. It might al-10 

so be feasible to formulate procedures to study the probability of successive failures where R is one 11 

of the random variables. Conditional probabilities of failure that are required in such extensions 12 

may be estimated based on procedures such as those proposed by Chowdhury et al. (1987) and 13 

Chowdhury and Zhang (1993). The procedures would have to be updated to include R as a random 14 

variable.  15 

 16 

11. CONCLUSIONS  17 

The paper concerns reliability analysis of a natural slope in a homogeneous strain-softening c′-φ′ 18 

soil modeled as an ‘infinite slope’ subjected to seepage parallel to the ground surface. A systematic 19 

approach for the reliability analysis of a natural slope in a homogeneous strain-softening soil by in-20 

cluding the average residual factor R as one of the random variables has been outlined. Reliability 21 

analyses have been carried out based on the First Order Reliability Method and validated against 22 

direct Monte-Carlo simulation. To include the residual factor R as a random variable altogether 23 

seven forms of beta distributions, both symmetrical and skewed, have been tried. For each trial 24 

probability distribution of R, two sets of reliability analyses have been carried out, one set consider-25 
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ing R as deterministic and the other set considering R as random. The results of these analyses have 1 

brought out clearly that including R as one of the random variables has significant influence on re-2 

liability index, and, therefore, on probability of failure. The influence of R as a random variable is, 3 

however, highly dependent on the assumption made regarding its probability distribution. The 4 

range of assumptions made in this investigation results in the variation of the probability of failure 5 

by several order of magnitude. For the particular illustrative examples studied in this paper, it is re-6 

vealed that the residual factor with left-skewed triangular distribution [R-shape (2)] with mean of 7 

0.667 and standard deviation of 0.236 (COV of 0.354) has the most significant influence on the re-8 

liability index and, therefore, on the probability of failure of a natural slope. For the particular sit-9 

uation in which the COV’s of the other (five) random variables are at the base values in their ranges 10 

and a mean pore pressure ratio of 0.2, the probability of failure is found to vary from nearly 10
-5

 to 11 

nearly 10
-1

 as the assumption regarding the probability distribution of R is varied [R-shape (1) to R-12 

shape (7)].  13 

  Moreover, sensitivity studies based on the FORM indicate that R can be the dominating ran-14 

dom variable relative to the other five random variables. For most of the distribution assumptions R 15 

was the single most significant and for others the joint most significant among the six random vari-16 

ables, except for a situation in which the other random variables considered in the analysis have, 17 

simultaneously, high to very high level of uncertainty (COV’s).  18 

 19 
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APPENDIX-A 10 

Overall or Average Residual Factor for a Slip Surface of Arbitrary Shape – General Case 11 

 12 

In general, shear strength, being proportional to the normal effective stress, would vary from point 13 

to point along a potential slip surface, and hence, the local residual factor, would also vary. There-14 

fore, it is very useful to consider an expression for average residual factor, R, which represents the 15 

whole of a potential slip surface, as follows:  16 
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in which  sp =  Average peak strength  18 

     sr =  Average residual strength, and 19 

     sav =  Average current shear strength 20 

  Let us consider an arbitrary slip surface of total length L being subdivided into n infinitesimal-21 

ly small segments of lengths ∆li (i = 1, 2, …, n) such that the corresponding values of residual fac-22 

tor Ri (i = 1, 2, …, n) do not vary within a segment of length ∆li. 23 

  For a slope in perfectly brittle soils, the most general case would be when strain-softening to 24 

residuals have taken place at m nos. of segments (m<n) whose total length is Lr, while the remain-25 

ing (n – m) segments of total length (L – Lr) are still at their peak shear strengths. This means, at 26 
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the current state,  si  =  sri  for  i  = 1 to m, while, si  =  spi  for  i = (m+1) to n. In such a situation, the 1 

three average strengths in Eq. (A.1), namely, sr, sp, and sav are obtained as follows: 2 
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Substituting the above in Eq. (A.1), 6 
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which agrees with Skempton’s definition. 8 
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APPENDIX-B 10 

Factor of Safety for a curved slip surface – Modified Bishop Simplified Method 11 

 12 

The expression for the factor of safety, F, associated with a curved slip surface of circular shape for 13 

a simple slope, based on the Bishop Simplified Method, has been modified for a strain-softening 14 

soil, by including the residual factor R. The modified expression is as follows:  15 
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where, b is the slice width, W is the slice weight, ru is the non-dimensional pore water pressure 17 

ratio at slice base, and α is the inclination of slice base. Further,  18 
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prrf cRcRc ′−+′=′ )1(                            (B.2) 1 

prrf RR φφφ ′−+′=′ tan)1(tantan                          (B.3) 2 

where, R is the overall or average residual factor for the entire length of the curved slip surface 3 

(assumed to be an arc of a circle in this case).  4 

The factor mαrf is given by 5 
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  The commonly used expression for factor of safety based on the Bishop Simplified Method 7 

(no strain-softening) is given by  8 

{ }[ ]
∑

∑ ′×−+′
=

α

φ α

sin

/tan)1(

W

mrWbc
F

u
                       (B.5a) 9 

where, α
φα

α cos
tantan

1m 






 ′
+=

F
                       .(B.5b) 10 

It may be noted that Eq. (B.1) is analogous to Eq. (B.5a) except that c′ is replaced by rfc′  given by 11 

Eq. (B.2), tan φ′ is replaced by tan rfφ′ given by Eq. (B.3), and mα is replaced by mαrf given by Eq. 12 

(B.4). 13 
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