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Abstract

A simple block-based compressed-sensing reconstruction for still images is adapted to video.
Incorporating reconstruction from a residual arising from motion estimation and compen-
sation, the proposed technique alternatively reconstructs frames of the video sequence and
their corresponding motion fields in an iterative fashion. Experimental results reveal that
the proposed technique achieves significantly higher quality than a straightforward recon-
struction that applies a still-image reconstruction independently frame by frame; a 3D
reconstruction that exploits temporal correlation between frames merely in the form of a
motion-agnostic 3D transform; and a similar, yet non-iterative, motion-compensated resid-
ual reconstruction.

Introduction

Recent years have seen significant interest in the paradigm of compressed sensing
(CS) (e.g., [1]) which permits, under certain conditions, signals to be sampled at
sub-Nyquist rates via linear projection onto a random basis while still enabling exact
reconstruction of the original signal. As applied to 2D images, however, CS faces sev-
eral challenges including a computationally expensive reconstruction process and huge
memory required to store the random sampling operator. For video, these problems
can be even further exacerbated due to the increased dimensionality of the data. Re-
cently, several fast algorithms have been developed for CS reconstruction of generic 1D
signals, while the sampling-operator memory challenge was addressed for still images
in [2] by using block-based sampling. Additionally in [2], projection-driven Landwe-
ber iterations were proposed to accomplish fast reconstruction while simultaneously
imposing smoothing with the goal of improving the reconstructed-image quality by
eliminating blocking artifacts. Subsequent investigations in [3] coupled recent di-
rectional transforms with statistically estimated thresholding within the framework
introduced in [2]. The term block-based CS (BCS) sampling with smooth projected
Landweber (SPL) reconstruction was used to describe the approach, and experimen-
tal results in [3] revealed that BCS-SPL reconstruction usually offers at least the same
quality of recovery as does other state-of-the-art approaches with greatly increased
execution speed.

In this paper, we adapt the BCS-SPL reconstruction framework for use with video.
CS sampling of video would ideally be global in the sense that CS measurements
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would span the entire spatial and temporal extent of a video sequence; however, such
global CS sampling of video is largely considered impractical to implement in a real
device [4]. As a consequence, we focus on the case in which each video frame is
acquired independently with still-image-based CS sampling, for instance, with suc-
cessive applications of a single-pixel camera as in [5]. Upon signal recovery, however,
the temporal redundancy between successive frames is exploited to improve the recon-
struction quality over that of an independent frame-by-frame recovery. In this effort,
we use the general philosophy of motion-estimation (ME) and motion-compensation
(MC) that has been widely deployed for several decades in video-compression algo-
rithms and standards. The centerpiece of our approach is the CS reconstruction from
a residual between the current frame and its motion-compensated prediction as cal-
culated in the domain of the random CS projections, and we refer to the resulting
algorithm as motion-compensated BCS-SPL (MC-BCS-SPL). Experimental results
exhibit a substantial performance improvement for MC-BCS-SPL as compared to
the straightforward reconstruction in the form of applying BCS-SPL independently
frame-by-frame without capitalizing on frame-to-frame motion. Significant gains are
also observed when MC-BCS-SPL is compared to a non-iterative ME/MC-based CS
reconstruction of video [6].

Background
CS for a Single Still Image

Suppose that we want to recover real-valued signal x with length N from M samples,
M < Nj; ie., we want to recover X from y = ®x, where y has length M, and ® is
an M x N measurement matrix. Because the number of unknowns is much larger
than observations, recovering every x € R from its corresponding y is impossible
in general; however, if x is sufficiently sparse, exact recovery is possible—this is the
fundamental tenet of CS theory; see, e.g., [1], for a more complete overview. The
usual choice for ® is a random matrix. We define the subsampling rate, or subrate,
to be S = M/N.

Quite often, the requisite sparsity will exist with respect to some transform .
In this case, the key to CS recovery is the production of a sparse set of significant
transform coefficients, x = ¥x, and the ideal recovery procedure searches for the x
with the smallest ¢y norm consistent with the observed y. However, this ¢y optimiza-
tion being NP-complete, several alternative solution procedures have been proposed.
Often, a convex relaxation is applied to the ¢y problem resulting in an ¢; optimization
which can be solved via basis pursuits. Although such ¢;-based recovery can be im-
plemented effectively with linear programming, its computational complexity is often
too high for use with higher-dimensional signals such as images and video.

Several reduced-complexity approaches for CS reconstruction have been proposed
recently. For example, iterative-thresholding reconstructions start from some initial
approximation and form the approximation at each iteration using a specific instance
of a projected Landweber (PL) algorithm [7]. PL-based CS reconstruction typically
provides reduced computational complexity as compared to pursuits-based recon-
struction. Additionally, and perhaps more importantly, the PL formulation offers the
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possibility of easily incorporating additional optimization criteria.

The straightforward application of CS to 2D imagery is simply to treat an N x
N image as an N2-dimensional vector and apply existing 1D CS strategies directly
to the vectorized problem. However, this straightforward framework faces several
challenges including a computationally expensive reconstruction process and huge
memory required to store the random sampling operator. One potential solution to
these issues is to partition the image into smaller blocks. In [2], a such paradigm was
proposed wherein the sampling of an image is driven by random matrices applied on
a block-by-block basis, while the reconstruction is a variant of PL reconstruction that
incorporates a smoothing operation intended to reducing blocking artifacts. In [3],
the overall technique was called BCS-SPL.

In BCS-SPL, an image is divided into B x B blocks and sampled using an
appropriately-sized measurement matrix. That is, suppose that x; is a vector rep-
resenting, in raster-scan fashion, block j of input image x. The corresponding y; is
then y; = ®px;, where ®p is an Mp X B? orthonormal measurement matrix such
that the subrate is S = Mp/B% In BCS-SPL, Wiener filtering is incorporated into
the basic PL framework in order to remove blocking artifacts. In essence, this op-
eration imposes smoothness in addition to the sparsity inherent to PL. The specific
implementation we use here was initially described in [3] and is presented in Fig. 1(a).

The BCS-SPL framework of [2, 3] is quite flexible thanks to its rather simple imple-
mentation. It is straightforward to incorporate sophisticated transforms and thresh-
olding, as well as additional constraints into the process. For example, highly direc-
tional transforms with statistically estimated thresholding was investigated for BCS-
SPL in [3]. Results there demonstrate that BCS-SPL with contourlets or complex-
valued wavelets usually matches or exceeds the quality of total-variation reconstruc-
tion (e.g., [8]) whose gradient-based operation also promotes smoothing but runs
several orders of magnitude slower than SPL algorithm. As a consequence, we adopt
the BCS-SPL framework as the core image reconstruction used in our subsequent
investigations of CS for video.

Extension of Still-Image CS to Video

The straightforward application of CS to video would involve, like for images, the
vectorization of a 3D group of frames into a single 1D vector. However, the computa-
tion and memory issues associated with this approach for 2D images are exacerbated
with the increased dimensionality coming from video. Additionally, a global sampling
simultaneously across the spatial and temporal extent of a group of frames is likely to
be impractical [4]. Consequently, we focus on the situation in which video frames are
sampled independently in a 2D fashion, e.g., by applying a suitable image-acquisition
sampler in a frame-by-frame fashion as in [5]. Again, to cut computation and memory,
we focus on a block-based image sampling applied frame by frame. We now consider
several strategies for the CS reconstruction of video frames sampled in this manner;
these include both 2D and 3D versions of BCS-SPL (2D-BCS-SPL and 3D-BCS-SPL,
respectively).

Given a frame-by-frame acquisition, the most straightforward reconstruction would
be to reconstruct the individual frames independently using BCS-SPL. However, such
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a 2D-BCS-SPL reconstruction ignores the fact that consecutive video frames are usu-
ally highly correlated. Nonetheless, 2D-BCS-SPL serves as a baseline against which
to compare other techniques that do attempt to exploit such temporal correlation.

Another straightforward method of CS reconstruction for video that does make
an effort to exploit temporal correlation is to treat the video frames as a 3D “vol-
ume” and reconstruct the 3D video volume by applying a suitable CS reconstruction
algorithm using a 3D transform; this was done, for example, in [5]. Although such
3D reconstruction could be applied across a video volume as a whole (as in [5]),
for computation and memory issues (which are likely to be substantial given the in-
creased dimensionality), we consider a 3D version of BCS-SPL essentially extending
BCS-SPL reconstruction for a single still image into three dimensions, with the video
volume being partitioned into smaller, 3D cubes. Specifically, let us consider a group
of P consecutive frames from a video sequence which we call a group of pictures
(GOP). Again, for video sampling, the individual video frames are acquired using a
2D block-based sampling applied frame by frame. For reconstruction, the GOP is
partitioned into B x B x P cubes; i.e., 3D blocks which have a spatial size of B x B
and a temporal size of P. The BCS-SPL reconstruction then uses a 3D block-based
transform operator; e.g., a 3D discrete cosine transform (DCT) of size B x B x P.
We refer to the resulting technique as 3D-BCS-SPL reconstruction.

It was argued in [5] that, in effect, CS reconstruction using a 3D transform—such
as the 3D-BCS-SPL discussed here—attempts to exploit the frame-to-frame corre-
lation that exists within a video GOP through the joint sparsity that occurs in the
3D transform. This is in contrast to the frame-by-frame 2D-BCS-SPL reconstruction
which makes no attempt at all to exploit frame-to-frame correlation. However, nei-
ther of these two approaches takes full advantage of the temporal correlation that
exists in the video sequence due to the frame-to-frame motion of objects. For this,
some form of ME/MC must to be incorporated into the reconstruction; we propose
such a ME/MC-based reconstruction next.

MC-BCS-SPL

In video compression, knowledge of object motion is used to make interframe pre-
dictions which are, in turn, used to drive an efficient coding of prediction residuals.
As a result, ME/MC is a widely used and crucial component to traditional video-
compression systems. Here, we incorporate the ME/MC framework into the recon-
struction process of BCS-SPL. This implies that ME/MC resides at the reconstruc-
tion, or “decoder,” side of a BCS-SPL system for video, rather than at the sensing,
or “encoder,” side as is the case in traditional video compression. The proposed
BCS-SPL for video uses the same simple sampling as was used for 2D images—
block-based random CS measurements are applied frame by frame. The resulting
motion-compensated version of BCS-SPL, MC-BCS-SPL, consists of two main com-
ponents: residual reconstruction, in which BCS-SPL is applied to an MC residual;
and forward /backward MC, in which multiple reconstruction passes are performed in
multiple directions across the GOP. These components are explored below.
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Residual Reconstruction

Suppose we have two consecutive frames, the current frame, x, and the reference
frame, x,f. We assume that the reference frame has been previously reconstructed,
while we have only random measurements, y, of the current frame using block-based
random sampling. As a first step, we could reconstruct an approximation, X, to
current image x by simply applying the BCS-SPL image reconstruction to y. How-
ever, such intraframe reconstruction does not capitalize on our knowledge of reference
frame x,.r. Yet, at this point, we have an approximation to the current frame as well
as the reference frame—we can perform ME on these two frames to estimate a mo-
tion field describing motion of objects between the two frames. Such ME could be
performed in a variety of ways; for simplicity we consider full-search, block-based ME
as is commonly used in video compression. Consequently, the approximation to the
current frame, X, is partitioned into blocks whose motion from the reference frame
is indicated by a field of motion vectors. This permits the production of a motion-
compensated frame, X,,., that forms a prediction of x and thus also the still-unknown
true current frame x. Using this prediction, we can form a “projection-domain”
residual by simply applying the known block-based random sampling operator to the
motion-compensated frame; i.e., for each block j:

Yo, = Y5 — (I)chmcjw (1)

It is clear that y,, is the random projection of the residual, x,,, between our
motion-compensated prediction X, and the original and still-unknown block x;;
ie.,

Yrj =Y, — (I)B)A(mcj = (I)B (Xj — }A(mcj) = (I)Ber. (2)

If the MC process is reasonably accurate, the residual frame x, should be much sparser
than the original image x; CS reconstruction should thereby be much more effective
at recovering the residual x, from y, than it is at recovering x from y. Let X, be such
a BCS-SPL recovery from y,; consequently, we can form a new approximation to x
as

X = Xpe + Xp- (3)

We now have a new approximation to the current frame that is likely to be of
better quality than the initial approximation that we created from a direct BCS-SPL
reconstruction from y. Consequently, we should be able to produce a more accurate
motion-vector field from ME applied to this new x and X,¢f, and further enhancement
can be expected by iteratively repeating the above process. The resulting MC-BCS-
SPL algorithm is summarized in Fig. 1(b).

Forward/Backward MC

In the previous two sections, we considered the reconstruction of two consecutive
frames of a video sequence. We now turn our attention to the more realistic problem
of applying MC-BCS-SPL to multiple frames. Specifically, let us consider a GOP of
P consecutive frames from a video sequence, consisting of one “key frame” (the first
frame) followed by P — 1 “non-key frames.”
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function x = BCS-SPL(y, ®5, ¥)
for each block j

x\" = Ly,
i=0 function % = MC-BCS-SPL(y, &5, ¥, X;e)
do % = BCS-SPL(y, &5, ¥)
%) = Wiener(x(*) 1=0
for each block j while i < MAX_ITERATION : :
$@W — 50 L ST (v, — i Xme = MotionCompensation (X, Xyef
% zxt ‘I,;((Jz) P50 % ) for each block j

Yme; = (I’chmcj'
Yr =Y = Yme
%, = BCS-SPL(y,, ® 5, ¥)

for each block j X =% +%
- 1mc T

X — 50 4 $T(y; — B px?) i=i+1
DUHD — ||x(+1) §<(vi)||2 end while
1=1+1

until [D® — DE-D| < 1072

x = x®

(a) (b)

Figure 1: (a) BCS-SPL reconstruction of a 2D image; Wiener(-) is pixel-wise adaptive
Wiener filtering using a neighborhood of 3 x 3, while Threshold(-) is a thresholding process.
(b) MC-BCS-SPL reconstruction of the current frame from a single reference frame.

In the MC-BCS-SPL setting, we have block-based random measurements of each
of the frames of the GOP; i.e., y, = ®,x, for 0 < p < P — 1, where p is the frame
number. @, is the random block-based sampling operator for frame p; we assume that
this sampling operator has subrate S, = M, /N in that it reduces the N-dimensional
X, image signal to an M,-dimensional measurement signal y,. We will focus our
attention on two cases: 1) all frames are sampled with the same subrate, and 2) the
key frame, xq, is sampled at a relatively high subrate, while all the non-key frames
are at an identical lower subrate.

Direct BCS-SPL reconstruction from y, produces Xq, a reconstruction of the key
frame which is then used as the reference frame for the MC-BCS-SPL reconstruction
of the second frame of the GOP. This MC-BCS-SPL process produces x; from y; and
Xpo; X1 is then in turn used as the reference frame in MC-BCS-SPL reconstruction
of x5 from y,. This process continues through in this manner to reconstruct the
remaining frames of the GOP.

We note, however, that, since each frame is used as a reference for a subsequent
frame, we expect a successively lower reconstruction quality as we progress through
the non-key frames. That is, we expect reconstruction quality to deteriorate with
increasing frame number p, such that the quality of Xp_1, the reconstructed last
frame of the GOP, will be much less than that of X, the first frame of the GOP. We
propose to combat this quality deterioration by performing another iteration of MC-
BCS-SPL reconstruction on the GOP, but this time running in the reverse temporal
direction, from frame P — 1 to frame 0.

Specifically, we assume that there exists another GOP following the current GOP,
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with xp being the first frame of that GOP. Direct BCS-SPL reconstruction from yp
will produce a reconstruction Xp; this reconstruction can be used as the reference
frame for the MC-BCS-SPL reconstruction of yp_; to produce xp_;. We could con-
tinue MC-BCS-SPL reconstruction in this reverse temporal direction until we reached
the start of the current GOP.

Running MC-BCS-SPL reconstruction on the current GOP in both the forward
and backward temporal directions would yield two reconstructions for each non-key
frame of the GOP. Our experimental observations have revealed that MC-BCS-SPL
in the forward temporal direction yields the higher-quality reconstruction for the first
half of the GOP, while MC-BCS-SPL in the backward temporal direction yields the
better quality for the last half of the GOP. Assume that the GOP consists of an
even number of frames. We thus propose using forward MC-BCS-SPL to reconstruct
frames x, for 1 < p < g — 1, the first half of the non-key frames, and backward
MC-BCS-SPL (starting from the key frame of the next GOP) to reconstruct frames
X, for L+1<p<P—1.

Experimental Results

We now examine the performance of MC-BCS-SPL reconstruction on common video
sequences. All of the video sequences are subject to block-based random projection
applied frame by frame; i.e., by partitioning each frame p into B x B blocks and
applying to each block a random sampling operator of size Mp, x B? such that the
subrate for frame p is S, = Mp,/ B?%. Unless otherwise stated, we use a block size
of B = 16 and a GOP size of P = 8 frames. MC-BCS-SPL employs BCS-SPL for
reconstruction of individual MC residual frames; for this BCS-SPL reconstruction,
we use a 2D DCT as the transform operator and hard thresholding, for simplicity.
For the ME/MC process in MC-BCS-SPL, we use full-search ME with quarter-pixel
accuracy and a search window of £15 pixels. MAX_ITERATIONS in Fig. 1(b) is 5.

We compare MC-BCS-SPL to two alternatives, namely 2D-BCS-SPL and 3D-
BCS-SPL. The most straightforward reconstruction is the “intraframe” 2D-BCS-SPL
(we use a block-based B x B 2D DCT as the transform basis). Additionally, we
consider 3D-BCS-SPL with the 3D transform operator being a B x B x P 3D DCT.
Additionally, we note that 3D-BCS-SPL uses a GOP size of P = 4 frames which we
have observed empirically to yield results superior to a GOP size of P = 8.

As a primary measure of reconstruction quality, we calculate PSNR averaged over
all the frames under consideration. For MC-BCS-SPL, various subrates are employed
for the key frames as well as the non-key frames; thus, we have two subrates in use: the
key-frame subrate (Sk), and the non-key-frame subrate (Syx). First, we consider the
case wherein all frames are subsampled at the same subrate, i.e., “equal” subsampling
with Sk = Sxk. Then, we consider the case wherein the key frames have an increased
subrate with respect to the non-key frames, i.e., Sk > Syk. In this latter situation,
PSNR results are averaged over only the non-key frames. A summary of the results
from both cases is presented in Table 1.

Since the key frames constitute only a small number of the total frames in a se-
quence, and they serve somewhat as “anchors” to the forward/backward ME process
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Table 1: Average PSNR in dB for several video sequences

2D 3D MC-BCS-SPL
Snk | BCS-SPL | BCS-SPL | Sk = Snk \ Sk = 0.7
Coastguard
0.1 22.69 22.76 23.06 25.29
0.2 24.70 24.76 25.78 27.94
0.3 26.37 26.45 28.29 30.15
0.4 27.99 27.95 30.88 32.30
0.5 29.60 29.57 33.58 34.42
Foreman
0.1 25.99 26.47 27.58 30.03
0.2 28.83 29.18 31.01 33.14
0.3 31.21 31.36 33.50 35.55
0.4 33.18 33.29 35.76 37.54
0.5 35.07 35.13 38.05 39.44
Hall Monitor
0.1 22.55 22.78 22.79 29.61
0.2 24.78 25.22 25.31 32.22
0.3 26.89 27.26 27.40 33.44
0.4 28.81 29.06 29.35 34.25
0.5 30.73 30.96 31.34 34.85
Mother and Daughter
0.1 30.14 30.37 30.74 36.90
0.2 33.08 33.34 34.01 39.66
0.3 35.57 35.62 36.65 41.20
0.4 37.46 37.48 38.88 42.41
0.5 39.34 39.34 41.04 43.47

of reconstruction in a GOP, it is reasonable to consider the situation in which key
frames are given a higher subrate than the non-key frames such that they are recon-
structed with high quality. Thus, we perform a battery of experiments which measure
the PSNR when the subrate for key frames is increased beyond that of the non-key
frames. Fig. 2 depicts the performance of MC-BCS-SPL when Sk = 0.7 while Syk
varies between 0.1 and 0.5. In these graphs, MC-BCS-SPL with Sk = 0.7 is compared
to MC-BCS-SPL with Sk = Snk, i.e., the “equal subsampling” paradigm as well as to
3D-BCS-SPL (2D-BCS-SPL is omitted due to similar performance to 3D-BCS-SPL).
As expected, the higher-quality reconstruction of the key frames results in a signifi-
cant performance improvement for MC-BCS-SPL. In particular, remarkable gains are
exhibited for the “Hall Monitor” and “Mother and Daughter” sequences which did not
show a large gain over 2D-BCS-SPL in the previous, equal-subsampling experiments.
In an informal observation of computational complexity, MC-BCS-SPL reconstruction
runs at a speed of about 40 seconds per frame (spf). On the other hand, 3D-BCS-SPL
runs at 10spf, and 2D-BCS-SPL at 5spf. These times were measured on a 3.2-GHz
quad-core processor.

We now compare the performance of MC-BCS-SPL to that of the technique of
[6]. In this technique, the non-key frames are then reconstructed from both block-
based and frame-based CS measurements; specifically, the block-based sampling of a
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Figure 2: Performance of MC-BCS-SPL for Sk = 0.7. PSNR is averaged over all non-

key frames of the sequence. “MC-BCS-SPL (equal)” refers to MC-BCS-SPL with equal
subsampling, Sk = Sxk. (a) “Mother and Daughter.” (b) “Hall Monitor.”

non-key frame is used to form a block-by-block multihypothesis motion-compensated
prediction of the non-key frame. For each non-key frame block, an ¢; minimization
selects which blocks in a spatial window in the neighboring key frames participate
in the multihypothesis prediction of the current block. The motion-compensated
prediction of the non-key frame is then used in a residual reconstruction based on
the other, full-frame measurements of the non-key frame; this residual reconstruction
is similar to that in MC-BCS-SPL, except that it is not iterative, and the sampling
operator is full-frame rather than block-based. To compare to this technique, we
depart from the experimental setup used above and instead match the test conditions
used in [6]. Specifically, we change the GOP length to 4 frames with the first frame
(i.e., the “key frame”) left uncoded such that the remaining 3 non-key frames are
reconstructed from perfect-quality key frames as was done in the experimental results
in [6]. The PSNR performance as a function of non-key frame subrate is presented
in Fig. 3. We see that MC-BCS-SPL offers a PSNR gain of around 0.5dB for the
“Foreman” sequence, while a gain of 0.75-2dB is exhibited for the “Coastguard”
sequence.

Conclusions

CS reconstruction of video is a challenging task because computation and memory
burdens grow quickly as the size of problem increases due to the inherent multidimen-
sional nature of the data. As a consequence, in this paper, we focused on reconstruc-
tion driven by block-based processing, employing the BCS-SPL algorithm—a simple
but powerful block-based still-image reconstruction—as the foundation necessary for
video reconstruction. While independent frame-by-frame reconstruction is fast and
straightforward, improved reconstruction quality resulted from exploiting the frame-
to-frame motion of objects. Incorporating reconstruction from a ME/MC-based resid-
ual, the MC-BCS-SPL technique we proposed here alternatively reconstructs frames
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Figure 3: Comparison to the technique due to Do et al. [6]; GOP length = 4 frames with

perfect-quality key frame; performance measured over non-key frames only. (a) “Foreman.”
(b) “Coastguard.”

of the video sequence and their corresponding motion fields, using one to improve
the quality of the other in an iterative fashion. The resulting reconstruction achieved
significantly higher quality than did either frame-by-frame BCS-SPL reconstruction
or a 3D variant of BCS-SPL that features temporal decorrelation merely in the form
of a motion-agnostic 3D transform. Furthermore, significant performance gain was
also observed over the alternative, non-iterative approach to CS video reconstruction
of [6].
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