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Abstract 

The Galerkin method enriched with residual-free bubbles is considered for approxi­
mating the solution of the Helmholtz equation. Two-dimensional tests demonstrate the 
improvement over the standard Galerkin method and the Galerkin-least-squares method 
using piecewise bilinear interpolations. 
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1. INTRODUCTION 

The discretization of the Helmholtz equation presents distinct numerical problems. 

This equation models wave propagation and its exact solution is, to a certain extent, 

oscillatory. Oscillations have warned numerical analysts of limitations in discretization 

procedures in other contexts, such as in advective dominated flows and bending of 

thin structures. Here, oscillations are physical and they should be captured accurately 

avoiding spurious noise from standard numerical methods. When applying the standard 

Galerkin method using piecewise linear polynomials, the numerical solutions tend to be 

inaccurate from moderate to large wave numbers within reasonable mesh sizes, pointing 

out the inadequacy of the use of this method for this application. 

Recently, there has been renewed interest in exploring alternative discretization pro­

cedures for the Helmholtz equation. We would like to mention, in particular, the work of 

Harari and Hughes [8] based on the Galerkin-least-squares method (GLS) introduced in 

the late 80's (see [4,10,11] and references therein). The method seems to be effective in 

multi-dimensions for this application even if designed for one-dimensional models. How­

ever it is no panacea, and for certain wave numbers, geometry, and a reasonable mesh, 

it may still yield inaccurate solutions. There are certainly other numerical methods 

available for this equation that may be of interest (e.g. , see [1]). 

In this paper we apply the residual-free bubbles approach (see [3, 5-7]) to the 

Helmholtz equation. The residual-free bubbles method is based on the Galerkin for­

mulation employing subspaces spanned by piecewise linear polynomials, and bubble 

functions that solve exactly a differential equation with loads given by the residuals 

using piecewise linears. This systematic procedure has shed light in explaining the ef­

fectiveness of several numerical "tricks" such as streamline upwinding, mass lumping 
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and selective reduced integration [5-7] . In the Helmholtz equation framework, in the 

absence of a clear "optimal" method, it offers a potentially high accurate methodol­

ogy. A related method was proposed independently by Hughes [9] ,  shown equivalent to 

residual-free bubbles in [2] , and applied to this equation in [12] . 

In the next section we describe the residual-free bubbles method and its application 

to the Helmholtz equation. In Section 3 we perform numerical experiments and contrast 

the present method with the Galerkin method and the Galerkin-least-squares method 

using piecewise linears. We draw conclusions in Section 4. 

2. RESIDUAL-FREE BUBBLES FOR THE HELMHOLTZ EQUATION 

Let us consider an abstract boundary-value problem given by 

Lu = f inn, 

u =O onr =an, 
(1) 

where L is a differential operator, u is the unknown function and f is a given source 

function. To define residual free bubbles we consider the standard Galerkin method for 

(1 ), i.e. ,  we wish to find Uh E vh such that 

(2) 

Here uh and vh are members of the space of functions Vh which is spanned by piecewise 

polynomials plus bubble functions, i.e. , 

(3) 

where the bubble functions satisfy the differential equations strongly in each element 

K, i.e., 

inJ{, (4) 
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subject to zero Dirichlet boundary condition on the element boundary, i.e., 

Ub = 0 · on 81{ . 

The problem defined by equations ( 4)-(5) is addressed by solving instead 

Lr.pi,K = -L'l/Ji,K in/{, 

'Pi,K = 0 onB K, 

where the 'l/Ji,K's are the local basis functions for u1 and 

Lr.pt,K = f in K, 

'PJ,K = 0 on8 K. 

3 

(5) 

(6) 

(7) 

(8) 

(9) 

Thus, if u11K = I:�===i Ci,K'l/Ji,K, where nen is the number of nodes per element, then 

nen 

ublK = L Ci,K'Pi,K + r.p J,K, 
i=l 

with the same coefficients Ci K's. ' 

(10) 

We now wish to address how the bubble function part affects the piecewise linear 

part of the solution. To this end we use static condensation: first we set Vh = Vb,K on 

K (zero elsewhere) in (2) to obtain 

(11) 

But this equation is satisfied automatically due to our choice of bubbles. Indeed this 

equation is the variational equation for 

in K, (12) 
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using v = Vb,K on K (zero elsewhere) as test functions. 

The second part of static condensation consists in setting Vh = VI in (2), which 

gives 

(13) 

(14) 

Hence, using bubbles is equivalent to modifying the variational formulation in the 

left hand side by the addition of a( ub, VI). The residual free bubble method consists in 

solving (6)-(9) first, then adopting (14). 

We now turn to the application of this methodology to the solution of the Helmholtz 

equation. For this equation we have 

(15) 

where k is the wave number, and I is the identity operator. Herein we consider boundary 

conditions of the type: 

u = g on ri ' 

where an = ri u r2• Substituting into (14), and integrating by parts, leads to 

(16) 

(17) 

-(\lu1, \7vi) + k2(ui,vi) + L k2(ub,vi)K = (f,vi)- (h,vi)r2• (18) 
K 

From eq. (10), it follows that the above equation can be rewritten in terms of the basis 

functions as 

nen 

L L c.f { -(\77fj, \7vi)K + k2( 1fi, VI )K + k2( <pj, vi)K = (!,VI)- (h, vi)r2• (19) 
K j=I 
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Finally, setting v1 = 1/Ji gives 

LLcf{-(\71/Jj, \71/Ji)K + k2('¢j,'l/Ji)K + k2('Pj,'l/Ji)K = (f,'l/Ji)- (h,'¢i)r2• (20) 
K j=l 

To implement this formulation it is useful to consider the bubble shape functions rewrit-

ten as 

(21) 

where, from (6)-(7), Aj solves 

inJ{, (22) 

on81{, (23) 

and from (20) the matrix formulation simplifies to solving 

L L cf { -(V'¢j, \71/Ji)K + k2(Aj, 1/Ji)K = (!, 1/Ji)- (h, '¢i)r2• (24) 
K j=l 

For concreteness, we solve (22)-(23) on a square of side a, placed in the first quadrant 

of the Cartesian coordinates x-y. Thus, for the shape function 1/Ji with value one at 

x = y = a we solve 

inJ{, 

on x = 0 or y = 0 , 

Aj = yja onx =a, 

ony =a. 

By separation-of-variables we obtain the following exact solution 

2 { m1rx 
J

m27r2 ).. · = "' ( -l)m+l sin(--) sinh( -- - k2 y) 1 L.....t . f 2 2 a a2 m=l m1r sinh( y ma: - k2 a) 

m1ry 
J

m21rz } 
+ sin( -

a
- ) sinh( ----;;:x- - k2 x) . 

(25) 

(26) 

(27) 

(28) 

(29) 
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The formulas for the shape function 'ljJ j with value one at the other nodes are similar. 

Therefore, we are now able to substitute back into (24) and solve the system of equations 

using this residual-free-bubble approach. 

Remark: 

Clearly the derivation of the residual-free-bubbles here can be extended to, and is limited 

to, rectangular elements. For arbitrarily shaped elements, suitable approximations of 

the residual-free bubbles are in the works. 

3. NUMERICAL EXPERIMENTS 

In this section we evaluate the performance of the Residual Free Bubble Method, 

that we refer to as RF-bubbles. The performance of this method is compared with the 

GLS method as well as with the Galerkin method using piecewise bilinear functions. 

The GLS method with the definitions of the stabilization parameters presented in [8] is 

used in our examples. 

3. 1 2D Green's function problem 

This problem is one of the test problems presented in [12]. As this case considers a 

singular load inside an element, it will be useful to assess the improved performance of 

our method when information inside the elements is relevant. 

This test case consists of an unit square domain n = (0, 1) x (0, 1 ), with homogeneous 

Dirichlet boundary conditions. The forcing function f = 8( xo, Yo) is a Dirac delta 

function located at (x0, y0) = (0. 1875, 0. 1875), which coincides with an element centroid. 

The non-dimensional wave number is kL = 8, and the domain is partitioned into a 

regular mesh of 8 x 8 square elements. 
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After the calculation of the global problem, the bubble is computed, and the solution 

is the sum of the bilinear part and the bubble term. In particular, for this singular load 

case, the bubble is able to capture accurately the spike resulting from this load. 

First we compare the solution at Yp = 0.190625, which corresponds to a "cut" just a 

little above the point where the singular load is applied. Then we examine the behavior 

of the solution inside the elements. In Figure 1 we compare the RF -bubbles method with 

GLS and Galerkin solutions with bilinears for the same mesh. Note how the addition of 

the bubble inside the element in the RF-bubbles method improves the solution by cap-

turing the spike caused by the singular load. We use 10 points in each element interior 

for this display of the bubble solution. 200 terms are used in the series expansion of the 

residual-free bubbles (Fewer terms could be used, but we are trying to assess accuracy 

1 
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Figure 1: Singular load problem. Comparison at y = Yp 
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here). For this problem we also need to solve for an additional bubble due to the load 

(see equations (8)-(9)). The exact solution for this problem can be found in [12]. 

The bubble is able to capture the singularity well, and the improvement of the so­

lution is apparent as displayed in Figure 2. The GLS solution with bilinears is unable 

to approximate well the singular response. A way from this region of the singularity all 

methods seem to perform well, but close to the spike the GLS method with bilin-

Figure 2: Singular load problem. Elevation plots for: a) RF-bubble solution without 

the bubbles; b) GLS; c) RF-bubble solution with the bubbles; d) The exact solution. 
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ears needs significant mesh refinement to capture the behavior of the exact solution. 

3.2 Scattering in an L-shaped domain 

We consider an L-shaped domain with homogeneous Dirichlet boundary conditions, 

except for a load on half of one of the faces of the Las shown in Figure 3. 

For this problem, we perform a convergence study by comparing the performance 

of the Galerkin, GLS and RF-bubbles methods. The non-dimensional wave number is 

kL = 8, where L is the width of our L-shaped domain. All the meshes presented are 

u =0 

2.0 

1.0 u =0 

u =0 
2.0 

1.0 1 
u =0 

1.0 u =0 
1.0 

0.5 

/ 
u =0 

�: = 1.0 � 
u =0 

Figure 3: Scattering test case: problem statement 
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uniform and the number of  elements displayed in the figure captions correspond to the 

number of elements in each of the three squares that make up the L-shaped domain. 

In Figures 4 to 7 we plot the convergence study for this problem. The meshes in 

these figures are 4 x 4, 8 x 8, 16 x 16 and 32 x 32, respectively. 

The results for the 4 x 4 mesh are poor for all methods, as shown in Figure 4, but 

the RF-bubbles method, with the addition of the bubble, presents a better performance, 

as it is able to represent well the phase characteristics of the converged solution (shown 

in Figure 7). The results of the 8 x 8 mesh are shown in Figure 5. We observe a poor 

performance of the Galer kin method, and the G LS method still presents a high phase 

error. The RF-bubbles starts to converge and represents phase quite well. For the next 

mesh, 16 x 16, in Figure 6 we can still see the bad performance of the Galerkin method, 

and we note that this solution looks like the RF-bubbles solution of the 4 x 4 mesh, as 

the Galerkin method only now starts to represent well the phase characteristics of the 

converged solution. For this mesh both the GLS and RF-bubbles perform well. For the 

32 x 32 mesh (Figure 7), all methods converge and we have a good reference to evaluate 

the performance of the methods for intermediate meshes. 
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(a) (b) 

(c) (d) 

Figure 4. Scattering in an L-shaped domain with 3 x ( 4 x 4) squares: a) The Galer kin 

method with piecewise bilinears; b) The GLS method with piecewise bilinears; c) RF­

Bubbles method without adding the bubbles; d) RF-Bubbles method adding the bub­

bles. 
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(a) (b) 

,'·· 
(c) (d) 

Figure 5. Scattering in an L-shaped domain with 3 x (8 x 8) squares: a) The Galerkin 

method with
.
piecewise bilinears; b) The GLS method with piecewise bilinears; c) RF­

Bubbles method without adding the bubbles; d) RF-Bubbles method adding the bub­

bles. 



Residual-free bubbles for the Helmholtz equation, Franca et al. Preprint, Sept. 1996 

(a) 

(c) 
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(b) 

(d) 

13 

Figure 6. Scattering in an L-shaped domain with 3 x (16 x 16) squares: a) The Galerkin 

method with piecewise bilinears; b) The GLS method with piecewise bilinears; c) RF­

Bubbles method without adding the bubbles; d) RF-Bubbles method adding the bub­

bles. 
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(a) (b) 

(c) (d) 

Figure 7. Scattering in an L-shaped domain with 3 x (32 x 32) squares: a) The Galerkin 

method with piecewise bilinears; b) The GLS method with piecewise bilinears; c) RF­

Bubbles method without adding the bubbles; d) RF-Bubbles method adding the bub­

bles. 



Residual-free bubbles for the Helmholtz equation, Franca et al. Preprint, Sept. 1996 15 

REFERENCES 

[1] I. Babuska, F. Ihlenburg, E.T. Paik and S.A. Sauter, "A generalized finite element 

method for solving the Helmholtz equation in two dimensions with minimal pollu­

tion," Computer Methods in Applied Mechanics and Engineering, Vol.l28 (1995) 

325-359. 

[2] F. Brezzi, L.P. Franca, T.J.R. Hughes and A. Russo, "b = J g," Computer Methods 

in Applied Mechanics and Engineering, to appear. 

[3] F. Brezzi and A. Russo, "Choosing bubbles for advection-diffusion problems," Math. 

Models Meths. Appl. Sci. Vol.4 (1994) 571-587. 

[4] L.P. Franca and T.J.R. Hughes, "Two classes of mixed finite element methods", 

Comput. Methods Appl. Mech. Engrg. Vol.69 (1988) 89-129. 

[5] L.P. Franca and A. Russo, "Deriving upwinding, mass lumping and selective reduced 

integration by residual-free bubbles," Applied Mathematics Letters, in press. 

[6] L.P. Franca and A. Russo, "Mass lumping emanating from residual-free bubbles," 

Computer Methods in Applied Mechanics and Engineering, to appear. 

[7] L.P. Franca and A. Russo, "Unlocking with residual-free bubbles," Computer Meth­

ods in Applied Mechanics and Engineering, to appear. 

[8] I. Harari and T.J.R. Hughes, "Finite element methods for the Helmholtz equation 

in an exterior domain: model problems," Computer Methods in Applied Mechanics 

and Engineering, Vol.87 (1991) 59-96. 

[9] T .J .R. Hughes, "Multiscale phenomena: Green's functions, the Dirichlet-to­

Neumann formulation, subgrid scale models, bubbles and the origin of stabilized 



Residual-free bubbles for the Helmholtz equation, Franca et al. Preprint, Sept. 1996 16 

methods," Computer Methods in Applied Mechanics and Engineering, Vol.127 

(1995) 387-401. 

[10] T .J .R. Hughes and L.P. Franca, "A new finite element formulation for computa­

tional fluid dynamics: VII. The Stokes problem with various well-posed boundary 

conditions: symmetric formulations that converge for all velocity /pressure spaces", 

Comput. Methods Appl. Mech. Engrg. Vol.65 (1987) 85-96. 

[11] T.J.R. Hughes, L.P. Franca and G.M. Hulbert, "A new finite element formula­

tion for co1nputational fluid dyna1nics: VIII. The Galerkin-lea�t-�quare� Inethod 

for advective-diffusive equations", Comput. Methods Appl. Mech. Engrg. Vol. 73 

(1989) 173-189. 

[12] A.A. Oberai and P.M. Pinsky, "A finite element method for the Helmholtz equa­

tion based on a subgrid scale model," in pp 79-85 of the Numerical Methods in 

Enginneering '96 - Proceedings of the Second ECCOMAS Conference on Numerical 

Methods in Engineering, 9-13 September 96, Paris, France, John Wiley & Sons, 

Chichester, 1996. 



CENTER FOR COMPUTATIONAL MATHEMATICS REPORTS 

University of Colorado at Denver 
P.O. Box 173364, Campus Box 170 
Denver, CO 80217-3364 

Fax: ( 303) 556-8550 
Phone: (303) 556-8442 

http: / /www-math.cudenver .edu/ 

72. C. Liu, Z. Liu and G. Xiong, "Direct Numerical Simulation for the Receptivity and 
the Whole Process of Transition Around 2-D Airfoils." 

73. R. Tezaur, P. Vanek and M. Brezina, "Two-Level Method for Solids on Unstruc­
tured Meshes." 

74. T.F. Russell, D.W. Dean, T.H. Illangasekare, R. Mapa and J. Garcia, "Upscal­
ing of Dispersivity in Modeling of Solute Transport: Mathematical Theory and 
Laboratory Experiments." 

75. T.F. Russell, R.W. Healy, R.G. Striegl, G.L. Hutchinson and G.P. Livingston, "An­
alytical Solution for the Problem of 1-Dimensional Diffusion into a Static Cham­
ber." 

76. T.F. Russell and R.V . Trujillo, "The Finite Volume Element Method For Elliptic 
and Parabolic Equations." 

77. R.W. Healy and T.F. Russell, "Solution of the Advection-Dispersion Equation 
in Two Dimensions by a Finite-Volume Eulerian-Lagrangian Localized Adjoint 
Method." 

78. Z. Cai, R.R. Parashkevov, T.F. Russell and X. Ye, "Domain Decomposition for a 
Mixed Finite Element Method in Three Dimensions." 

79. S.E. Payne, T. Pentilla and G.F. Royle, "Building a Cyclic q-Clan." 

80. K.D. Jamison and W.A. Lodwick, "Minimizing Unconstrained Fuzzy Functions." 

81. F. Brezzi, L.P. Franca, T.J.R. Hughes and A. Russo, "b = J g." 

82. L.P. Franca, C. Farhat, M. Lesoinne anq A. Russo, "Unusual Stabilized Finite 
Element Methods and Residual-Free-Bubbles." 

83. F. Brezzi, L.P. Franca, T .J .R. Hughes and A. Russo, "Stabilization Techniques and 
Subgrid Scales Capturing." 

84. J. Mandel, R. Tezaur and C. Farhat, "A Scalable Substructuring Method by La­
grange Multipliers for Plate Bending Problems." 

85. K. Kafadar, P.C. Prorok and P.J. Smith, "An Estimate of the Variance of Es­
timators for Lead Time and Screening Benefit in Randomized Cancer Screening 
Trials." 

86. H.J. Greenberg, "Rim Sensitivity Analysis from an Interior Solution." 

87. K. Kafadar, "Two-Dimensional Smoothing: Procedures and Applications to Engi­
neering Data." 


